PH0101 Unit 2 Lecture 6 Klystron Oscillator Reflex Klystron Traveling Wave Tube Biological effect of microwaves

Size: px
Start display at page:

Download "PH0101 Unit 2 Lecture 6 Klystron Oscillator Reflex Klystron Traveling Wave Tube Biological effect of microwaves"

Transcription

1 PH0101 Unit 2 Lecture 6 Klystron Oscillator Reflex Klystron Traveling Wave Tube Biological effect of microwaves 1

2 Klystron Oscillator A klystron is a vacuum tube that can be used either as a generator or as an amplifier of power, at microwave frequencies. 2

3 Two cavity Klystron Amplifier 3

4 Applications As power output tubes 1. in UHF TV transmitters 2. in troposphere scatter transmitters 3. satellite communication ground station 4. radar transmitters As power oscillator (5 50 GHz), if used as a klystron oscillator 4

5 Reflex Klystrons The reflex klystron has been the most used source of microwave power in laboratory applications. 5

6 Construction A reflex klystron consists of an electron gun, a cavity with a pair of grids and a repeller plate as shown in the above diagram. In this klystron, a single pair of grids does the functions of both the buncher and the catcher grids. The main difference between two cavity reflex klystron amplifier and reflex klystron is that the output cavity is omitted in reflex klystron and the repeller or reflector electrode, placed a very short distance from the single cavity, replaces the collector electrode. 6

7 Working The cathode emits electrons which are accelerated forward by an accelerating grid with a positive voltage on it and focused into a narrow beam. The electrons pass through the cavity and undergo velocity modulation, which produces electron bunching and the beam is repelled back by a repeller plate kept at a negative potential with respect to the cathode. On return, the electron beam once again enters the same grids which act as a buncher, therby the same pair of grids acts simultaneously as a buncher for the forward moving electron and as a catcher for the returning beam. 7

8 Reflex Klystron oscillator 8

9 Working The feedback necessary for electrical oscillations is developed by reflecting the electron beam, the velocity modulated electron beam does not actually reach the repeller plate, but is repelled back by the negative voltage. The point at which the electron beam is turned back can be varied by adjusting the repeller voltage. Thus the repeller voltage is so adjusted that complete bunching of the electrons takes place at the catcher grids, the distance between the repeller and the cavity is chosen such that the repeller electron bunches will reach the cavity at proper time to be in synchronization. Due to this, they deliver energy to the cavity, the result is the oscillation at the cavity producing RF frequency. 9

10 Performance Characteristics 1. Frequency: GHz 2. Power: 1 mw 2.5 W 3. Theoretical efficiency : % 4. Practical efficiency : 10 % - 20 % 5. Tuning range : 5 GHz at 2 W 30 GHz at 10 mw 10

11 Applications The reflex klystrons are used in 1. Radar receivers 2. Local oscillator in microwave receivers 3. Signal source in microwave generator of variable frequency 4. Portable microwave links 5. Pump oscillator in parametric amplifier 11

12 Traveling Wave Tube Traveling Wave Tube (TWT) is the most versatile microwave RF power amplifiers. The main virtue of the TWT is its extremely wide band width of operation. 12

13 Basic structure of a Traveling Wave Tube (TWT) 13

14 Basic structure The basic structure of a TWT consists of a cathode and filament heater plus an anode that is biased positively to accelerate the electron beam forward and to focus it into a narrow beam. The electrons are attracted by a positive plate called the collector, which has given a high dc voltage. The length of the tube is usually many wavelengths at the operating frequency. Surrounding the tube are either permanent magnets or electromagnets that keep the electrons tightly focused into a narrow beam. 14

15 Features The unique feature of the TWT is a helix or coil that surrounds the length of the tube and the electron beam passes through the centre or axis of the helix. The microwave signal to be amplified is applied to the end of the helix near the cathode and the output is taken from the end of the helix near the collector. The purpose of the helix is to provide path for RF signal. The propagation of the RF signal along the helix is made approximately equal to the velocity of the electron beam from the cathode to the collector 15

16 Functioning The passage of the microwave signal down the helix produces electric and magnetic fields that will interact with the electron beam. The electromagnetic field produced by the helix causes the electrons to be speeded up and slowed down, this produces velocity modulation of the beam which produces density modulation. Density modulation causes bunches of electrons to group together one wavelength apart and. these bunch of electrons travel down the length of the tube toward the collector. 16

17 Functioning The electron bunches induce voltages into the helix which reinforce the voltage already present there. Due to that the strength of the electromagnetic field on the helix increases as the wave travels down the tube towards the collector. At the end of the helix, the signal is considerably amplified. Coaxial cable or waveguide structures are used to extract the energy from the helix. 17

18 Advantages 1. TWT has extremely wide bandwidth. Hence, it can be made to amplify signals from UHF to hundreds of gigahertz. 2. Most of the TWT s have a frequency range of approximately 2:1 in the desired segment of the microwave region to be amplified. 3. The TWT s can be used in both continuous and pulsed modes of operation with power levels up to several thousands watts. 18

19 Performance characteristics 1. Frequency of operation : 0.5 GHz 95 GHz 2. Power outputs: 5 mw (10 40 GHz low power TWT) 250 kw (CW) at 3 GHz (high power TWT) 10 MW (pulsed) at 3 GHz 3. Efficiency : 5 20 % ( 30 % with depressed collector) 19

20 Applications of TWT 1. Low noise RF amplifier in broad band microwave receivers. 2. Repeater amplifier in wide band communication links and long distance telephony. 3. Due to long tube life (50,000 hours against ¼th for other types), TWT is power output tube in communication satellite. 4. Continuous wave high power TWT s are used in troposcatter links (due to larger power and larger bandwidths). 5. Used in Air borne and ship borne pulsed high power radars. 20

