Concept #1. Goals for Presentation. I m going to be a mathematics teacher: Where did this stuff come from? Why didn t I know this before?

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Concept #1. Goals for Presentation. I m going to be a mathematics teacher: Where did this stuff come from? Why didn t I know this before?"

Transcription

1 I m goig to be a mathematics teacher: Why did t I kow this before? Steve Williams Associate Professor of Mathematics/ Coordiator of Secodary Mathematics Educatio Lock Have Uiversity of PA 00 Steve Williams Goals for Presetatio To provide participats with some of the iformatio that pre-service secodary math teachers state was lackig i the eplaatios they received cocerig certai mathematical cocepts. To motivate participats to cosider a more coceptual way of commuicatig mathematics (it s ot always the studets fault). To motivate participats to cosider other mathematical cocepts where we have shortchaged our studets. To provide participats with some alterate ways of viewig certai math topics that are more coceptual tha traditioal ways of viewig them. To help participats begi to be able to see mathematical cocepts despite beig blided by the midless procedures. Where did this stuff come from? Seve years of teachig all levels of secodary mathematics Te additioal years of workig with preservice teachers ad talkig to them about potetial coceptual deficiecies or misuderstadigs Sevetee years of tryig to closely eamie as may secodary (ad elemetary) cocepts i as much detail as possible A sicere iterest to have my studets develop that Profoud Uderstadig of Fudametal Mathematics by lookig at cocepts i differet or o-traditioal ways Noe of this stuff is ew, or eve difficult...it s just that most secodary math majors have ever bee asked to eamie may thigs coceptually, ad certaily ot i differet ways. Whe show these simple coectios or cocepts, most preservice teachers get upset with themselves ad state that they feel like idiots for ot seeig it before. I just remid them that it is t ecessarily their fault. Much of the fault rests o us as their teachers (ad o the curriculum we choose for traiig them). Cocept #1 Why the umbers we call the perfect squares are called such. is called a perfect square because its square root is a whole umber,. It is oly a procedural uderstadig. It leads to circular reasoig because they aswer why do we call raisig a umber to the secod power squarig the umber? with, because you are tryig to fid the umber that you could take the square root of to get back to the umber that you are squarig. 1

2 So what do I do? Costruct all of the rectagular arragemets that ca be made with objects 1 But what happes whe we try this with? These are all ice rectagles; however...the last rectagle is a special type of rectagle. 1 8 These are all rectagles... othig special A perfect square! Questio: Could we cosider all other umbers perfect rectagles? Cocept # It is perfectly permissible to simply divide the umerators ad divide the deomiators whe dividig fractios. You have to ivert ad multiply whe dividig fractios. It is oly a procedural uderstadig. It does t help studets uderstad why ivert ad multiply actually works. You really do t have to Cosider Most studets isist that you must ivert ad multiply i order to perform this operatio. However, this is simply ot true. It is perfectly permissible to divide the umerators ad divide the deomiators, just like multiplicatio of fractios. 1 = = = = Of course, they always wat to verify it = 7 Certaily, this is t always the most efficiet way to perform this operatio, but it certaily ca always be doe. 8 Most of the time, we eed to get a commo deomiator. 8 1 = = Oce studets get used to this method, they fid that it is t ay more time cosumig tha ivert ad multiply ad woder why o oe ever told them this before. Ad, of course, this is also the method that allows us to justify ivertig ad multiplyig = = = 1 1 1

3 Cocept # Why the umber 1 ot a prime umber. 1) Because the defiitio of a prime umber is a umber greater tha or equal to. ) I thought it was. ) I thik it should be, sice the defiitio of a prime umber is ay umber whose oly divisors are itself ad 1. What s wrog with these? The first oe provides o uderstadig of why prime umbers are defied that way. The secod oe is just icorrect. The third oe lacks a uderstadig of a importat coectio betwee mathematical cocepts. But it does get them thikig. What do I do? I ask my studets what the Fudametal Theorem of Arithmetic says. Every composite umber ca be writte as the product of prime umbers i eactly oe way (ecludig arragemet). Prime factor : This is the oly way. Prime factor if 1 is a prime umber : Cocept # The differece betwee square uits ad uits squared. From here, they get it. They have just ever bee asked to actually thik about it. square iches ad iches squared mea the same thig. It really is t correct. They thik that readig math from left to right is always correct. They forget that they ofte have to iterpret what they are readig. It does t distiguish betwee adjectives ad verbs. What do Geometry tetbooks say? Area is measured i square uits. From there o out, the tets oly use the symbol i, leavig the studets to read it as either iches squared or square iches ad thik the phrases are iterchageable, ad eve thik that iches squared is more correct sice they read from left to right. So, what s the differece?

