# Introduction to X-ray Diffraction (XRD) Learning Activity

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Introduction to X-ray Diffraction (XRD) Learning Activity Basic Theory: Diffraction and Bragg s Law Take a look at the diagram below: X-rays Interacting with Material A Scatter Single Particle B Diffraction Solid Material A. When X-rays interact with a single particle, it scatters the incident beam uniformly in all directions. B. When X-rays interact with a solid material the scattered beams can add together in a few directions and reinforce each other to yield diffraction. The regularity of the material is responsible for the diffraction of the beams. You have likely seen diffraction before. For example if you look at a CD when exposed to white light you can see it diffracted into varies wavelengths of color. The pits (or grooves) in the CD are the regularity of the material that causes the diffraction. Google images: outreach.atnf.csiro.au This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.5 License and contains web-linked material. * corresponding author:

2 Diffraction can occur when any electromagnetic radiation interacts with a periodic structure. The repeat distance of the periodic structure must be about the same wavelength of the radiation. For example, light can be diffracted by a grating having scribed lines arranged on the order of the wavelength of light. White Light Source Diffraction Grating Spectrum Question: So if all electromagnetic radiation can diffract, why are X-rays used in crystallography?

3 X-ray Diffraction and Bragg s Law X-rays have wavelengths on the order of a few angstroms (1 Angstrom = 0.1 nm). This is the typical inter-atomic distance in crystalline solids, making X-rays the correct order of magnitude for diffraction of atoms of crystalline materials. How are Diffractions Patterns Made? When X-rays are scattered from a crystalline solid they can constructively interfere, producing a diffracted beam. What does this mean? Constructive vs. Destructive Interference Interference occurs among the waves scattered by the atoms when crystalline solids are exposed to X-rays. There are two types of interference depending on how the waves overlap one another. Constructive interference occurs when the waves are moving in phase with each other. Destructive interference occurs when the waves are out of phase. A Diffracted Wave 1 Diffracted Wave 2 Constructive Interference B Diffracted Wave 1 Diffracted Wave 2 Destructive Interference This constructive interference results in diffraction patterns.

4 Bragg's Law and Diffraction The relationship describing the angle at which a beam of X-rays of a particular wavelength diffracts from a crystalline surface was discovered by Sir William H. Bragg and Sir W. Lawrence Bragg and is known as Bragg s Law 2dsin= n = wavelength of the x-ray = scattering angle n = integer representing the order of the diffraction peak. d = inter-plane distance of (i.e atoms, ions, molecules) 2dsin=n Lattice Planes Bragg s Law Click on the following image below to get to an Applet where you can explore this relationship of Bragg s Law Guide to how to use Applet: There are 2 rays incident on two atomic layers of a crystal (d). At the beginning the scattered rays are in phase and interfering constructively. Bragg s Law is satisfied and diffraction is occurring. If you click on the details

5 button you can see the detector, which measures how well the phases of the two rays match. When the meter is green it indicates that Bragg s law is satisfied. You can change three variables (d,, and ) to see how they effect the diffraction. EXAMPLE: Unit Cell Size from Diffraction Data The diffraction pattern of copper metal was measured with X-ray radiation of wavelength of 1.315Å. The first order Bragg diffraction peak was found at an angle 2theta of 50.5 degrees. Calculate the spacing between the diffracting planes in the copper metal.

### Experiment: Crystal Structure Analysis in Engineering Materials

Experiment: Crystal Structure Analysis in Engineering Materials Objective The purpose of this experiment is to introduce students to the use of X-ray diffraction techniques for investigating various types

### X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US. Hanno zur Loye

X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US Hanno zur Loye X-rays are electromagnetic radiation of wavelength about 1 Å (10-10 m), which is about the same size as an atom. The

### Powder X-Ray Diffraction (Powder XRD) [6.3.2]

Powder X-Ray Diffraction (Powder XRD) [6.3.2] Introduction to Powder XRD Powder X-Ray Diffraction was developed as a technique that could be applied where traditional single-crystal diffraction cannot