21 Biological effects of microwaves Electromagnetic radiation in the 1 mm to 1 m wavelength range (300 MHz to 300 Ghz) is referred to as microwave radiation. A part of which is known as radiofrequency (RF) radiation, which covers 0.5 MHz to 300 GHz range and is considered in the context of adverse biological effects. 21

22 Ionizing and non ionizing radiations of electromagnetic energy 22

23 Ionizing radiation Ionization is a process by which electrons are stripped from atoms and molecules and this can produce molecular changes that can lead to damage in biological tissue, including effects on DNA, the genetic material. This process requires interaction with high levels of electromagnetic energy to ionize biological material, this include X-radiation and gamma radiation. The energy levels associated with RF and microwave radiations are not great enough to cause the ionization of atoms and molecules, therefore, it is a type of non-ionizing radiation. 23

24 Non ionizing radiation Microwave energy is non-ionizing electromagnetic radiation. Ionizing radiation messes up molecules, nonionizing radiation merely heats them. In general, it does not have sufficient energy to kick an electron off an atom thus producing charged particle in a body and cause biological damage. The only proven harmful effect from exposure to microwave (or RF) radiation is thermal. RF radiation can enter deep into the body and heat human organs. 24

25 Effect of microwaves in human body The blood vessels are dilating and the blood flow increases substantially as the thermoregulatory mechanism is activated in order to keep the body temperature constant. With rising body temperature the metabolic rate rises, which may lead to Stress-Adaptation-Fatigue Syndrome. 25

26 Effects produced by the electromagnetic waves at different frequency level Above 10 GHz (3 cm wavelength or less) heating occurs mainly in the outer skin surface. From 3 GHz to 10 GHz (10 cm to 3 cm) the penetration is deeper and heating higher.from 150 MHz to about 1 GHz (200 cm to 25 cm wavelength), penetration is even deeper and because of high absorption, deep body heating can occur. Any part of the body that cannot dissipate heat efficiently or is heat sensitive may be damaged by microwave radiation of sufficient power. 26

27 Measurement of Microwave exposure The microwave energy exposure is measured in terms of SAR (Specific Absorption Rate) or PD (Power Density). SAR is the energy which is absorbed in a unit of mass or volume of the body per unit time. The standards that limit microwave exposure were set at 0.4 W/kg SAR for occupational and 0.08W/Kg for public exposure. The averaging time for determination of SAR was 6 minutes. Power density is the energy absorbed per unit area in unit time. The high power microwaves definitely cause some adverse effects in the human system 27

28 Power level (mw /cm2) 0.01 Nothing 0.1 Nothing 1 Nothing Effects of Microwave energy Long-term effect on human body Remarks 5 Nothing Accepted standard for microwave oven leakage 10 Nothing Accepted standard for maximum continuous exposure to radiated emissions (cell phones, etc.) 30 You can feel heat 100 Cataracts can be produced 1000 Pain is induced Summer sunlight is at this level 28

29 Do you know YOUR Brain can be FRIED??? What do Microwave Ovens, Cell Phones and Cordless Phones have in common? They all emit... Dangerous Microwave Radiation! The GOOD NEWS is... with Microwave radiation you can... Boil water Cook meat Fry eggs 29

30 The BAD NEWS is... with Microwave radiation you can... Fry Your Brain Your head and brain heat up significantly when you talk on your cell phone or cordless phone. 30

31 Want proof? After 15 minutes of using a cell phone, the orange, red and pink show significant, dangerous HEAT. Most heat is generated in your ear canal, which is directly connected to YOUR BRAIN 31

32 After 15 minutes of using a cell phone WITH the BIOPRO Harmonization Chip applied to it, the green and blue colors show cool tissue. Your head's temperature remains normal, providing you with the protection you deserve. 32

33 33

34 Proof enough? Some scientists estimate that you are now exposed daily to 100 million times the electromagnetic frequency (Micro wave) radiation of your grandparents. So. AVOID FREQUENT USE OF CELL PHONES!!! 34

University of Pittsburgh Safety Manual Subject: GUIDELINES FOR RADIOFREQUENCY RADIATION (RF) EH&S Guideline Number: Effective Date 08/25/2015

University of Pittsburgh Safety Manual Subject: GUIDELINES FOR RADIOFREQUENCY RADIATION (RF) EH&S Guideline Number: Effective Date 08/25/2015 Page 1 of 6 The National Institute for Occupational Safety and Health (NIOSH) and the Occupational Safety and Health Administration (OSHA) are concerned about potential health hazards to workers exposed

More information

Wireless Broadband: Health & Safety Information

Wireless Broadband: Health & Safety Information Wireless Broadband: Health & Safety Information Introduction The increasing use of mobile phones and other wireless technology has been accompanied by public debate about possible adverse effects on health.

More information

ELECTROMAGNETIC FIELDS AND PUBLIC HEALTH HEALTH AND SAFETY GUIDELINES #1

ELECTROMAGNETIC FIELDS AND PUBLIC HEALTH HEALTH AND SAFETY GUIDELINES #1 SINGAPORE, 16 AUGUST 2001 HEALTH SCIENCES AUTHORITY PRESS RELEASE ELECTROMAGNETIC FIELDS AND PUBLIC HEALTH HEALTH AND SAFETY GUIDELINES #1 THE EMF HEALTH ISSUE 1 Over the past years a large number of scientific

More information

Non-Ionizing Electromagnetic Radiation

Non-Ionizing Electromagnetic Radiation This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9 Module 9 This module presents information on what X-rays are and how they are produced. Introduction Module 9, Page 2 X-rays are a type of electromagnetic radiation. Other types of electromagnetic radiation

More information

Hazards of Mobile Waves & Prevention Studies

Hazards of Mobile Waves & Prevention Studies Hazards of Mobile Waves & Prevention Studies Prof. Rushabh Shah Barkha Gupta Khushali Desai ABSTRACT Mobile is the one of the biggest technology evolution of 21st Century. In this era use of mobile phones

More information

3. What are electromagnetic waves? Electromagnetic waves are transverse waves that have some electrical properties and some magnetic properties.