4 Cosider i as " five iches squared." This implies that we should take five iches ad square it Cosider i as " five square iches." This implies that we show five square iches. i 1 i 1 i i Area = i i i But the tetbook said that area was measured i square uits. This is what i really meas! i should be read as five square iches. Cocept # The defiitio of arithmetic average (or mea) is NOT the umber you get whe you add up all of the umbers ad divide by the umber of terms preset. That this procedure is actually the defiitio. However, moder tetbooks do use this phrase as the defiitio of the mea. It s ot a defiitio. The defiitio of defiitio is a statemet of the meaig of a word or a statemet epressig the essetial ature of somethig. At best, it s a procedural defiitio which tells us othig about the cocept of mea. Studets do t kow what it meas whe their average i my course is 8%. The questio remais: What does it mea for a umber to be the average of a set of umbers? Secodary math majors are stued whe they do t kow the aswer to this questio. They claim they have ever bee asked. 190 tetbook: The average of a set of umbers is a umber which ca be put i place of them without chagig the sum. Thik about what this meas for the average of,, ad 1. The average of,, ad 1 is a umber which ca be put i place of,, ad 1 without chagig the sum. Put oe umber i place of each of them so the sum does t chage (i.e. rearrage the squares you have so each colum has the same umber i them but keep the same umber of colums). There are 7 i each colum, so the average is 7. Secodary math majors have ever looked at the average like this before.

5 My compromise defiitio of average The umber that represets a equal distributio of the total amog all umbers preset. So whe a studet gets a 8% i my course, it meas that 8% is the grade that they would have received o each assigmet if they had doe the eact same o all of them. Cocept # You CAN multiply the bases whe you have a m a. a m a = a m+ a a = What s wrog with this? Of course, there is o real error i thikig here. It just does t take ito cosideratio oe of the most commo studet errors: = 9 8 = a 8 = ( ) 8 Of course, studets rarely say that a a a. 8 What do I have my studets do to eamie this cocept? I wat my studets to closely eamie the rules ad procedures they have always used; sometimes havig them develop ucommo rules ad procedures of their ow. I ask my studets if it is okay to multiply the bases together whe preseted with a m a. I remid them that I did ot ask m+ m them if a m a = (a a) m+. I a a = ( a a) asked them if they could 1 multiply the bases together. (I 7 1 = 9 = 9 = the have to ecourage them to develop their ow rule.) That s somethig I ever thought about! They always say o! Cocept #7 A liear fuctio has a costat first differece, a quadratic fuctio a costat secod differece, ad a cubic fuctio a costat third differece, with respect to their tables of values, whe the idepedet variable icreases by 1. The have o idea what I m talkig about because they ve ever actually aalyzed the table of values of a fuctio. Studets oly recogize fuctios by either their graph or from their equatio. It leaves out a etirely differet aalytical techique that brigs out some good mathematics.

6 Eamie a table of values for liear fuctio y = + the Eamie a table of values for the quadratic fuctio y = y diff 0 1 y st diff d diff 0 1 Eamie a table of values for the cubic fuctio y = y st diff d diff rd diff This is usually a completely ew way of lookig at these fuctios, eve though we always have studets use a table to graph. Cocept #8 The Law of Cosies is a geeralizatio of the Pythagorea Theorem...or...the Pythagorea Theorem is a special case of the Law of Cosies. The Pythagorea Theorem is used for right triagles ad the Law of Cosies is used for oblique triagles. This is, of course, true...just ot complete, sice the Law of Cosies ca techically be used for both. The coectio is simple ad straightforward... Law of Cosies : a = b + c bc cosα o Now let α = 90 o a = b + c bc cos90 ( 0) a = b + c bc a = b + c c c α α a b a b