### Recap Lecture 34 Matthias Liepe, 2012

Recap Lecture 34 Matthias Liepe, 2012 Diffraction Diffraction limited resolution Double slit (again) N slits Diffraction gratings Examples Today: Pointillism Technique of painting in which small, distinct

### Basics in X-ray Diffraction and Special Application

Basics in X-ray Diffraction and Special Application Introduction: X-ray Diffraction (XRD) helps one to reach the science at atomic scale in the analysis of crystal structure, chemical composition, and

### EXPERIMENT 4. Microwave Experiments. Introduction. Experimental Procedure. Part 1 : Double Slit

EXPERIMENT 4 Microwave Experiments Introduction Microwaves are electromagnetic radiation in the centimeter range of wavelengths. As such, they, like light, will exhibit typical wave properties like interference

### Chapter 24. Wave Optics

Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena. Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric)

### emission of light from atoms discrete line spectra - energy levels, Franck-Hertz experiment

Introduction Until the early 20 th century physicists used to explain the phenomena in the physical world around them using theories such a mechanics, electromagnetism, thermodynamics and statistical physics

### (i) outline the methods used by the Braggs to determine crystal structure

9.4.4 Investigations into the electrical properties of particular metals at different temperatures led to the identification of superconductivity and the exploration of possible applications 9.4.4-2(i)

### X-Ray Diffraction. wavelength Electric field of light

Light is composed of electromagnetic radiation with an electric component that modulates versus time perpendicular to the direction it is travelling (the magnetic component is also perpendicular to the

### X-Ray Diffraction: A Comprehensive Explanation for Multipurpose Research

X-Ray Diffraction: A Comprehensive Explanation for Multipurpose Research Adree Khondker 1, Shakir Lakhani 2 1 Westdale S.S., Hamilton, ON, Canada 2 Upper Canada College, Toronto, ON, Canada Abstract: The

### Determination of Inter-planar Spacing of NaCl Crystal in Presence of Benzene Microlayer by X-ray Diffraction Method

The African Review of Physics (2) 6:3 Determination of Inter-planar Spacing of NaCl Crystal in Presence of Benzene Microlayer by X-ray Diffraction Method Sumanta Kumar Tripathy * GIET College of Engineering,

### Crystal Structure of High Temperature Superconductors. Marie Nelson East Orange Campus High School NJIT Professor: Trevor Tyson

Crystal Structure of High Temperature Superconductors Marie Nelson East Orange Campus High School NJIT Professor: Trevor Tyson Introduction History of Superconductors Superconductors are material which

### Relevant Reading for this Lecture... Pages 83-87.

LECTURE #06 Chapter 3: X-ray Diffraction and Crystal Structure Determination Learning Objectives To describe crystals in terms of the stacking of planes. How to use a dot product to solve for the angles

Practice Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes

### Bryn Mawr College Department of Physics Undergraduate Teaching Laboratories X-ray Crystallography

Bryn Mawr College Department of Physics Undergraduate Teaching Laboratories X-ray Crystallography Introduction In this lab you will explore the X-ray spectrum produced by copper in an X-ray tube and investigate

### Electron Diffraction and Crystal Structure

University of Michigan Physics 441-442 2/9/06 Advanced Physics Laboratory 1. Introduction Electron Diffraction and Crystal Structure In classical mechanics we describe motion by assigning momenta to point

### BCM 6200 - Protein crystallography - I. Crystal symmetry X-ray diffraction Protein crystallization X-ray sources SAXS

BCM 6200 - Protein crystallography - I Crystal symmetry X-ray diffraction Protein crystallization X-ray sources SAXS Elastic X-ray Scattering From classical electrodynamics, the electric field of the electromagnetic

### Structure Factors 59-553 78

78 Structure Factors Until now, we have only typically considered reflections arising from planes in a hypothetical lattice containing one atom in the asymmetric unit. In practice we will generally deal