3. What are electromagnetic waves? Electromagnetic waves are transverse waves that have some electrical properties and some magnetic properties. CHAPTER 3 - THE ELECTROMAGNETIC SPECTRUM 3-1 The Nature of Electromagnetic Waves 1. What do all mechanical waves such as sound waves have in common? All mechanical waves such as sound waves transfer energy

More information

Microwave Vacuum Drying of Fruits and Vegetables

Microwave Vacuum Drying of Fruits and Vegetables Microwave Vacuum Drying of Fruits and Vegetables (Value-added Processing of Food Materials) M. Gupta, S. Prasad & V. Meda Role of Agriculture and Allied Sector in Indian Economy Largest economic sector,

More information

OpenWay Radio Frequency FAQ

OpenWay Radio Frequency FAQ OpenWay Radio Frequency FAQ March 10, 2010 2010, Itron Inc. All rights reserved. 1 Overview This document provides general information about radiofrequency (RF) electromagnetic fields from OpenWay wireless

More information

The range of RF spans 3 KHz (3000 Hz) to 300 GHz (300 million Hz)

The range of RF spans 3 KHz (3000 Hz) to 300 GHz (300 million Hz) 1 2 The range of RF spans 3 KHz (3000 Hz) to 300 GHz (300 million Hz) Frequencies of RF devices range from the low frequency AM broadcasts (80 MHz) to higher frequency mobile phones (1900 MHz) smart meters

More information

Q1. The diagram below shows the range of wavelengths and frequencies for all the types of radiation in the electromagnetic spectrum.

Q1. The diagram below shows the range of wavelengths and frequencies for all the types of radiation in the electromagnetic spectrum. Q. The diagram below shows the range of wavelengths and frequencies for all the types of radiation in the electromagnetic spectrum. X rays, which have frequencies in the range 0 8 0 2 Hz are already marked

More information

Annex to the joint statement: Exposure of the general public to radiofrequency fields

Annex to the joint statement: Exposure of the general public to radiofrequency fields 16 November 2009 Annex to the joint statement: Exposure of the general public to radiofrequency fields 1. Introduction This document presents typical exposure of the general public to radiofrequency (RF)

More information

Radartutorial (www.radartutorial.eu) Book 5: Velocity-modulated Tubes

Radartutorial (www.radartutorial.eu) Book 5: Velocity-modulated Tubes Radartutorial Book 5: Velocity-modulated Tubes This educational endowment is a printable summary of all topics about velocity modulates tubes of the internet representation Radar Basics on www.radartutorial.eu,

More information

What are radio signals?

What are radio signals? Mobile phones and other wireless technologies have become an integral part of everyday life. But does using a mobile phone regularly, or living near a base station, have any implications for our health?

More information

Human Exposure Limits

Human Exposure Limits Human Exposure Limits Session 3 0 Version December 2014 Learning objectives In this session we will: Learn about the international exposure limits for workers and the public Learn about methods for assessing

More information

3 Radio Waves and Human Body 8 Specific Absorption Rate (SAR)... 8 SAR value of a mobile handset... 8 Radiation level by a mobile tower...

3 Radio Waves and Human Body 8 Specific Absorption Rate (SAR)... 8 SAR value of a mobile handset... 8 Radiation level by a mobile tower... i Mobile Communication- Radio Waves & Safety Content 1 Overview 3 2 Radio Waves in Cellular Communication System 4 Radio waves... 4 Electric field, Magnetic field... 4 Electromagnetic field (EMF)... 4

More information

Team 8 Michael Price Brandon Briegel Jerrod Kempf Matt Henry Arber Nicaj. RF Communication

Team 8 Michael Price Brandon Briegel Jerrod Kempf Matt Henry Arber Nicaj. RF Communication Team 8 Michael Price Brandon Briegel Jerrod Kempf Matt Henry Arber Nicaj RF Communication Discussion Topics Electromagnetic Spectrum Hardware Modulation/Demodulation Noise Bluetooth Introduction What is

More information

EFFECTS OF ELECTROMAGNETIC FIELDS ON ORGANISMS AND PROTECTION PRINCIPLES

EFFECTS OF ELECTROMAGNETIC FIELDS ON ORGANISMS AND PROTECTION PRINCIPLES EFFECTS OF ELECTROMAGNETIC FIELDS ON ORGANISMS AND PROTECTION PRINCIPLES HANDAN TUNCEL İstanbul University, Cerrahpaşa Medical Faculty Department of Biophysics hntuncel@istanbul.edu.tr The electromagnetic

More information

Extended spectral coverage of BWO combined with frequency multipliers

Extended spectral coverage of BWO combined with frequency multipliers Extended spectral coverage of BWO combined with frequency multipliers Walter C. Hurlbut, Vladimir G. Kozlov, Microtech Instruments, Inc. (United States) Abstract: Solid state frequency multipliers extend

More information

wavelength 2 cycles wavelength 4 cycles

wavelength 2 cycles wavelength 4 cycles Waves Frequency: Cycles per second But that is too simple so instead we call one cycle per second a Hertz (Hz) 1000 cycles/second = 1000 Hz = 1 kilohertz = 1 khz 1,000,000 Hz = 1 megahertz = 1 MHz 1,000,000,000

More information

Q1. The diagram below shows the range of wavelengths and frequencies for all the types of radiation in the electromagnetic spectrum.