7 Cocept #9 The power rule for epoets is NOT a epoet raised to a epoet. 1 ( ) = is the rule for "raisig a epoet to a epoet." Although may tetbooks phrase it this way, this is NOT raisig a epoet to aother epoet. It causes real problems whe tryig to relate the rules of epoets to the rules of logarithms to a iquisitive studet. Have studets read the phrase raisig a epoet to a epoet carefully ad write dow what it is really sayig. is "raisig a epoet to a epoet." 1 = This may seem iocet eough, util you try coectig these rules to the rules for logarithms to the iquisitive studet. ( ) m m We usually coect log m = log m to = ad say somethig like "sice a logarithm is a epoet" that this rule of logarithms is similar to the rule of epoets i which you "multiply epoets" whe "raisig a epoet (log) to aother epoet." But aiquisitive studet commeted that the ( ) correlatig logarithm should look like this: log m... ad they were right. But ( log m) log m The Solutio... Stop phrasig this rule of epoets as, raisig a epoet to aother epoet. The rule should be phrased as, whe you raise a base that has bee raised to a epoet to aother epoet, you multiply the epoets. log m ca the be iterpreted as "fidig the logarithm of somethig that has already bee raised to a epoet." log( ) A iterestig ca of worms... TI 8 family TI 8 log() log TI 8 family () = ( log) ot log( ) = log log TI 8 () = log( ) = log correct, right? 7

8 Cocept #10 The meaig of the slope of a lie as a umber. Slope is rise over ru or the chage i y-values divided by the chage i -values. They are both very procedural defiitios. This is all studets are left with from their tetbooks...ay may teachers. It leaves out ay real coceptual uderstadig of oe of the most importat Algebra I cocepts. It abuses a very importat uderstadig of fractios: as a umber. What is slope (as a umber)? Slope: The amout that the depedet variable chages whe the idepedet variable icreases by oe uit. Cosider y = 8 How much does the y-value chage whe the -value chages by 1? What is the value of this fuctio whe = 7? 1 What is the value of this fuctio whe = 8? 1 What is the value of this fuctio whe = 9? 19 The slope is. Cosider y = + How much does the y-value chage whe the -value chages by 1? What is the value of this fuctio whe =? 1. 7 What is the value of this fuctio whe =?. What is the value of this fuctio whe = 7?. The slope is. Note that if this were cotiued for a chage of o the -value, the y-value would chage by - (over four ad dow rather tha dow ad over ). The abuse of fractios depedet variable y=(-/) Uderstadig slope as oly "the chage i divided by the chage i studets to oly look at the fractio from a "umeral" perspective ad ot as a "umber" by itself. y values values" actually forces the - - idepedet variable 8

9 Other topics Why the method of addig two equatios together works whe solvig a system of equatios. How a radia is defied. The differece betwee a umber ad a umeral. How the area formulas are derived. How the Quadratic Formula is derived. What is Ad so may more Coclusios Secodary mathematics majors (ad may iservice teachers) usually have ot bee provided the opportuities to closely eamie may of the basic cocepts that they take for grated ad will oe day have to teach. The traditioal curriculum to prepare studets to teach secodary mathematics feeds ito this gap i teachers kowledge. There is usually o course that studets take i which to discuss these potetial deficiecies. We, as their teachers, should admit some of the resposibility i helpig to cultivate these deficiecies. Cotact Iformatio Steve Williams Associate Professor of Mathematics/ Coordiator of Secodary Mathematics Educatio Lock Have Uiversity of PA 9

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

Divide and Conquer, Solving Recurrences, Integer Multiplication Scribe: Juliana Cook (2015), V. Williams Date: April 6, 2016

Divide and Conquer, Solving Recurrences, Integer Multiplication Scribe: Juliana Cook (2015), V. Williams Date: April 6, 2016 CS 6, Lecture 3 Divide ad Coquer, Solvig Recurreces, Iteger Multiplicatio Scribe: Juliaa Cook (05, V Williams Date: April 6, 06 Itroductio Today we will cotiue to talk about divide ad coquer, ad go ito

More information

Laws of Exponents Learning Strategies

Laws of Exponents Learning Strategies Laws of Epoets Learig Strategies What should studets be able to do withi this iteractive? Studets should be able to uderstad ad use of the laws of epoets. Studets should be able to simplify epressios that

More information

The second difference is the sequence of differences of the first difference sequence, 2

The second difference is the sequence of differences of the first difference sequence, 2 Differece Equatios I differetial equatios, you look for a fuctio that satisfies ad equatio ivolvig derivatives. I differece equatios, istead of a fuctio of a cotiuous variable (such as time), we look for

More information

The Euler Totient, the Möbius and the Divisor Functions

The Euler Totient, the Möbius and the Divisor Functions The Euler Totiet, the Möbius ad the Divisor Fuctios Rosica Dieva July 29, 2005 Mout Holyoke College South Hadley, MA 01075 1 Ackowledgemets This work was supported by the Mout Holyoke College fellowship

More information

Searching Algorithm Efficiencies

Searching Algorithm Efficiencies Efficiecy of Liear Search Searchig Algorithm Efficiecies Havig implemeted the liear search algorithm, how would you measure its efficiecy? A useful measure (or metric) should be geeral, applicable to ay

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

Binet Formulas for Recursive Integer Sequences

Binet Formulas for Recursive Integer Sequences Biet Formulas for Recursive Iteger Sequeces Homer W. Austi Jatha W. Austi Abstract May iteger sequeces are recursive sequeces ad ca be defied either recursively or explicitly by use of Biet-type formulas.

More information

8.1 Arithmetic Sequences

8.1 Arithmetic Sequences MCR3U Uit 8: Sequeces & Series Page 1 of 1 8.1 Arithmetic Sequeces Defiitio: A sequece is a comma separated list of ordered terms that follow a patter. Examples: 1, 2, 3, 4, 5 : a sequece of the first

More information

AQA STATISTICS 1 REVISION NOTES

AQA STATISTICS 1 REVISION NOTES AQA STATISTICS 1 REVISION NOTES AVERAGES AND MEASURES OF SPREAD www.mathsbox.org.uk Mode : the most commo or most popular data value the oly average that ca be used for qualitative data ot suitable if

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

TILE PATTERNS & GRAPHING

TILE PATTERNS & GRAPHING TILE PATTERNS & GRAPHING LESSON 1 THE BIG IDEA Tile patters provide a meaigful cotext i which to geerate equivalet algebraic expressios ad develop uderstadig of the cocept of a variable. Such patters are

More information

G r a d e. 5 M a t h e M a t i c s. Patterns and relations

G r a d e. 5 M a t h e M a t i c s. Patterns and relations G r a d e 5 M a t h e M a t i c s Patters ad relatios Grade 5: Patters ad Relatios (Patters) (5.PR.1) Edurig Uderstadigs: Number patters ad relatioships ca be represeted usig variables. Geeral Outcome:

More information

Mocks.ie Maths LC HL Further Calculus mocks.ie Page 1

Mocks.ie Maths LC HL Further Calculus mocks.ie Page 1 Maths Leavig Cert Higher Level Further Calculus Questio Paper By Cillia Fahy ad Darro Higgis Mocks.ie Maths LC HL Further Calculus mocks.ie Page Further Calculus ad Series, Paper II Q8 Table of Cotets:.

More information

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

More information

Solving Logarithms and Exponential Equations

Solving Logarithms and Exponential Equations Solvig Logarithms ad Epoetial Equatios Logarithmic Equatios There are two major ideas required whe solvig Logarithmic Equatios. The first is the Defiitio of a Logarithm. You may recall from a earlier topic:

More information

THE LEAST SQUARES REGRESSION LINE and R 2

THE LEAST SQUARES REGRESSION LINE and R 2 THE LEAST SQUARES REGRESSION LINE ad R M358K I. Recall from p. 36 that the least squares regressio lie of y o x is the lie that makes the sum of the squares of the vertical distaces of the data poits from

More information

A Resource for Free-standing Mathematics Qualifications Working with %

A Resource for Free-standing Mathematics Qualifications Working with % Ca you aswer these questios? A savigs accout gives % iterest per aum.. If 000 is ivested i this accout, how much will be i the accout at the ed of years? A ew car costs 16 000 ad its value falls by 1%

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

Algebra Work Sheets. Contents

Algebra Work Sheets. Contents The work sheets are grouped accordig to math skill. Each skill is the arraged i a sequece of work sheets that build from simple to complex. Choose the work sheets that best fit the studet s eed ad will

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

Building Blocks Problem Related to Harmonic Series

Building Blocks Problem Related to Harmonic Series TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite

More information

7.1 Finding Rational Solutions of Polynomial Equations

7.1 Finding Rational Solutions of Polynomial Equations 4 Locker LESSON 7. Fidig Ratioal Solutios of Polyomial Equatios Name Class Date 7. Fidig Ratioal Solutios of Polyomial Equatios Essetial Questio: How do you fid the ratioal roots of a polyomial equatio?

More information

Simple Annuities Present Value.

Simple Annuities Present Value. Simple Auities Preset Value. OBJECTIVES (i) To uderstad the uderlyig priciple of a preset value auity. (ii) To use a CASIO CFX-9850GB PLUS to efficietly compute values associated with preset value auities.

More information

Your grandmother and her financial counselor

Your grandmother and her financial counselor Sectio 10. Arithmetic Sequeces 963 Objectives Sectio 10. Fid the commo differece for a arithmetic sequece. Write s of a arithmetic sequece. Use the formula for the geeral of a arithmetic sequece. Use the

More information

Grade 7. Strand: Number Specific Learning Outcomes It is expected that students will:

Grade 7. Strand: Number Specific Learning Outcomes It is expected that students will: Strad: Number Specific Learig Outcomes It is expected that studets will: 7.N.1. Determie ad explai why a umber is divisible by 2, 3, 4, 5, 6, 8, 9, or 10, ad why a umber caot be divided by 0. [C, R] [C]

More information

Module 4: Mathematical Induction

Module 4: Mathematical Induction Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate

More information

1 The Binomial Theorem: Another Approach

1 The Binomial Theorem: Another Approach The Biomial Theorem: Aother Approach Pascal s Triagle I class (ad i our text we saw that, for iteger, the biomial theorem ca be stated (a + b = c a + c a b + c a b + + c ab + c b, where the coefficiets

More information

Math C067 Sampling Distributions

Math C067 Sampling Distributions Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters

More information

Unit 8 Rational Functions

Unit 8 Rational Functions Uit 8 Ratioal Fuctios Algebraic Fractios: Simplifyig Algebraic Fractios: To simplify a algebraic fractio meas to reduce it to lowest terms. This is doe by dividig out the commo factors i the umerator ad

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10

FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 [C] Commuicatio Measuremet A1. Solve problems that ivolve liear measuremet, usig: SI ad imperial uits of measure estimatio strategies measuremet strategies.

More information

The geometric series and the ratio test

The geometric series and the ratio test The geometric series ad the ratio test Today we are goig to develop aother test for covergece based o the iterplay betwee the it compariso test we developed last time ad the geometric series. A ote about

More information

USING STATISTICAL FUNCTIONS ON A SCIENTIFIC CALCULATOR

USING STATISTICAL FUNCTIONS ON A SCIENTIFIC CALCULATOR USING STATISTICAL FUNCTIONS ON A SCIENTIFIC CALCULATOR Objective:. Improve calculator skills eeded i a multiple choice statistical eamiatio where the eam allows the studet to use a scietific calculator..

More information

Solving Inequalities

Solving Inequalities Solvig Iequalities Say Thaks to the Authors Click http://www.ck12.org/saythaks (No sig i required) To access a customizable versio of this book, as well as other iteractive cotet, visit www.ck12.org CK-12

More information

Research on use of internet ressources in teaching. Can undergraduate students learn mathematics with the internet?

Research on use of internet ressources in teaching. Can undergraduate students learn mathematics with the internet? Ca udergraduate studets lear mathematics with the iteret? Research o use of iteret ressources i teachig Geeral Mathematics School Lots of stuff Some Uiversity Quite a lot Much less (~100) Carl Wisløw wislow@id.ku.dk

More information

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern. 5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers

More information

Linear Algebra II. Notes 6 25th November 2010

Linear Algebra II. Notes 6 25th November 2010 MTH6140 Liear Algebra II Notes 6 25th November 2010 6 Quadratic forms A lot of applicatios of mathematics ivolve dealig with quadratic forms: you meet them i statistics (aalysis of variace) ad mechaics

More information

MESSAGE TO TEACHERS: NOTE TO EDUCATORS:

MESSAGE TO TEACHERS: NOTE TO EDUCATORS: MESSAGE TO TEACHERS: NOTE TO EDUCATORS: Attached herewith, please fid suggested lesso plas for term 1 of MATHEMATICS Grade 12. Please ote that these lesso plas are to be used oly as a guide ad teachers

More information

Determining the sample size

Determining the sample size Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors

More information

NPTEL STRUCTURAL RELIABILITY

NPTEL STRUCTURAL RELIABILITY NPTEL Course O STRUCTURAL RELIABILITY Module # 0 Lecture 1 Course Format: Web Istructor: Dr. Aruasis Chakraborty Departmet of Civil Egieerig Idia Istitute of Techology Guwahati 1. Lecture 01: Basic Statistics

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

when n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on.

when n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on. Geometric eries Before we defie what is meat by a series, we eed to itroduce a related topic, that of sequeces. Formally, a sequece is a fuctio that computes a ordered list. uppose that o day 1, you have

More information

CALCULUS. Taimur Khalid

CALCULUS. Taimur Khalid CALCULUS Taimur Khalid 5/20/2015 Chapter 1 What is Calculus? What is it? I m sure you ve all already heard about what calculus is from the other studets i my calculus class, but just i case you eed a refresher,

More information

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means)

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means) CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:

More information

Understanding Rational Exponents and Radicals

Understanding Rational Exponents and Radicals x Locker LESSON. Uderstadig Ratioal Expoets ad Radicals Name Class Date. Uderstadig Ratioal Expoets ad Radicals Essetial Questio: How are radicals ad ratioal expoets related? A..A simplify umerical radical

More information

Arithmetic Sequences

Arithmetic Sequences . Arithmetic Sequeces Essetial Questio How ca you use a arithmetic sequece to describe a patter? A arithmetic sequece is a ordered list of umbers i which the differece betwee each pair of cosecutive terms,

More information

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized? 5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso

More information

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad

More information

Multiple Representations for Pattern Exploration with the Graphing Calculator and Manipulatives

Multiple Representations for Pattern Exploration with the Graphing Calculator and Manipulatives Douglas A. Lapp Multiple Represetatios for Patter Exploratio with the Graphig Calculator ad Maipulatives To teach mathematics as a coected system of cocepts, we must have a shift i emphasis from a curriculum

More information

Hypothesis testing. Null and alternative hypotheses

Hypothesis testing. Null and alternative hypotheses Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate

More information

Engineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51

Engineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51 Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log

More information

Recursion and Recurrences

Recursion and Recurrences Chapter 5 Recursio ad Recurreces 5.1 Growth Rates of Solutios to Recurreces Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer. Cosider, for example,

More information

Hypothesis Tests Applied to Means

Hypothesis Tests Applied to Means The Samplig Distributio of the Mea Hypothesis Tests Applied to Meas Recall that the samplig distributio of the mea is the distributio of sample meas that would be obtaied from a particular populatio (with

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level A1 of challege: C A1 Mathematical goals Startig poits Materials required Time eeded Iterpretig algebraic expressios To help learers to: traslate betwee words, symbols, tables, ad area represetatios

More information

One-step equations. Vocabulary

One-step equations. Vocabulary Review solvig oe-step equatios with itegers, fractios, ad decimals. Oe-step equatios Vocabulary equatio solve solutio iverse operatio isolate the variable Additio Property of Equality Subtractio Property

More information

7 b) 0. Guided Notes for lesson P.2 Properties of Exponents. If a, b, x, y and a, b, 0, and m, n Z then the following properties hold: 1 n b

7 b) 0. Guided Notes for lesson P.2 Properties of Exponents. If a, b, x, y and a, b, 0, and m, n Z then the following properties hold: 1 n b Guided Notes for lesso P. Properties of Expoets If a, b, x, y ad a, b, 0, ad m, Z the the followig properties hold:. Negative Expoet Rule: b ad b b b Aswers must ever cotai egative expoets. Examples: 5

More information

Basic Elements of Arithmetic Sequences and Series

Basic Elements of Arithmetic Sequences and Series MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

More information

Chapter Gaussian Elimination

Chapter Gaussian Elimination Chapter 04.06 Gaussia Elimiatio After readig this chapter, you should be able to:. solve a set of simultaeous liear equatios usig Naïve Gauss elimiatio,. lear the pitfalls of the Naïve Gauss elimiatio

More information

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio

More information

Geometric Sequences and Series. Geometric Sequences. Definition of Geometric Sequence. such that. a2 4

Geometric Sequences and Series. Geometric Sequences. Definition of Geometric Sequence. such that. a2 4 3330_0903qxd /5/05 :3 AM Page 663 Sectio 93 93 Geometric Sequeces ad Series 663 Geometric Sequeces ad Series What you should lear Recogize, write, ad fid the th terms of geometric sequeces Fid th partial

More information

Solving equations. Pre-test. Warm-up

Solving equations. Pre-test. Warm-up Solvig equatios 8 Pre-test Warm-up We ca thik of a algebraic equatio as beig like a set of scales. The two sides of the equatio are equal, so the scales are balaced. If we add somethig to oe side of the

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

Math 115 HW #4 Solutions

Math 115 HW #4 Solutions Math 5 HW #4 Solutios From 2.5 8. Does the series coverge or diverge? ( ) 3 + 2 = Aswer: This is a alteratig series, so we eed to check that the terms satisfy the hypotheses of the Alteratig Series Test.

More information

Winter Camp 2012 Sequences Alexander Remorov. Sequences. Alexander Remorov

Winter Camp 2012 Sequences Alexander Remorov. Sequences. Alexander Remorov Witer Camp 202 Sequeces Alexader Remorov Sequeces Alexader Remorov alexaderrem@gmail.com Warm-up Problem : Give a positive iteger, cosider a sequece of real umbers a 0, a,..., a defied as a 0 = 2 ad =

More information

Review for College Algebra Final Exam

Review for College Algebra Final Exam Review for College Algebra Fial Exam (Please remember that half of the fial exam will cover chapters 1-4. This review sheet covers oly the ew material, from chapters 5 ad 7.) 5.1 Systems of equatios i

More information

Elementary Theory of Russian Roulette

Elementary Theory of Russian Roulette Elemetary Theory of Russia Roulette -iterestig patters of fractios- Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some

More information

Section 9.2 Series and Convergence

Section 9.2 Series and Convergence Sectio 9. Series ad Covergece Goals of Chapter 9 Approximate Pi Prove ifiite series are aother importat applicatio of limits, derivatives, approximatio, slope, ad cocavity of fuctios. Fid challegig atiderivatives

More information

Literal Equations and Formulas

Literal Equations and Formulas . Literal Equatios ad Formulas. OBJECTIVE 1. Solve a literal equatio for a specified variable May problems i algebra require the use of formulas for their solutio. Formulas are simply equatios that express

More information

Fourier Series and the Wave Equation Part 2

Fourier Series and the Wave Equation Part 2 Fourier Series ad the Wave Equatio Part There are two big ideas i our work this week. The first is the use of liearity to break complicated problems ito simple pieces. The secod is the use of the symmetries

More information

Center, Spread, and Shape in Inference: Claims, Caveats, and Insights

Center, Spread, and Shape in Inference: Claims, Caveats, and Insights Ceter, Spread, ad Shape i Iferece: Claims, Caveats, ad Isights Dr. Nacy Pfeig (Uiversity of Pittsburgh) AMATYC November 2008 Prelimiary Activities 1. I would like to produce a iterval estimate for the

More information

Radicals and Fractional Exponents

Radicals and Fractional Exponents Radicals ad Roots Radicals ad Fractioal Expoets I math, may problems will ivolve what is called the radical symbol, X is proouced the th root of X, where is or greater, ad X is a positive umber. What it

More information

Lecture Notes CMSC 251

Lecture Notes CMSC 251 We have this messy summatio to solve though First observe that the value remais costat throughout the sum, ad so we ca pull it out frot Also ote that we ca write 3 i / i ad (3/) i T () = log 3 (log ) 1

More information

Essential Question How can you use properties of exponents to simplify products and quotients of radicals?

Essential Question How can you use properties of exponents to simplify products and quotients of radicals? . Properties of Ratioal Expoets ad Radicals Essetial Questio How ca you use properties of expoets to simplify products ad quotiets of radicals? Reviewig Properties of Expoets Work with a parter. Let a

More information

Chapter 9: Correlation and Regression: Solutions

Chapter 9: Correlation and Regression: Solutions Chapter 9: Correlatio ad Regressio: Solutios 9.1 Correlatio I this sectio, we aim to aswer the questio: Is there a relatioship betwee A ad B? Is there a relatioship betwee the umber of emploee traiig hours

More information

Divide and Conquer. Maximum/minimum. Integer Multiplication. CS125 Lecture 4 Fall 2015

Divide and Conquer. Maximum/minimum. Integer Multiplication. CS125 Lecture 4 Fall 2015 CS125 Lecture 4 Fall 2015 Divide ad Coquer We have see oe geeral paradigm for fidig algorithms: the greedy approach. We ow cosider aother geeral paradigm, kow as divide ad coquer. We have already see a

More information

Snap. Jenine's formula. The SNAP probability is

Snap. Jenine's formula. The SNAP probability is Sap The game of SNAP is played with stadard decks of cards. The decks are shuffled ad cards are dealt simultaeously from the top of each deck. SNAP is called if the two dealt cards are idetical (value

More information

Incremental calculation of weighted mean and variance

Incremental calculation of weighted mean and variance Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

More information

Riemann Sums y = f (x)

Riemann Sums y = f (x) Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, o-egative fuctio o the closed iterval [a, b] Fid

More information

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5

More information

G r a d e. 2 M a t h e M a t i c s. statistics and Probability

G r a d e. 2 M a t h e M a t i c s. statistics and Probability G r a d e 2 M a t h e M a t i c s statistics ad Probability Grade 2: Statistics (Data Aalysis) (2.SP.1, 2.SP.2) edurig uderstadigs: data ca be collected ad orgaized i a variety of ways. data ca be used

More information

ORDERS OF GROWTH KEITH CONRAD

ORDERS OF GROWTH KEITH CONRAD ORDERS OF GROWTH KEITH CONRAD Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really wat to uderstad their behavior It also helps you better grasp topics i calculus

More information

+ 1= x + 1. These 4 elements form a field.

+ 1= x + 1. These 4 elements form a field. Itroductio to fiite fields II Fiite field of p elemets F Because we are iterested i doig computer thigs it would be useful for us to costruct fields havig elemets. Let s costruct a field of elemets; we

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

3. Greatest Common Divisor - Least Common Multiple

3. Greatest Common Divisor - Least Common Multiple 3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

More information

Lesson 15 ANOVA (analysis of variance)

Lesson 15 ANOVA (analysis of variance) Outlie Variability -betwee group variability -withi group variability -total variability -F-ratio Computatio -sums of squares (betwee/withi/total -degrees of freedom (betwee/withi/total -mea square (betwee/withi

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P NOVEMBER 009() MARKS: 50 TIME: 3 hours This questio paper cosists of 0 pages, a iformatio sheet ad diagram sheet. Please tur over Mathematics/P DoE/November

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may

More information

Key Ideas Section 8-1: Overview hypothesis testing Hypothesis Hypothesis Test Section 8-2: Basics of Hypothesis Testing Null Hypothesis

Key Ideas Section 8-1: Overview hypothesis testing Hypothesis Hypothesis Test Section 8-2: Basics of Hypothesis Testing Null Hypothesis Chapter 8 Key Ideas Hypothesis (Null ad Alterative), Hypothesis Test, Test Statistic, P-value Type I Error, Type II Error, Sigificace Level, Power Sectio 8-1: Overview Cofidece Itervals (Chapter 7) are

More information

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

More information

23.3 Sampling Distributions

23.3 Sampling Distributions COMMON CORE Locker LESSON Commo Core Math Stadards The studet is expected to: COMMON CORE S-IC.B.4 Use data from a sample survey to estimate a populatio mea or proportio; develop a margi of error through

More information

Example Consider the following set of data, showing the number of times a sample of 5 students check their per day:

Example Consider the following set of data, showing the number of times a sample of 5 students check their  per day: Sectio 82: Measures of cetral tedecy Whe thikig about questios such as: how may calories do I eat per day? or how much time do I sped talkig per day?, we quickly realize that the aswer will vary from day

More information

1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION 1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

More information

Statistics Lecture 14. Introduction to Inference. Administrative Notes. Hypothesis Tests. Last Class: Confidence Intervals

Statistics Lecture 14. Introduction to Inference. Administrative Notes. Hypothesis Tests. