Graph Theory. Directed and undirected graphs make useful mental models for many situations. These objects are loosely defined as follows:


 Baldwin Lewis
 1 years ago
 Views:
Transcription
1 Graph Theory Directed and undirected graphs make useful mental models for many situations. These objects are loosely defined as follows: Definition An undirected graph is a (finite) set of nodes, some of which are connected by edges. A directed graph is a (finite) set of nodes, some of which are connected by arrows. Examples The nodes are the points. Undirected graphs Directed graphs Undirected and directed graphs roughly correspond to symmetric and asymmetric relations, though unlike relations there can be more than one edge or arrow between two nodes (as in the last example above). Try to think of situations that you can model with these graphs. For instance, the first undirected graph above could model the pattern of friendship between four people, or the layout of twoway streets between four corners, or the connections between four concepts. Directed graphs can be used to model all sorts of situations involving networks computer networks, social networks (who can influence who), networks of cause and effect, and so on.
2 When thinking about graphs, it is important to realize that it is only the pattern of connection between the nodes that matters not the actual way that we draw the graph. So for our purposes all of the following pictures would represent the same graph: (The technical term for two objects that have the same structure is isomorphic. All of the graphs above are isomorphic.) Graphs have many interesting properties; we will now study a few of the more basic properties. First, we loosely define some concepts which should be intuitively clear. Definition In an undirected graph, a path is sequence of edges from one node to another. Examples The following pictures show different paths in the same undirected graph: For directed graphs, the idea of a path is similar, except we must follow the direction of the arrows: Definition In a directed graph, a path is sequence of arrows from one node to another such that the head of each of the arrows is at the tail of the next arrow. Examples The following pictures show different paths in the same directed graph:
3 The third example of each of the two sets of examples above shows that it is possible for a path to stop and start at the same node. These special types of path are worth giving a special name: Definition A cycle is a path that starts and stops at the same node. Note that this definition works for both undirected and directed graphs. The notion of a path is useful in pinning down the idea that a graph may or may not have several different pieces. Definition An undirected graph is connected if there is a path between any two nodes. Examples A connected graph A graph which is not connected There is a special type of undirected graph that comes up a lot in information technology called a tree. Definition A tree is a connected undirected graph with no cycles. Examples Trees Not a tree The name tree is very suggestive. Given a connected undirected graph with no cycles we can always draw a picture of it that looks like an upsidedown realworld tree (think of grabbing one node, pulling up on it, and letting the other nodes hang down).
4 is isomorphic to When drawn this way, the top node is usually called the root of the tree. Try to think of some situations that could model with trees. Typical examples include the organizational hierarchy of a corporation (the root might be the CEO), a family tree (the root could be your greatgrandfather), or the file system of a computer (the root would be C:\ on a Windows machine). Here s a simple property of trees: FACT In a tree, the number of nodes is one more than the number of edges. To see why this is fact is true, note that we can build up any tree by starting with a single root node and then adding one edge and one node at a time. The root node has one more node than it has edges (it has 1 node and 0 edges) and each time we add an edge we also add one node, so we increase the number of nodes and the number of edges by the same amount, which means that the difference between these numbers is still 1. Another useful concept is the degree of a node: Definition For an undirected graph, the degree of a node is the number of edges touching it. Example The nodes of the following graph have been labeled with their degrees.