Q1. The diagram below shows the range of wavelengths and frequencies for all the types of radiation in the electromagnetic spectrum. Q. The diagram below shows the range of wavelengths and frequencies for all the types of radiation in the electromagnetic spectrum. X-rays, which have frequencies in the range 0 8 0 2 Hz are already marked

More information

Selected Radio Frequency Exposure Limits

Selected Radio Frequency Exposure Limits ENVIRONMENT, SAFETY & HEALTH DIVISION Chapter 50: Non-ionizing Radiation Selected Radio Frequency Exposure Limits Product ID: 94 Revision ID: 1736 Date published: 30 June 2015 Date effective: 30 June 2015

More information

Electromagnetic Spectrum

Electromagnetic Spectrum Electromagnetic Spectrum Why do some things have colors? What makes color? Why do fast food restaurants use red lights to keep food warm? Why don t they use green or blue light? Why do X-rays pass through

More information

Module - 4 Advanced Welding Processes Lecture - 5 Electron Beam and Plasma Welding Processes

Module - 4 Advanced Welding Processes Lecture - 5 Electron Beam and Plasma Welding Processes Advanced Manufacturing Processes Prof. Dr. Apurbba Kumar Sharma Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Module - 4 Advanced Welding Processes Lecture

More information

Electron Devices Simulation with CST STUDIO SUITE Richard Cousin, CST. CST EuMW 2011 Presentations October 2011 1

Electron Devices Simulation with CST STUDIO SUITE Richard Cousin, CST.  CST EuMW 2011 Presentations October 2011 1 Electron Devices Simulation with CST STUDIO SUITE Richard Cousin, CST www.cst.com CST EuMW 2011 Presentations October 2011 1 Overview Brief History, principles of Vacuum Tubes Electron Guns (Generation

More information

Environmental Health and Safety

Environmental Health and Safety Environmental Health and Safety Standard Operating Guideline RF & Microwave Safety Program 1.0 Purpose and Requirements This guide will present a summary of the basics of radiofrequency (RF) and microwave

More information

Electromagnetic (EM) waves. Electric and Magnetic Fields. L 30 Electricity and Magnetism [7] James Clerk Maxwell (1831-1879)

Electromagnetic (EM) waves. Electric and Magnetic Fields. L 30 Electricity and Magnetism [7] James Clerk Maxwell (1831-1879) L 30 Electricity and Magnetism [7] ELECTROMAGNETIC WAVES Faraday laid the groundwork with his discovery of electromagnetic induction Maxwell added the last piece of the puzzle Heinrich Hertz made the experimental

More information

Millennium Product Inc. Model: Cell Shield / Zorb

Millennium Product Inc. Model: Cell Shield / Zorb Millennium Product Inc. Cell Shield / Zorb Prepared by PCTEST LAB Issued on: 10/22/2015 Report Version 2.6 NOTE: SAR results only apply to the device tested. Although the device may have had different

More information

Chapter 25 Electromagnetic Waves

Chapter 25 Electromagnetic Waves Chapter 25 Electromagnetic Waves Units of Chapter 25 The Production of Electromagnetic Waves The Propagation of Electromagnetic Waves The Electromagnetic Spectrum Energy and Momentum in Electromagnetic

More information

CSCI Computer Networking: Physical Layer Transmission Media George Blankenship. Physical Layer Transmission Media. George Blankenship 1

CSCI Computer Networking: Physical Layer Transmission Media George Blankenship. Physical Layer Transmission Media. George Blankenship 1 CSCI 6431 Computer Networking: George Blankenship George Blankenship 1 Lecture Outline Guided wire Unguided wireless George Blankenship 2 Design Factors Key concerns are data rate and distance Higher bandwidth

More information

How does a microwave oven work?

How does a microwave oven work? last lecture Electromagnetic waves oscillating electric and magnetic fields c = c = 3x10 8 m/s or 186,282 miles/sec Radios using the tank circuit to emit and receive electromagnetic waves of a specific

More information

Mobile use, radio signals and health

Mobile use, radio signals and health Mobile use, radio signals and health Mobile use, radio signals and health How does the mobile network work? Since the 1970s, the use of various types of radio transmitters has risen dramatically, to the

More information

MEMORANDUM. Amy Kahler, Director of Customer Service and Marketing Mike McCurnin, P.E., Director of Water Production

MEMORANDUM. Amy Kahler, Director of Customer Service and Marketing Mike McCurnin, P.E., Director of Water Production DES MOINES WATER WORKS Board of Water Works Trustees 2201 George Flagg Parkway Des Moines, Iowa 50321-1190 (515) 283-8700 www.dmww.com MEMORANDUM DATE: February 4, 2015 TO: FROM: SUBJECT: William Stowe,

More information

RF POWER SOURCE SYSTEMS FOR TAC IR FEL FACILITY

RF POWER SOURCE SYSTEMS FOR TAC IR FEL FACILITY RF POWER SOURCE SYSTEMS FOR TAC IR FEL FACILITY Özlem KARSLI Avni AKSOY Prof.Dr.Ömer YAVAŞ 30.08.-01.09 2010, Bodrum OUTLINE Overview of RF system of TAC IR FEL Facility. RF sources (Klystron, IOT & Solid

More information

Wave Properties of Electromagnetic Radiation

Wave Properties of Electromagnetic Radiation Wave Properties of Electromagnetic Radiation Two options are available for analytical utility when an analyte interacts with a beam of electromagnetic radiation in an instrument 1. We can monitor the changes

More information

Methods of plasma generation and plasma sources

Methods of plasma generation and plasma sources Methods of plasma generation and plasma sources PlasTEP trainings course and Summer school 2011 Warsaw/Szczecin Indrek Jõgi, University of Tartu Partfinanced by the European Union (European Regional Development

More information

Human auditory perception resulting from exposure to high power pulsed or modulated microwave radiation specification of appropriate safety limits