### X-ray diffraction: theory and applications to materials science and engineering. Luca Lutterotti

X-ray diffraction: theory and applications to materials science and engineering Luca Lutterotti luca.lutterotti@unitn.it Program Part 1, theory and methodologies: General principles of crystallography

### INTRODUCTION TO X-RAY DIFFRACTION

INTRODUCTION TO X-RAY DIFFRACTION Lecture 4 & 5 By Dr. J. K. Baria Professor Of Physics V. P. & R. P. T. P. Science College Vidyanagar 388 120 Knowledge Keeps the mind always young TYPES OF X-RAY CAMERA

### Retained Austenite: Non-Destructive Analysis by XRD and ASTM E Dr. Alessandro Torboli - X-Ray Marketing Manager

Retained Austenite: Non-Destructive Analysis by XRD and ASTM E975-03 Dr. Alessandro Torboli - X-Ray Marketing Manager Outline Introduction to X-Ray Diffraction Retained Austenite Retained Austenite by

### Reading. Chapter 12 in DeGraef and McHenry Chapter 3i in Engler and Randle

Class 17 X-ray Diffraction Chapter 1 in DeGraef and McHenry Chapter 3i in Engler and Randle Reading Chapter 6 in DeGraef and McHenry (I WILL ASSUME THAT YOU KNOW ABOUT THIS CONCEPT ALREADY! IF NOT, READ

### Introduction to X-Ray Powder Diffraction Data Analysis

Introduction to X-Ray Powder Diffraction Data Analysis Center for Materials Science and Engineering at MIT http://prism.mit.edu/xray An X-ray diffraction pattern is a plot of the intensity of X-rays scattered

### CHAPTER 2 DRUG SUBSTANCES AND INSTRUMENTS EMPLOYED

CHAPTER 2 DRUG SUBSTANCES AND INSTRUMENTS EMPLOYED 2.1 Preparation of Pure polymorphic forms Lamivudine polymorphic Form I and Form II drug substances were prepared in Aurobindo Pharma Limited Research

### physics 112N interference and diffraction

physics 112N interference and diffraction the limits of ray optics shadow of the point of a pin physics 112N 2 the limits of ray optics physics 112N 3 the limits of ray optics physics 112N 4 this is how

### Periodic Wave Phenomena

Name: Periodic Wave Phenomena 1. The diagram shows radar waves being emitted from a stationary police car and reflected by a moving car back to the police car. The difference in apparent frequency between

### 6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?

Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes through

### Physics 2111 Unit 29

Physics 2111 Unit 29 Physical Optics - Thin Film Interference - Two Slit Interference - Single Slit Interference - Resolution - Diffraction Gratings - X-Ray Diffraction Physical Optics, Unit 29 - Slide

### Interference and the wave nature of light

Interference and the wave nature of light Fig 27.2 Sound waves combining result in constructive and destructive interference, and Light waves (electromagnetic waves) do, too! The waves emitted by source

### Electron Diffraction

Electron Diffraction Do moving electrons display wave nature? To answer this question you will direct a beam of electrons through a thin layer of carbon and analyze the resulting pattern. Theory Louis

### Problem Set 1 Solutions

Chemistry 36 Dr. Jean M. Standard Problem Set Solutions. The first 4 lines in the visible region of atomic line spectrum of hydrogen atom occur at wavelengths of 656., 486., 434.0, and 40. nm (this is

### Lesson 18: Diffraction and Interference!

Lesson 18: Diffraction and Interference Part 1: The Double Slit Experiment What is light? - A particle? - A wave? In 1801, Thomas Young s Double Slit Experiment confirmed the wave nature of light: If light

### Atomic and Nuclear Physics

Atomic and Nuclear Physics X-ray physics Physics of the atomic shell LEYBOLD Physics Leaflets Bragg reflection: diffraction of x-rays at a monocrystal P6.3.3.1 Objects of the experiment To investigate

### PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

### Solid-state Physics. Debye-Scherrer Scan: determining the lattice-plane spacings of polycrystalline powder samples. LD Physics Leaflets P7.1.2.

Solid-state Physics Properties of crystals X-ray structural analysis LD Physics Leaflets P7.1..4 Debye-Scherrer Scan: determining the lattice-plane spacings of polycrystalline powder samples Objects of

### Electromagnetic Radiation Wave and Particle Models of Light

Electromagnetic Radiation 2007 26 minutes Teacher Notes: Victoria Millar BSc (Hons), Dip. Ed, MSc Program Synopsis For hundreds of years, scientists have hypothesised about the structure of light. Two

### Chapter 7: Basics of X-ray Diffraction

Providing Solutions To Your Diffraction Needs. Chapter 7: Basics of X-ray Diffraction Scintag has prepared this section for use by customers and authorized personnel. The information contained herein is

### Diffraction and the Wavelength of Light

Diffraction and the Wavelength of Light Goal: To use a diffraction grating to measure the wavelength of light from various sources and to determine the track spacing on a compact disc. Lab Preparation

### Part 1. X-RAY DIFFRACTION MICROSTRUCTURE ANALYSIS

5 Part 1. X-RAY DIFFRACTION MICROSTRUCTURE ANALYSIS 1.1. INTERACTION OF ELECTROMAGNETIC WAVES WITH MATTER The different parts of the electromagnetic spectrum have very different effects upon interaction

### Wave Phenomena. Constructive and Destructive Interference

Wave Phenomena INTERFERENCE PATTERN OF WATER WAVES DIFFRACTION OF LIGHT OFF A COMPACT DISC Constructive and Destructive Interference Constructive interference produces maxima, where crests meet crests

### Review: Double Slit Path Differences. Diffraction II. Single slit: Pattern on screen. Double-slit interference fringes. Single Slit dark fringes

Diffraction II Today Single-slit diffraction review Multiple slit diffraction review Xray diffraction Diffraction intensities Review: Double Slit Path Differences For point P at angle triangle shows L

Characteristic X-Radiation TEP Related Topics X-ray tube, bremsstrahlung, characteristic radiation, energy levels, crystal structures, lattice constant, absorption, absorption edges, interference, the

### X-ray Diffraction (XRD)

X-ray Diffraction (XRD) 1.0 What is X-ray Diffraction 2.0 Basics of Crystallography 3.0 Production of X-rays 4.0 Applications of XRD 5.0 Instrumental Sources of Error 6.0 Conclusions Bragg s Law n l =2dsinq

### LAUE DIFFRACTION INTRODUCTION CHARACTERISTICS X RAYS BREMSSTRAHLUNG

LAUE DIFFRACTION INTRODUCTION X-rays are electromagnetic radiations that originate outside the nucleus. There are two major processes for X-ray production which are quite different and which lead to different

### Wave Properties of Electromagnetic Radiation

Wave Properties of Electromagnetic Radiation Two options are available for analytical utility when an analyte interacts with a beam of electromagnetic radiation in an instrument 1. We can monitor the changes

### Christian Huygen Light is a wave, not merely a ray As waves propagate each point on the wavefront produces new wavelets. Wave Nature of Light

Wave Nature of Light Christian Huygen Light is a wave, not merely a ray As waves propagate each point on the wavefront produces new wavelets Chapter 24 Wavelength Changes Wavelength of light changes in

### Polarization Dependence in X-ray Spectroscopy and Scattering. S P Collins et al Diamond Light Source UK

Polarization Dependence in X-ray Spectroscopy and Scattering S P Collins et al Diamond Light Source UK Overview of talk 1. Experimental techniques at Diamond: why we care about x-ray polarization 2. How

### Lecture 4. Physics 1502: Lecture 34 Today s Agenda

Physics 1502: Lecture 34 Today s Agenda Announcements: Midterm 2: graded soon Homework 09: Friday December 4 Optics Interference Diffraction» Introduction to diffraction» Diffraction from narrow slits»

### X-RAY DIFFRACTION in POWDERS

X-RAY DIFFRACTION in POWDERS PURPOSE: To learn x-ray powder-pattern diffraction techniques, to verify Vegard's law for copper-nickel alloys, to determine the nickel content in some American and Canadian

### Laboratory 15: Spectroscopy

Spectroscopy 1 aboratory 15: Spectroscopy A transmission diffraction grating consists of a large number of closely spaced parallel lines ruled on some transparent material such as glass. The ruled lines

### EM Waves Practice Problems

EM Waves Practice Problems PSI AP Physics B Name Multiple Choice 1. Which of the following theories can explain the bending of waves behind obstacles into shadow region? (A) Particle theory of light (B)

### Astronomy 153 Lab 3: The Light Spectrum

Astronomy 153 Lab 3: The Light Spectrum Solar Radiation Incident on the Earth Intensity v. Wavelength Image By: http://wiki.naturalfrequency.com/wiki/solar_radiation Astronomers use the light, or radiation,

### Theory of X-Ray Diffraction. Kingshuk Majumdar

Theory of X-Ray Diffraction Kingshuk Majumdar Contents Introduction to X-Rays Crystal Structures: Introduction to Lattices Different types of lattices Reciprocal Lattice Index Planes X-Ray Diffraction:

### Physics 111 Fall 2007 Wave Optics Solutions

Physics 111 Fall 2007 Wave Optics Solutions 1. The pupil of a cat s eye narrows to a vertical slit of width 0.500 mm in daylight. What is the angular resolution for horizontally separated mice? Assume

### Does Quantum Mechanics Make Sense? Size

Does Quantum Mechanics Make Sense? Some relatively simple concepts show why the answer is yes. Size Classical Mechanics Quantum Mechanics Relative Absolute What does relative vs. absolute size mean? Why

### ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = 3 + 4 = 9 + 16 = 25 or 2

Forensic Spectral Anaylysis: Warm up! The study of triangles has been done since ancient times. Many of the early discoveries about triangles are still used today. We will only be concerned with the "right

### PRACTICE EXAM IV P202 SPRING 2004

PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order

### Electron Diffraction

1. Introduction Electron Diffraction Julia Velkovska, Oct 2006 In this experiment you will explore the wave-particle duality. You will do so by observing electron diffraction. The goal will be to test

### Unit 2 Particles and Waves

North Berwick High School Department of Physics Higher Physics Unit 2 Particles and Waves Section 5 Interference and Diffraction Section 5 Interference and Diffraction Note Making Make a dictionary with

### Transverse and Longitudinal waves (6.2)

Waves Homework from the book: Exercises: 1, 2, 3, 5-10, 12-16, 20, 25, 33, 34, 36. Questions:3, 9, 14 Problems 2, 11, 17 In the study guide: All the Multiple choice & True False a starting on page 69.

### SH1009, Modern Fysik. X-Ray Diffraction Muhammad Yasir, Lway al Maeeni, Joakim Wahlström

SH1009, Modern Fysik X-Ray Diffraction Muhammad Yasir, Lway al Maeeni, Joakim Wahlström 24 th april, 2009 Introduction In this lab we study the x-rays and their ability to penetrate materials. We also

### X-ray Crystallography Lectures

X-ray Crystallography Lectures 1. Biological imaging by X-ray diffraction. An overview. 2. Crystals. Growth, physical properties and diffraction. 3. Working in reciprocal space. X-ray intensity data collection

### Unit 7 Practice Test: Light

Unit 7 Practice Test: Light Name: Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. Which portion of the electromagnetic spectrum is used in

### Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 )

1 of 14 2/22/2016 11:28 PM Signed in as Weida Wu, Instructor Help Sign Out Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 ) My Courses Course Settings University Physics with Modern Physics,

### Waves - Transverse and Longitudinal Waves

Waves - Transverse and Longitudinal Waves wave may be defined as a periodic disturbance in a medium that carries energy from one point to another. ll waves require a source and a medium of propagation.

### Crystal Structure Determination I

Crystal Structure Determination I Dr. Falak Sher Pakistan Institute of Engineering and Applied Sciences National Workshop on Crystal Structure Determination using Powder XRD, organized by the Khwarzimic

Grade 8 Science Vocabulary The Florida Comprehensive Assessment Test Specifications for Science provides a glossary of vocabulary words identified by Florida educators as essential to assessing the Science

### THE SPEC-20. Table 1: Absorbed Wavelength, Absorbed Color, and Perceived Color Absorbed Wavelength (nm) Absorbed Color

THE SPEC-20 The electromagnetic spectrum consists of radiation ranging from high energy cosmic and gamma rays to low energy radio waves. Various regions of the electromagnetic spectrum can be used to probe

### INTEGRATED SCIENCE 1: UNIT 4: PHYSICS

INTEGRATED SCIENCE 1: UNIT 4: PHYSICS Sub Unit 1: Waves TEST 2: Electromagnetic Waves Form A MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1)Electromagnetic

### Related topics: X-rays, Bragg s law, Duane-Hunt relation, lattice constant and NaCl structure.

FYSIK X-RAY DIFFRACTION 17/03 2004 Version 2.0 FYSA30, FYSA17&FYSL41 Vt07 Goal: The first goal of this experiment is to understand the X-ray spectra as a superposition of the continuum of bremsstrahlung

### 91.18 nm nm. λ = λ = nm. where n = 3, 4, 5, 6, and where we have used n = 6. Likewise for n = 8 and n = 10, λ = nm and.

4.1. Model: Balmer s formula predicts a series of spectral lines in the hydrogen spectrum. Solve: Substituting into the formula for the Balmer series, 91.18 nm λ = 1 1 n 91.18 nm λ = = 410.3 nm 1 1 6 where

Investigating electromagnetic radiation Announcements: First midterm is 7:30pm on 2/17/09 Problem solving sessions M3-5 and T3-4,5-6. Homework due at 12:50pm on Wednesday. We are covering Chapter 4 this

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A single slit forms a diffraction pattern, with the first minimum at an angle of 40 from

### Pre-Lab Assignment: Interference, Measuring Wavelengths, and Atomic Spectra

Name: Lab Partners: Date: Pre-Lab Assignment: Interference, Measuring Wavelengths, and Atomic Spectra (Due at the beginning of lab) Directions: Read over the lab handout and then answer the following questions

### POWDER X-RAY DIFFRACTION: STRUCTURAL DETERMINATION OF ALKALI HALIDE SALTS

EXPERIMENT 4 POWDER X-RAY DIFFRACTION: STRUCTURAL DETERMINATION OF ALKALI HALIDE SALTS I. Introduction The determination of the chemical structure of molecules is indispensable to chemists in their effort

### DEMOCRITUS UNIVERSITY OF THRACE SCHOOL OF HEALTH SCIENCIES DEPARTMENT OF MOLECULAR BIOLOGY & GENETICS. Master s Programme of Studies

DEMOCRITUS UNIVERSITY OF THRACE SCHOOL OF HEALTH SCIENCIES DEPARTMENT OF MOLECULAR BIOLOGY & GENETICS Master s Programme of Studies «Translational Research in Molecular Biology and Genetics» Title Approaching

### Diffraction. Today Single-slit diffraction Diffraction by a circular aperture Use of phasors in diffraction Double-slit diffraction

Diffraction Today Single-slit diffraction Diffraction by a circular aperture Use of phasors in diffraction Double-slit diffraction Diffraction by a single slit Single slit: Pattern on screen Bright and

### PS-7.2 Compare the nature and properties of transverse and longitudinal/compressional mechanical waves.

PS-7.1 Illustrate ways that the energy of waves is transferred by interaction with matter (including transverse and longitudinal /compressional waves). Understand that a wave is a repeating disturbance

### Young s Double Slit Experiment

Young s Double Slit Experiment Apparatus optics bench laser slit film screen white paper and tape pencil metric ruler Ocean Optics spectrometer and fiber optics cable Goal In this experiment, you will

### From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly

### Introduction to X-ray X Diffractionmeter by Miguel Santiago, Scientific Instrumentation Specialist

Introduction to X-ray X Diffractionmeter by Miguel Santiago, Scientific Instrumentation Specialist University of Puerto Rico Mayagüez Campus Department of Geology X-ray / Microanalysis Laboratory F - 304

### Chapter 31 Atomic Physics 31.1 Early Model of the Atom 31.2 The Spectrum of Atomic Hydrogen 31.3 Bohr s Model of the Hydrogen Atom 31.

Chapter 31 Atomic Physics 31.1 Early Model of the Atom 31.2 The Spectrum of Atomic Hydrogen 31.3 Bohr s Model of the Hydrogen Atom 31.4 de Broglie Waves and the Bohr Model 31.5 The Quantum Mechanical Hydrogen

### Ch. 27. Interference and the Wave Nature of Light

Ch. 27. Interference and the Wave Nature of Light Up to now, we have been studying geometrical ti optics, where the wavelength of the light is much smaller than the size of our mirrors and lenses and the

### Using light scattering method to find The surface tension of water

Experiment (8) Using light scattering method to find The surface tension of water The aim of work: The goals of this experiment are to confirm the relationship between angular frequency and wave vector

### Physics 9 Fall 2009 DIFFRACTION

Physics 9 Fall 2009 NAME: TA: SECTION NUMBER: LAB PARTNERS: DIFFRACTION 1 Introduction In these experiments we will review and apply the main ideas of the interference and diffraction of light. After reviewing

### Experiment 13 ~ Diffraction, Wavelength, and Atomic Line Spectra

Experiment 13 ~ Diffraction, Wavelength, and Atomic Line Spectra Part 1 1.1. Atomic Line Spectra. In this experiment, we will look at the diffraction of light, and how wavelengths can be calculated from

### Interference. Physics 102 Workshop #3. General Instructions

Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by

### Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints Chapter 24 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

### Light. (Material taken from: Optics, by E. Hecht, 4th Ed., Ch: 1,2, 3, 8)

(Material taken from: Optics, by E. Hecht, 4th Ed., Ch: 1,2, 3, 8) is an Electromagnetic (EM) field arising from the non-uniform motion of charged particles. It is also a form of EM energy that originates

### Diffraction from a Ruler

Lab #27 Diffraction page 1 Diffraction from a Ruler Reading: Giambatista, Richardson, and Richardson Chapter 25 (25.1, 25.6, 25.7, 25.9). Summary: In this lab you will learn the diffraction analysis scientists

### Spectroscopy in Astronomy: Emission Spectra

Spectroscopy in Astronomy: Emission Spectra Equipment: (Shared among all lab groups) Blue spectrometer (one for each lab group) Spectrum tube power supplies (5000 volts be careful!) These will be set up

### The University of Western Ontario Department of Physics and Astronomy P2800 Fall 2008

P2800 Fall 2008 Questions (Total - 20 points): 1. Of the noble gases Ne, Ar, Kr and Xe, which should be the most chemically reactive and why? (0.5 point) Xenon should be most reactive since its outermost

### Interference & Diffraction: Applications to the crystallography of macromolecules

DNA Crystallography 1 Physics 102 Interference & Diffraction: Applications to the crystallography of macromolecules Adapted from Tim McKay, University of Michigan, and the Institute for Chemical Education

### Introduction to Powder X-Ray Diffraction History Basic Principles

Introduction to Powder X-Ray Diffraction History Basic Principles Folie.1 History: Wilhelm Conrad Röntgen Wilhelm Conrad Röntgen discovered 1895 the X-rays. 1901 he was honoured by the Noble prize for

### Chapter 30 Reflection and Refraction

Chapter 30 Reflection and Refraction Slide 30-1 Geometrical optics When light or other electromagnetic waves interact with systems much larger than the wavelength, it s a good approximation to Neglect

### Emission Spectra of Elements

Fall 2003 Emission Spectra of Elements Purpose: To compare and contrast the emission spectra of various gases. Investigate quantitatively the emission spectrum of hydrogen and relate it to Bohr's theory