5 FACT The sum of the degrees of the nodes of an undirected graph is twice the number of edges. For example, if we sum the degrees of the graph above, we get = 12 and the graph has half that number namely six edges. This fact is true because each edge connects two nodes, so summing the degrees amounts to adding a 2 for each edge. This leads us to the FACT In an undirected graph, the number of nodes of odd degree is even. For example, the graph above has two nodes of odd degree (one of degree 1 and one of degree 3). This fact follows from the previous fact: the sum of the degrees is an even number (twice the number of edges) and the only way to get an even number when adding up a bunch of numbers is to have an even number of odd ones. (That is, if have an odd number of odd numbers, like = 11 they sum to an odd number.) This fact has the following amusing interpretation: FACT The number of people in the world who have shaken hands with an odd number of people is even. To see this, imagine an enormous undirected graph with a node for every person who has ever lived. If two of these people have shaken hands, connect the corresponding nodes with an edge. A person that has shaken hands with an odd number of people corresponds to a node of odd degree, and we know that there is an even number of such nodes. To finish this section, let s turn our attention to directed graphs. Definition In a directed graph, a source is a node such that arrows touching the node point away from the node. A sink is a node such that all arrows touching the node point into the node. A source A sink
6 FACT A directed graph with no cycles must have a source and a sink. Examples No cycles must have a source and a sink With a cycle there may not be a source or a sink We will see why this fact is true. Suppose we have a directed graph with no cycles; we ll first try to find a sink. Recall that in defining directed graphs we have assumed that the set of nodes is finite. Pick any node to start with if there are no arrows out of the node then we have already found our sink, so suppose that there are arrows (at least one anyway) pointing out of the node. Pick any arrow pointing out of the node and follow it to the next node. Again, this next node must have an arrow pointing out (or the node is a sink) so we can follow another arrow to another new node. We can keep on following arrows like this to new nodes but we can t do it forever since there are only a finite number of nodes. And we can t arrive at a node that we ve visited before because the path of arrows cannot be a cycle, so the only thing that can happen is that we eventually arrive at a sink. To find a source, do this same process of following arrows out of nodes, but follow them backwards (going from head to tail). Again, since there are no cycles and only a finite number of nodes we eventually have to arrive at a source.
CMSC 451: Graph Properties, DFS, BFS, etc.
CMSC 451: Graph Properties, DFS, BFS, etc. Slides By: Carl Kingsford Department of Computer Science University of Maryland, College Park Based on Chapter 3 of Algorithm Design by Kleinberg & Tardos. Graphs
More informationTrees and structural induction
Trees and structural induction Margaret M. Fleck 25 October 2010 These notes cover trees, tree induction, and structural induction. (Sections 10.1, 4.3 of Rosen.) 1 Why trees? Computer scientists are obsessed
More informationHomework 15 Solutions
PROBLEM ONE (Trees) Homework 15 Solutions 1. Recall the definition of a tree: a tree is a connected, undirected graph which has no cycles. Which of the following definitions are equivalent to this definition
More information6.042/18.062J Mathematics for Computer Science October 3, 2006 Tom Leighton and Ronitt Rubinfeld. Graph Theory III
6.04/8.06J Mathematics for Computer Science October 3, 006 Tom Leighton and Ronitt Rubinfeld Lecture Notes Graph Theory III Draft: please check back in a couple of days for a modified version of these
More informationGraph Theory Problems and Solutions
raph Theory Problems and Solutions Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is
More informationCSE 20: Discrete Mathematics for Computer Science. Prof. Miles Jones. Today s Topics: Graphs. The Internet graph
Today s Topics: CSE 0: Discrete Mathematics for Computer Science Prof. Miles Jones. Graphs. Some theorems on graphs. Eulerian graphs Graphs! Model relations between pairs of objects The Internet graph!
More informationChapter 4. Trees. 4.1 Basics
Chapter 4 Trees 4.1 Basics A tree is a connected graph with no cycles. A forest is a collection of trees. A vertex of degree one, particularly in a tree, is called a leaf. Trees arise in a variety of applications.