Human auditory perception resulting from exposure to high power pulsed or modulated microwave radiation specification of appropriate safety limits Human auditory perception resulting from exposure to high power pulsed or modulated microwave radiation specification of appropriate safety limits Australian Radiation Protection & Nuclear Safety Agency,

More information

I. C O N T E N T S T A N D A R D S

I. C O N T E N T S T A N D A R D S Introductory Physics, High School Learning Standards for a Full First-Year Course I. C O N T E N T S T A N D A R D S 4. Waves Central Concept: Waves carry energy from place to place without the transfer

More information

EFFECTS OF MOBILE PHONE RADIATION ON THE HUMAN HEALTH

EFFECTS OF MOBILE PHONE RADIATION ON THE HUMAN HEALTH EFFECTS OF MOBILE PHONE RADIATION ON THE HUMAN HEALTH Mobile or cellular phones are now an integral part of modern telecommunications. In many countries, over half the population use mobile phones and

More information

wavelength 2 cycles wavelength 4 cycles

wavelength 2 cycles wavelength 4 cycles Waves Frequency: Cycles per second But that is too simple so instead we call one cycle per second a Hertz (Hz) 1000 cycles/second = 1000 Hz = 1 kilohertz = 1 khz 1,000,000 Hz = 1 megahertz = 1 MHz 1,000,000,000

More information

TOF FUNDAMENTALS TUTORIAL

TOF FUNDAMENTALS TUTORIAL TOF FUNDAMENTALS TUTORIAL Presented By: JORDAN TOF PRODUCTS, INC. 990 Golden Gate Terrace Grass Valley, CA 95945 530-272-4580 / 530-272-2955 [fax] www.rmjordan.com [web] info@rmjordan.com [e-mail] This

More information

EMR Exposure Limits & Assessment Methods for Mobile Phone Communications. Lindsay Martin Manager, Non-Ionising Radiation Section

EMR Exposure Limits & Assessment Methods for Mobile Phone Communications. Lindsay Martin Manager, Non-Ionising Radiation Section EMR Exposure Limits & Assessment Methods for Mobile Phone Communications Lindsay Martin Manager, Non-Ionising Radiation Section Introduction How can we use Wireless Communication Safely? Wireless communication

More information

Cathode Ray Tube. Introduction. Functional principle

Cathode Ray Tube. Introduction. Functional principle Introduction The Cathode Ray Tube or Braun s Tube was invented by the German physicist Karl Ferdinand Braun in 897 and is today used in computer monitors, TV sets and oscilloscope tubes. The path of the

More information

Application & Design Notes Gunn Oscillators

Application & Design Notes Gunn Oscillators Millimeter Wave GENERAL NOTES GUNN OSCILLATOR APPLICATIONS Gunn diodes have been commercially successful as microwave oscillators since the late 1960's. They are employed wherever a stable low cost microwave

More information

MICROWAVE OVEN RADIATION SAFETY

MICROWAVE OVEN RADIATION SAFETY MICROWAVE OVEN RADIATION SAFETY What is microwave radiation? Microwaves, like visible light are a part of the electromagnetic spectrum and are extremely high frequency radio waves. Microwaves travel in

More information

Chapter 4 Transmission Media

Chapter 4 Transmission Media Chapter 4 Transmission Media Overview transmission medium is the physical path between transmitter and receiver guided media guided along a solid medium unguided media atmosphere, space, water characteristics

More information

Astronomy 110 Homework #05 Assigned: 02/13/2007 Due: 02/20/2007. Name: (Answer Key)

Astronomy 110 Homework #05 Assigned: 02/13/2007 Due: 02/20/2007. Name: (Answer Key) Astronomy 110 Homework #05 Assigned: 02/13/2007 Due: 02/20/2007 Name: (Answer Key) Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures thus

More information

Section 1 Electromagnetic Waves

Section 1 Electromagnetic Waves Section 1 Electromagnetic Waves What are electromagnetic waves? What do microwaves, cell phones, police radar, television, and X-rays have in common? All of them use electromagnetic waves Electromagnetic

More information

Wireless Medical Telemetry Laboratory

Wireless Medical Telemetry Laboratory Wireless Medical Telemetry Laboratory 0 Introduction The development of wireless medical telemetry has become an increasingly popular application in recent years. As the elderly population continues to

More information

SR Communications Tower Task Force Dr. Jeff Liva, Allen Cohen, Rebecca Rogers

SR Communications Tower Task Force Dr. Jeff Liva, Allen Cohen, Rebecca Rogers SR Communications Tower Task Force Dr. Jeff Liva, Allen Cohen, Rebecca Rogers 1 Table of Contents 2 Chemical hazards. These develop from excessive exposure to concentrations of chemicals in environment.

More information

ARPANSA. Protecting people and the environment from the harmful effects of radiation REGULATORY GUIDE

ARPANSA. Protecting people and the environment from the harmful effects of radiation REGULATORY GUIDE ARPANSA Protecting people and the environment from the harmful effects of radiation REGULATORY GUIDE How to Determine Whether a RF Source is a Controlled Apparatus January 2012 REGULATORY GUIDE: How to

More information

Amplification Atomic (or molecular, or semiconductor) system has energy levels Some higher energy states are stable for a short time (ps to ms)

Amplification Atomic (or molecular, or semiconductor) system has energy levels Some higher energy states are stable for a short time (ps to ms) Part 5: Lasers Amplification Atomic (or molecular, or semiconductor) system has energy levels Some higher energy states are stable for a short time (ps to ms) Incident photon can trigger emission of an

More information

RADIATION EFFECTS OF WEARABLE ANTENNA IN HUMAN BODY TISSUES

RADIATION EFFECTS OF WEARABLE ANTENNA IN HUMAN BODY TISSUES RADIATION EFFECTS OF WEARABLE ANTENNA IN HUMAN BODY TISSUES Author: Francesc Soler Director: Dr. Heather Song University of Colorado Springs, 2014 Abstract Nowadays humankind live completely surrounded

More information

Electromagnetic Radiation towards Adult Human Head from Handheld Mobile Phones

Electromagnetic Radiation towards Adult Human Head from Handheld Mobile Phones Electromagnetic Radiation towards Adult Human Head from Handheld Mobile Phones D.A.A. Mat 1, W.T. Kho 2, A. Joseph 3, K. Kipli 4, K. Lias 5, A.S.W. Marzuki 6 and S. Sahrani 7 1 Universiti Malaysia Sarawak,

More information

Prepared by Martin WU Kwok-tin, BSE/EEA2/1 Energy Efficiency Office, Electrical and Mechanical Services Department (August 2003)

Prepared by Martin WU Kwok-tin, BSE/EEA2/1 Energy Efficiency Office, Electrical and Mechanical Services Department (August 2003) Interference Problems of Fluorescent Lamps Operating on High Frequency Electronic Ballasts with Infrared Remote Control Equipment and Infrared Simultaneous Interpretation System Prepared by Martin WU Kwok-tin,

More information

Why Choose Microwave Technology?

Why Choose Microwave Technology? Why Choose Microwave Technology? The History, Science and Benefits Introduction Microwave energy has gained in popularity within a variety of industries since the home microwave first enjoyed widespread

More information

RADIOFREQUENCY RADIATION, (RFR): (RFR Information - Technology Newsletter, Full Version)

RADIOFREQUENCY RADIATION, (RFR): (RFR Information - Technology Newsletter, Full Version) RADIOFREQUENCY RADIATION, (RFR): (RFR Information - Technology Newsletter, Full Version) George M. Harris, P.E. (Revised February, 2011) Questions: -What is Radiofrequency Radiation, (RFR)? -With SO MANY

More information

Interaction of Mobile Phone Waves with Tissues of Skeletal Muscles and Bone of Human Beings

Interaction of Mobile Phone Waves with Tissues of Skeletal Muscles and Bone of Human Beings IOSR Journal of Pharmacy and Biological Sciences (IOSRJPBS) ISSN : 78-3008 Volume 1, Issue 6 (July-August 01), PP 06-16 Interaction of Mobile Phone Waves with Tissues of Skeletal Muscles and Bone of Human

More information

IFI5481: RF Circuits, Theory and Design

IFI5481: RF Circuits, Theory and Design IFI5481: RF Circuits, Theory and Design Lecturer: Prof. Tor A. Fjeldly, UiO og NTNU/UNIK [torfj@unik.no] Assistant: Malihe Zarre Dooghabadi [malihezd@ifi.uio.no] Syllabus: Lectured material and examples,

More information

Technical Datasheet. GT-1000A Microwave Power Amplifier 2 GHz to 20 GHz. Broadband High-Power Instrumentation Amplifier. 34682 Rev.

Technical Datasheet. GT-1000A Microwave Power Amplifier 2 GHz to 20 GHz. Broadband High-Power Instrumentation Amplifier. 34682 Rev. Technical Datasheet GT-1000A Microwave Power Amplifier 2 GHz to 20 GHz Broadband High-Power Instrumentation Amplifier 34682 Rev. J / US101115 Advanced Amplifier Technology 2 to 20 GHz eliminates band switching,

More information

Radio waves and health. Mobile communications

Radio waves and health. Mobile communications Radio waves and health Mobile communications Mobile communications and health Mobile telephony Radio communications have been used for more than a hundred years in various sorts of applications. Already

More information

Effects of Cell Phone Radiation on the Head. BEE 4530 Computer-Aided Engineering: Applications to Biomedical Processes

Effects of Cell Phone Radiation on the Head. BEE 4530 Computer-Aided Engineering: Applications to Biomedical Processes Effects of Cell Phone Radiation on the Head BEE 4530 Computer-Aided Engineering: Applications to Biomedical Processes Group 3 Angela Cai Youjin Cho Mytien Nguyen Praveen Polamraju Table of Contents I.

More information

AN OVERVIEW OF STANDARDS AND REGULATION CONCERNING EXPOSURE TO RADIOFREQUENCY FIELDS

AN OVERVIEW OF STANDARDS AND REGULATION CONCERNING EXPOSURE TO RADIOFREQUENCY FIELDS AN OVERVIEW OF STANDARDS AND REGULATION CONCERNING EXPOSURE TO RADIOFREQUENCY FIELDS Annamaria PALJANOS, paljanosanna@yahoo.com Călin MUNTEANU calin.munteanu@et.utcluj.ro TECHNICAL UNIVERSITY CLUJ NAPOCA,

More information

CS647: Advanced Topics in Wireless Networks Basics of Wireless Transmission

CS647: Advanced Topics in Wireless Networks Basics of Wireless Transmission CS647: Advanced Topics in Wireless Networks Basics of Wireless Transmission CS 647 2.1 Outline Frequencies Signals Antennas Signal propagation Multiplexing Spread spectrum Modulation CS 647 2.2 Types of

More information

P1 Learning Outcome Questions

P1 Learning Outcome Questions P1 Learning Outcome Questions Question 1. Do hot things or warm things cool down more quickly? 2. In which direction does heat energy always move? Answer Hot things cool down more quickly From a warmer

More information

Radioactive isotopes occur naturally or can be generated artificially.

Radioactive isotopes occur naturally or can be generated artificially. RADIATION SAFETY Introduction Radioactive isotopes occur naturally or can be generated artificially. They emit ionising radiation in the form of electromagnetic waves or energetic particles. Exposure to

More information

Webster s Dictionary. Dictionary.com. The act or process of radiating The process of emitting radiant energy in the form of waves or particles

Webster s Dictionary. Dictionary.com. The act or process of radiating The process of emitting radiant energy in the form of waves or particles Webster s Dictionary The act or process of radiating The process of emitting radiant energy in the form of waves or particles Dictionary.com the process in which energy is emitted as particles or waves.

More information

Modern Physics Laboratory e/m with Teltron Deflection Tube

Modern Physics Laboratory e/m with Teltron Deflection Tube Modern Physics Laboratory e/m with Teltron Deflection Tube Josh Diamond & John Cummings Fall 2010 Abstract The deflection of an electron beam by electric and magnetic fields is observed, and the charge

More information

Wireless Charging Of Mobile Phones Using Microwaves

Wireless Charging Of Mobile Phones Using Microwaves Wireless Charging Of Mobile Phones Using Microwaves Sakthi Abirami.B 1, Vidhya Lakshmi.S 2 Dept. of Electronics and communication engineering, RMD Engineering College, Tamilnadu, India 1, 2 Abstract-In

More information

Lecture 8: Radiation Spectrum. Radiation. Electromagnetic Radiation

Lecture 8: Radiation Spectrum. Radiation. Electromagnetic Radiation Lecture 8: Radiation Spectrum The information contained in the light we receive is unaffected by distance The information remains intact so long as the light doesn t run into something along the way Since

More information

List of Tables Chapter 3

List of Tables Chapter 3 List of Tables Chapter 3 Table 3.1 Induced electric field radiated from the mobile phone handsets...... 23 Table 3.2 Electric field inside the skin (handset) due to the EMW of frequency 800 MHz. 24 Table

More information

High Power RF Sources for the ESS RF Systems. Morten Jensen

High Power RF Sources for the ESS RF Systems. Morten Jensen High Power RF Sources for the ESS RF Systems Morten Jensen www.europeanspallationsource.se ESLS RF, 1 October 2015 Site Construction August 2015 First bit of the RF Gallery 2 ESS accelerator power profile

More information

T e c h n i c a l N o t e s

T e c h n i c a l N o t e s What are x-rays and how are they generated? What are x-rays? X-rays are part of the electromagnetic radiation spectrum. This spectrum includes radio waves, microwaves, infrared, the visible spectrum, ultra

More information

Automated Meter Reading Frequently Asked Questions. What is AMR?

Automated Meter Reading Frequently Asked Questions. What is AMR? Automated Meter Reading Frequently Asked Questions What is AMR? AMR stands for Automated Meter Reading. It is a method of using advanced communications technology to read meters remotely. It reduces human

More information

Light. Light. Overview. In-class activity. What are waves? In this section: PSC 203. What is it? Your thoughts?

Light. Light. Overview. In-class activity. What are waves? In this section: PSC 203. What is it? Your thoughts? Light PSC 203 Overview In this section: What is light? What is the EM Spectrum? How is light created? What can we learn from light? In-class activity Discuss your answers in groups of 2 Think of as many

More information

Experiments with Microwave Heat Sources for Thermal Stimulation of Anti-Personnel Landmines

Experiments with Microwave Heat Sources for Thermal Stimulation of Anti-Personnel Landmines Special Publication SPI.0251 Experiments with Microwave Heat Sources for Thermal Stimulation of Anti-Personnel Landmines B. Hosgood, G. Andreoli (HS Unit / IPSC / JRC Ispra) November 2001 Abstract This

More information

Measurement of Charge-to-Mass (e/m) Ratio for the Electron

Measurement of Charge-to-Mass (e/m) Ratio for the Electron Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic

More information

The field strength measurement and SAR experience related to human exposure in 110 MHz to 40 GHz

The field strength measurement and SAR experience related to human exposure in 110 MHz to 40 GHz The field strength measurement and SAR experience related to human exposure in 110 MHz to 40 GHz J. Klima, R. Ščehovič Department of Physics, Faculty of Natural Sciences, University of Mathias Bel, Tajovského

More information

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator. PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

More information

Real-life Applications of ICNIRP Guidelines to Various Human EMF Exposure Issues

Real-life Applications of ICNIRP Guidelines to Various Human EMF Exposure Issues Technical Forum Overview and Latest Development of Standards in Human Exposure to Electromagnetic Fields (EMF) Real-life Applications of ICNIRP Guidelines to Various Human EMF Exposure Issues Dr. Brian

More information

Radiology Physics. Just take a deep breath. Books to Consider. Why worry about physics? The Game Plan. 1 st Period

Radiology Physics. Just take a deep breath. Books to Consider. Why worry about physics? The Game Plan. 1 st Period Radiology Physics Just take a deep breath OR: I DIDN T SIGN UP TO LEARN THIS STUFF Chris Ober, DVM, PhD, DACVR 7 February 2011 Why worry about physics? Know what the system can give you Know what the system

More information

Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B

Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B CSE 3461 / 5461: Computer Networking & Internet Technologies Data Transmission Presentation B Kannan Srinivasan 08/30/2012 Data Communications Model Figure 1.2 Studying Assignment: 3.1-3.4, 4.1 Presentation

More information

RF EXPOSURE LIMITS AND TESTING REQUIREMENTS

RF EXPOSURE LIMITS AND TESTING REQUIREMENTS RF EXPOSURE LIMITS AND TESTING REQUIREMENTS Jay Moulton Vice President March 12, 2013 1 OVERVIEW Specific Absorption Rate (SAR) and Maximum Permissible Exposure (MPE) Standards and Limits Evaluation Methods

More information

MAKING SENSE OF ENERGY Electromagnetic Waves

MAKING SENSE OF ENERGY Electromagnetic Waves Adapted from State of Delaware TOE Unit MAKING SENSE OF ENERGY Electromagnetic Waves GOALS: In this Part of the unit you will Learn about electromagnetic waves, how they are grouped, and how each group

More information

Risk of Brain Tumors From Wireless Phone Use. Journal of Computer Assisted Tomography November/December 2010; Vol. 34, No. 6; pp.

Risk of Brain Tumors From Wireless Phone Use. Journal of Computer Assisted Tomography November/December 2010; Vol. 34, No. 6; pp. Risk of Brain Tumors From Wireless Phone Use 1 Journal of Computer Assisted Tomography November/December 2010; Vol. 34, No. 6; pp. 799-807 Rash Bihari Dubey, Madasu Hanmandlu, PhD, and Suresh Kumar Gupta,

More information

Lab 5 - Electron Charge-to-Mass Ratio

Lab 5 - Electron Charge-to-Mass Ratio Lab 5 Electron Charge-to-Mass Ratio L5-1 Name Date Partners Lab 5 - Electron Charge-to-Mass Ratio OBJECTIVES To understand how electric and magnetic fields impact an electron beam To experimentally determine

More information

1. INTRODUCTION. There are different frequency bans according to the range of frequencies shown: 1.1 Electromagnetic Spectrum

1. INTRODUCTION. There are different frequency bans according to the range of frequencies shown: 1.1 Electromagnetic Spectrum International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 1 Wireless Charging of Mobile Phone using Microwaves! Apurva Patel 3 rd Year B.Tech Computer Science Student VIT

More information

Light, Light Bulbs and the Electromagnetic Spectrum

Light, Light Bulbs and the Electromagnetic Spectrum Light, Light Bulbs and the Electromagnetic Spectrum Spectrum The different wavelengths of electromagnetic waves present in visible light correspond to what we see as different colours. Electromagnetic

More information

within body bioelectricity is a biofield. It is due to concentration gradient generated across membrane of the cell.

within body bioelectricity is a biofield. It is due to concentration gradient generated across membrane of the cell. ABSRACT The thesis entitled A study of effects of electromagnetic radiation (EMR) on health is based on observing influence of electromagnetic fields around us. Electromagnetic radiation may have an effect

More information

Lecture 1. The nature of electromagnetic radiation.

Lecture 1. The nature of electromagnetic radiation. Lecture 1. The nature of electromagnetic radiation. 1. Basic introduction to the electromagnetic field: Dual nature of electromagnetic radiation Electromagnetic spectrum. Basic radiometric quantities:

More information

OTHER RF POWER SOURCES

OTHER RF POWER SOURCES OTHER RF POWER SOURCES G.Ya. KURKIN Budker Institute of Nuclear Physics 630090 Novosibirsk, Russia The main subjects discussed in this paper are as follows. Triode tube; main characteristics of the equivalent

More information

Electromagnetic Radiation

Electromagnetic Radiation Activity 17 Electromagnetic Radiation Why? Electromagnetic radiation, which also is called light, is an amazing phenomenon. It carries energy and has characteristics of both particles and waves. We can

More information

EMC Pre-compliance Test of RFIC and RF Systems Using a Laboratory GTEM Chamber

EMC Pre-compliance Test of RFIC and RF Systems Using a Laboratory GTEM Chamber 896 PIERS Proceedings, Moscow, Russia, August 19 23, 2012 EMC Pre-compliance Test of RFIC and RF Systems Using a Laboratory GTEM Chamber H. X. Araujo and L. C. Kretly University of Campinas, Brazil Abstract

More information

Transmission Media After this lecture, you will be able to

Transmission Media After this lecture, you will be able to Transmission Media After this lecture, you will be able to describe the physical and transmission characteristics of various transmission media their limitations and current applications guided media twisted

More information

Objectives. What are X-rays? X. Julian Moger 1. PAM1014 Introduction to Radiation Physics. Electromagnetic Radiation. Electromagnetic Radiation

Objectives. What are X-rays? X. Julian Moger 1. PAM1014 Introduction to Radiation Physics. Electromagnetic Radiation. Electromagnetic Radiation PM1014 Introduction to Radiation Physics Objectives Electromagnetic Waves Properties of Electromagnetic Spectrum Inverse Square Law What are s? X Radio & TV Microwave Visible UV s γ-rays 10 1 10-1 10-2

More information

Cell phones and brain tumors: A review including the long-term epidemiologic data. Surgical Neurology September 2009; 72; pp.

Cell phones and brain tumors: A review including the long-term epidemiologic data. Surgical Neurology September 2009; 72; pp. Cell phones and brain tumors: A review including the long-term epidemiologic data 1 Surgical Neurology September 2009; 72; pp. 205 215 Vini G. Khurana, PhD, FRACS, Charles Teo, MBBS, FRACS, Michael Kundi,

More information

Electromagnetic Waves and Polarization

Electromagnetic Waves and Polarization Electromagnetic Waves and Polarization Physics 2415 Lecture 30 Michael Fowler, UVa Today s Topics Measuring the speed of light Wave energy and power: the Poynting vector Light momentum and radiation pressure

More information

Effects of Mobile Phone Radiation onto Human Head with Variation of Holding Cheek and Tilt Positions

Effects of Mobile Phone Radiation onto Human Head with Variation of Holding Cheek and Tilt Positions Effects of Mobile Phone Radiation onto Human Head with Variation of Holding Cheek and Tilt Positions M. R. Iqbal-Faruque* 1, N. Aisyah-Husni 2, Md. Ikbal-Hossain 1, M. Tariqul-Islam 2 and N. Misran 2 1

More information

RICHARD T ELL ASSOCIATES,INC.

RICHARD T ELL ASSOCIATES,INC. RICHARD T ELL ASSOCIATES,INC. An Evaluation of Test Measurement Data Obtained on the KW-Gard RF Protective Suit March 30, 1998 Prepared for Euclid Garment Manufacturing Company 333 Martinel Drive Kent,

More information