More informationClass One: Degree Sequences
Class One: Degree Sequences For our purposes a graph is a just a bunch of points, called vertices, together with lines or curves, called edges, joining certain pairs of vertices. Three small examples of
More informationConditional Probability, Independence and Bayes Theorem Class 3, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Conditional Probability, Independence and Bayes Theorem Class 3, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of conditional probability and independence
More informationPlanar Graphs and Graph Coloring
Planar Graphs and Graph Coloring Margaret M. Fleck 1 December 2010 These notes cover facts about graph colorings and planar graphs (sections 9.7 and 9.8 of Rosen) 1 Introduction So far, we ve been looking
More informationPrinciple of (Weak) Mathematical Induction. P(1) ( n 1)(P(n) P(n + 1)) ( n 1)(P(n))
Outline We will cover (over the next few weeks) Mathematical Induction (or Weak Induction) Strong (Mathematical) Induction Constructive Induction Structural Induction Principle of (Weak) Mathematical Induction
More informationCOLORED GRAPHS AND THEIR PROPERTIES
COLORED GRAPHS AND THEIR PROPERTIES BEN STEVENS 1. Introduction This paper is concerned with the upper bound on the chromatic number for graphs of maximum vertex degree under three different sets of coloring
More informationInduction. Margaret M. Fleck. 10 October These notes cover mathematical induction and recursive definition
Induction Margaret M. Fleck 10 October 011 These notes cover mathematical induction and recursive definition 1 Introduction to induction At the start of the term, we saw the following formula for computing
More information6.3 Conditional Probability and Independence
222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted
More informationSAMPLES OF HIGHER RATED WRITING: LAB 5
SAMPLES OF HIGHER RATED WRITING: LAB 5 1. Task Description Lab report 5. (April 14) Graph Coloring. Following the guidelines, and keeping in mind the assessment criteria, using where appropriate experimental
More informationCSPs: Arc Consistency
CSPs: Arc Consistency CPSC 322 CSPs 3 Textbook 4.5 CSPs: Arc Consistency CPSC 322 CSPs 3, Slide 1 Lecture Overview 1 Recap 2 Consistency 3 Arc Consistency CSPs: Arc Consistency CPSC 322 CSPs 3, Slide 2
More informationQuilted Garden Tote a tutorial from
Quilted Garden Tote a tutorial from and Since quilting is my focus in sewing, I m always looking for new ways to incorporate it into other sewing. This simple tote was a great way to quilt and use up some
More informationUmmmm! Definitely interested. She took the pen and pad out of my hand and constructed a third one for herself:
Sum of Cubes Jo was supposed to be studying for her grade 12 physics test, but her soul was wandering. Show me something fun, she said. Well I wasn t sure just what she had in mind, but it happened that
More informationGame Theory and Algorithms Lecture 10: Extensive Games: Critiques and Extensions
Game Theory and Algorithms Lecture 0: Extensive Games: Critiques and Extensions March 3, 0 Summary: We discuss a game called the centipede game, a simple extensive game where the prediction made by backwards
More informationIntroduction to Artificial Intelligence (G51IAI) Dr Rong Qu. Blind Searches  Introduction
Introduction to Artificial Intelligence (G51IAI) Dr Rong u Blind Searches  Introduction Aim of This Section (2 hours) Introduce the blind searches on search tree Specifically, the general search pseudocode
More informationAnalysis of Algorithms, I
Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, February 26, 2015 Outline 1 Recap 2 Representing graphs 3 Breadthfirst search (BFS) 4 Applications
More informationGrade 7/8 Math Circles November 3/4, 2015. M.C. Escher and Tessellations
Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Tiling the Plane Grade 7/8 Math Circles November 3/4, 2015 M.C. Escher and Tessellations Do the following
More informationTREES IN SET THEORY SPENCER UNGER
TREES IN SET THEORY SPENCER UNGER 1. Introduction Although I was unaware of it while writing the first two talks, my talks in the graduate student seminar have formed a coherent series. This talk can be
More informationTheory of Impartial Games
Theory of Impartial Games February 3, 2009 Introduction Kinds of Games We ll Discuss Much of the game theory we will talk about will be on combinatorial games which have the following properties: There
More informationMGF 1107 CH 15 LECTURE NOTES Denson. Section 15.1
1 Section 15.1 Consider the house plan below. This graph represents the house. Consider the mail route below. This graph represents the mail route. 2 Definitions 1. Graph a structure that describes relationships.
More informationCHAPTER 2 GRAPHS F G C D
page 1 of Section 2.1 HPTR 2 GRPHS STION 1 INTROUTION basic terminology graph is a set of finitely many points called vertices which may be connected by edges. igs 1 3 show three assorted graphs. v1 v2
More informationThe origins of graph theory are humble, even frivolous. Biggs, E. K. Lloyd, and R. J. Wilson)
Chapter 11 Graph Theory The origins of graph theory are humble, even frivolous. Biggs, E. K. Lloyd, and R. J. Wilson) (N. Let us start with a formal definition of what is a graph. Definition 72. A graph
More informationOutline. NPcompleteness. When is a problem easy? When is a problem hard? Today. Euler Circuits
Outline NPcompleteness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2pairs sum vs. general Subset Sum Reducing one problem to another Clique
More information2.3 Scheduling jobs on identical parallel machines
2.3 Scheduling jobs on identical parallel machines There are jobs to be processed, and there are identical machines (running in parallel) to which each job may be assigned Each job = 1,,, must be processed
More information1 Digraphs. Definition 1
1 Digraphs Definition 1 Adigraphordirected graphgisatriplecomprisedofavertex set V(G), edge set E(G), and a function assigning each edge an ordered pair of vertices (tail, head); these vertices together
More informationDetermining If Two Graphs Are Isomorphic 1
Determining If Two Graphs Are Isomorphic 1 Given two graphs, it is often really hard to tell if they ARE isomorphic, but usually easier to see if they ARE NOT isomorphic. Here is our first idea to help
More informationENGLISH PAPER PIECING GETTING STARTED
GETTING STARTED This is one technique for English paper piecing. There are other methods on the net. I recommend trying a few out and deciding which one suits you best. MATERIALS scraps of fabric pieced
More informationMEASURES OF VARIATION
NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are
More informationCSL851: Algorithmic Graph Theory Semester I Lecture 1: July 24
CSL851: Algorithmic Graph Theory Semester I 20132014 Lecture 1: July 24 Lecturer: Naveen Garg Scribes: Suyash Roongta Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have
More informationCS Markov Chains Additional Reading 1 and Homework problems
CS 252  Markov Chains Additional Reading 1 and Homework problems 1 Markov Chains The first model we discussed, the DFA, is deterministic it s transition function must be total and it allows for transition
More informationLECTURE 10: GAMES IN EXTENSIVE FORM
LECTURE 10: GAMES IN EXTENSIVE FORM Sequential Move Games 2 so far, we have only dealt with simultaneous games (players make the decisions at the same time, or simply without knowing what the action of
More informationSee below for some ideas on how to use the hundred square.
See below for some ideas on how to use the hundred square. 100 IDEAS FOR USING A HUNDRED SQUARE These ideas are in no particular order and can be adapted to any age range or ability. The objectives are
More informationHow to Make and Apply Bias Binding by Alisa at Making More with Less (Busy Quilt Mom) for Sew Mama Sew
How to Make and Apply Bias Binding by Alisa at Making More with Less (Busy Quilt Mom) for Sew Mama Sew Bias Binding is an easy way to finish off edges and add interesting detail and colour to your sewing
More informationMinimum Spanning Trees
Minimum Spanning Trees Algorithms and 18.304 Presentation Outline 1 Graph Terminology Minimum Spanning Trees 2 3 Outline Graph Terminology Minimum Spanning Trees 1 Graph Terminology Minimum Spanning Trees
More informationSample Problems in Discrete Mathematics
Sample Problems in Discrete Mathematics This handout lists some sample problems that you should be able to solve as a prerequisite to Computer Algorithms Try to solve all of them You should also read
More informationSession 6 Number Theory
Key Terms in This Session Session 6 Number Theory Previously Introduced counting numbers factor factor tree prime number New in This Session composite number greatest common factor least common multiple
More informationThe UnionFind Problem Kruskal s algorithm for finding an MST presented us with a problem in datastructure design. As we looked at each edge,
The UnionFind Problem Kruskal s algorithm for finding an MST presented us with a problem in datastructure design. As we looked at each edge, cheapest first, we had to determine whether its two endpoints
More information6.852: Distributed Algorithms Fall, 2009. Class 2
.8: Distributed Algorithms Fall, 009 Class Today s plan Leader election in a synchronous ring: Lower bound for comparisonbased algorithms. Basic computation in general synchronous networks: Leader election
More informationMath Circles April 1st, 2015 Infinite Series Instructor: Jordan Hamilton NOTES
Math Circles April st, 05 Infinite Series Instructor: Jordan Hamilton NOTES A Card Trick Consider a standard deck of 5 cards stacked at the edge of a table If you push the first one off the stack, how
More informationECE 331 Digital System Design
ECE 331 Digital System Design Introduction to and Analysis of Sequential Logic Circuits (Lecture #21) The slides included herein were taken from the materials accompanying Fundamentals of Logic Design,
More information1. Sorting (assuming sorting into ascending order) a) BUBBLE SORT
DECISION 1 Revision Notes 1. Sorting (assuming sorting into ascending order) a) BUBBLE SORT Make sure you show comparisons clearly and label each pass First Pass 8 4 3 6 1 4 8 3 6 1 4 3 8 6 1 4 3 6 8 1
More informationSampling Distributions and the Central Limit Theorem
135 Part 2 / Basic Tools of Research: Sampling, Measurement, Distributions, and Descriptive Statistics Chapter 10 Sampling Distributions and the Central Limit Theorem In the previous chapter we explained
More informationBillions of Combinations, One Solution Meet Your Cube Twisting Hints RUBIK S Cube Sequences RUBIK S Cube Games...
SOLUTION BOOKLET Billions of Combinations, One Solution...... 2 Meet Your Cube.................... 3 Twisting Hints..................... 6 RUBIK S Cube Sequences............... 9 RUBIK S Cube Games.................
More informationSum of Degrees of Vertices Theorem
Sum of Degrees of Vertices Theorem Theorem (Sum of Degrees of Vertices Theorem) Suppose a graph has n vertices with degrees d 1, d 2, d 3,...,d n. Add together all degrees to get a new number d 1 + d 2
More informationLecture 17 : Equivalence and Order Relations DRAFT
CS/Math 240: Introduction to Discrete Mathematics 3/31/2011 Lecture 17 : Equivalence and Order Relations Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last lecture we introduced the notion
More informationGraph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902
Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902 http://www.ms.uky.edu/~mschreffler Different Graphs, Similar Properties
More informationMicrosoft Word 2013 Equations (Level 3)
IT Training Microsoft Word 2013 Equations (Level 3) Contents Introduction 1 Inserting an Equation 1 The Equation Tools Design Tab 2 The Tools Group 2 The Symbols Group 3 The Structures Group 3 Saving Equations
More information2.3. Measures of Central Tendency
2.3 Measures of Central Tendency Mean A measure of central tendency is a value that represents a typical, or central, entry of a data set. The three most commonly used measures of central tendency are
More informationHeat Transfer. Convection. Introduction. Natural convection
Heat Transfer Convection Introduction Convection is defined as the circulation of fluids (liquids or gases), either natural or forced. Hot or cold fluids can add or remove heat. Natural convection is caused
More informationMental Math Addition and Subtraction
Mental Math Addition and Subtraction If any of your students don t know their addition and subtraction facts, teach them to add and subtract using their fingers by the methods taught below. You should
More informationFur handling tips beaver stretching
Fur handling tips beaver stretching Properly stretching beaver is a time consuming thing, but it s the fun part to me, almost like art! First thing you need is a board. Three quarter inch plywood is ideal,
More informationCOMP 250 Fall Mathematical induction Sept. 26, (n 1) + n = n + (n 1)
COMP 50 Fall 016 9  Mathematical induction Sept 6, 016 You will see many examples in this course and upcoming courses of algorithms for solving various problems It many cases, it will be obvious that
More information2.1 You need to know how graphs and networks can be used to create mathematical
fter completing this chapter you should: 1 know how graphs and networks can be used to create mathematical models 2 know some basic terminology used in graph theory 3 know some special types of graph 4
More informationObjective. Materials. TI73 Calculator
0. Objective To explore subtraction of integers using a number line. Activity 2 To develop strategies for subtracting integers. Materials TI73 Calculator Integer Subtraction What s the Difference? Teacher
More informationBLOSSOMS MODULE ARE RANDOM TRIANGLES ACUTE OR OBTUSE? By Gilbert Strang Professor of Mathematics Massachusetts Institute of Technology
BLOSSOMS MODULE ARE RANDOM TRIANGLES ACUTE OR OBTUSE? By Gilbert Strang Professor of Mathematics Massachusetts Institute of Technology Hi! I m Gilbert Strang. I teach math at MIT. Mostly what I teach is
More informationBig O and Limits Abstract Data Types Data Structure Grand Tour. http://gcc.gnu.org/onlinedocs/libstdc++/images/pbds_different_underlying_dss_1.
Big O and Limits Abstract Data Types Data Structure Grand Tour http://gcc.gnu.org/onlinedocs/libstdc++/images/pbds_different_underlying_dss_1.png Consider the limit lim n f ( n) g ( n ) What does it
More informationLesson 3. Algebraic graph theory. Sergio Barbarossa. Rome  February 2010
Lesson 3 Algebraic graph theory Sergio Barbarossa Basic notions Definition: A directed graph (or digraph) composed by a set of vertices and a set of edges We adopt the convention that the information flows
More informationCOS513 LECTURE 5 JUNCTION TREE ALGORITHM
COS513 LECTURE 5 JUNCTION TREE ALGORITHM D. EIS AND V. KOSTINA The junction tree algorithm is the culmination of the way graph theory and probability combine to form graphical models. After we discuss
More informationALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite
ALGEBRA Pupils should be taught to: Generate and describe sequences As outcomes, Year 7 pupils should, for example: Use, read and write, spelling correctly: sequence, term, nth term, consecutive, rule,
More informationWhich shapes make floor tilings?
Which shapes make floor tilings? Suppose you are trying to tile your bathroom floor. You are allowed to pick only one shape and size of tile. The tile has to be a regular polygon (meaning all the same
More informationS = {1, 2,..., n}. P (1, 1) P (1, 2)... P (1, n) P (2, 1) P (2, 2)... P (2, n) P = . P (n, 1) P (n, 2)... P (n, n)
last revised: 26 January 2009 1 Markov Chains A Markov chain process is a simple type of stochastic process with many social science applications. We ll start with an abstract description before moving
More informationCircuits 1 M H Miller
Introduction to Graph Theory Introduction These notes are primarily a digression to provide general background remarks. The subject is an efficient procedure for the determination of voltages and currents
More informationSewing Machine Cover
Brought to you by Singer and Jessica Toye Sewing Machine Cover Tools: Sewing machine Rotary cutter & ruler Self healing cutting mat Common sewing supplies (scissors, pins, safety pins, etc.) Materials:
More informationCMPSCI611: Approximating MAXCUT Lecture 20
CMPSCI611: Approximating MAXCUT Lecture 20 For the next two lectures we ll be seeing examples of approximation algorithms for interesting NPhard problems. Today we consider MAXCUT, which we proved to
More informationScheduling Shop Scheduling. Tim Nieberg
Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations
More informationLecture Notes on Spanning Trees
Lecture Notes on Spanning Trees 15122: Principles of Imperative Computation Frank Pfenning Lecture 26 April 26, 2011 1 Introduction In this lecture we introduce graphs. Graphs provide a uniform model
More informationCourse: Model, Learning, and Inference: Lecture 5
Course: Model, Learning, and Inference: Lecture 5 Alan Yuille Department of Statistics, UCLA Los Angeles, CA 90095 yuille@stat.ucla.edu Abstract Probability distributions on structured representation.
More informationScheduling. Open shop, job shop, flow shop scheduling. Related problems. Open shop, job shop, flow shop scheduling
Scheduling Basic scheduling problems: open shop, job shop, flow job The disjunctive graph representation Algorithms for solving the job shop problem Computational complexity of the job shop problem Open
More informationPermutation Groups. Rubik s Cube
Permutation Groups and Rubik s Cube Tom Davis tomrdavis@earthlink.net May 6, 2000 Abstract In this paper we ll discuss permutations (rearrangements of objects), how to combine them, and how to construct
More informationGraph Theory. Introduction. Distance in Graphs. Trees. Isabela Drămnesc UVT. Computer Science Department, West University of Timişoara, Romania
Graph Theory Introduction. Distance in Graphs. Trees Isabela Drămnesc UVT Computer Science Department, West University of Timişoara, Romania November 2016 Isabela Drămnesc UVT Graph Theory and Combinatorics
More informationReading 13 : Finite State Automata and Regular Expressions
CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model
More information6. GRAPH AND MAP COLOURING
6. GRPH ND MP COLOURING 6.1. Graph Colouring Imagine the task of designing a school timetable. If we ignore the complications of having to find rooms and teachers for the classes we could propose the following
More information6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008
MIT OpenCourseWare http://ocw.mit.edu 6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
More informationIntroduction Solvability Rules Computer Solution Implementation. Connect Four. March 9, 2010. Connect Four
March 9, 2010 is a tictactoe like game in which two players drop discs into a 7x6 board. The first player to get four in a row (either vertically, horizontally, or diagonally) wins. The game was first
More informationPOLYNOMIAL FUNCTIONS
POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a
More informationFree Inductive/Logical Test Questions
Free Inductive/Logical Test Questions (With questions and answers) JobTestPrep invites you to a free practice session that represents only some of the materials offered in our online practice packs. Have
More informationSimple Graphs Degrees, Isomorphism, Paths
Mathematics for Computer Science MIT 6.042J/18.062J Simple Graphs Degrees, Isomorphism, Types of Graphs Simple Graph this week MultiGraph Directed Graph next week Albert R Meyer, March 10, 2010 lec 6W.1
More informationCompiler Design. Spring ControlFlow Analysis. Sample Exercises and Solutions. Prof. Pedro C. Diniz
Compiler Design Spring 2010 ControlFlow Analysis Sample Exercises and Solutions Prof. Pedro C. Diniz USC / Information Sciences Institute 4676 Admiralty Way, Suite 1001 Marina del Rey, California 90292
More information. 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9
Introduction The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive integer We say d is a
More information103 Measures of Central Tendency and Variation
103 Measures of Central Tendency and Variation So far, we have discussed some graphical methods of data description. Now, we will investigate how statements of central tendency and variation can be used.
More informationEmpirical Rule Confidence Intervals Finding a good sample size. Outline. 1 Empirical Rule. 2 Confidence Intervals. 3 Finding a good sample size
Outline 1 Empirical Rule 2 Confidence Intervals 3 Finding a good sample size Outline 1 Empirical Rule 2 Confidence Intervals 3 Finding a good sample size 32 1 0 1 2 3 Question How much of the probability
More informationMonitoring Data Management Systems. Using the Pivot Table Link in MP5
Monitoring Data Management Systems Using the Pivot Table Link in MP5 CONTENTS Introduction... 3 Exporting Data from MP5 to Excel using Pivot Link... 3 Pivot Data in Excel... 4 Changing the Graph type...
More informationEvery tree is 3equitable
Discrete Mathematics 220 (2000) 283 289 www.elsevier.com/locate/disc Note Every tree is 3equitable David E. Speyer a, Zsuzsanna Szaniszlo b; a Harvard University, USA b Department of Mathematical Sciences,
More informationMagicDraw CSV Import Plugin. Version SP5 User Guide
MagicDraw CSV Import Plugin Version 17.0.2 SP5 User Guide No Magic, Inc. 2013 Table of Contents Table of Contents...2 Introduction...4 What is a Comma Separated Values File?...4 How Do I Get My Data into
More informationMINI LESSON. Lesson 5b Solving Quadratic Equations
MINI LESSON Lesson 5b Solving Quadratic Equations Lesson Objectives By the end of this lesson, you should be able to: 1. Determine the number and type of solutions to a QUADRATIC EQUATION by graphing 2.
More informationTUTORIAL: BOARDMAKER STUDIO STARTUP
Congratulations, you ve downloaded the Boardmaker Studio trial. To be successful from the start, use this guide to learn the essential skills in Boardmaker Studio. 1 EDIT IN PLACE The most essential skill.
More informationRoomstyler Drawing Manual
Roomstyler Roomstyler Drawing Manual Drawing Manual Roomstyler lets you easily create stunning interior designs. This manual explains the Roomstyler drawing tool. How to create great interiors designs
More information1974 Rubik. Rubik and Rubik's are trademarks of Seven Towns ltd., used under license. All rights reserved. Solution Hints booklet
# # R 1974 Rubik. Rubik and Rubik's are trademarks of Seven Towns ltd., used under license. All rights reserved. Solution Hints booklet The Professor s Cube Solution Hints Booklet The Greatest Challenge
More information10.3 GEOMETRIC AND HARMONIC SERIES
10.3 Geometric and Harmonic Series Contemporary Calculus 1 10.3 GEOMETRIC AND HARMONIC SERIES This section uses ideas from Section 10.2 about series and their convergence to investigate some special types
More informationPath Querying on Graph Databases
Path Querying on Graph Databases Jelle Hellings Hasselt University and transnational University of Limburg 1/38 Overview Graph Databases Motivation Walk Logic Relations with FO and MSO Relations with CTL
More informationSquares and Square Roots
Squares and Square Roots Focus on After this lesson, you will be able to... φ determine the φ square of a whole number determine the square root of a perfect square The Pythagoreans were members of an
More informationPSS 27.2 The Electric Field of a Continuous Distribution of Charge
Chapter 27 Solutions PSS 27.2 The Electric Field of a Continuous Distribution of Charge Description: Knight ProblemSolving Strategy 27.2 The Electric Field of a Continuous Distribution of Charge is illustrated.
More information1. The sample space S is the set of all possible outcomes. 2. An event is a set of one or more outcomes for an experiment. It is a sub set of S.
1 Probability Theory 1.1 Experiment, Outcomes, Sample Space Example 1 n psychologist examined the response of people standing in line at a copying machines. Student volunteers approached the person first
More informationNetwork Flow I. Lecture 16. 16.1 Overview. 16.2 The Network Flow Problem
Lecture 6 Network Flow I 6. Overview In these next two lectures we are going to talk about an important algorithmic problem called the Network Flow Problem. Network flow is important because it can be
More informationHomework 13 Solutions. X(n) = 3X(n 1) + 5X(n 2) : n 2 X(0) = 1 X(1) = 2. Solution: First we find the characteristic equation
Homework 13 Solutions PROBLEM ONE 1 Solve the recurrence relation X(n) = 3X(n 1) + 5X(n ) : n X(0) = 1 X(1) = Solution: First we find the characteristic equation which has roots r = 3r + 5 r 3r 5 = 0,
More information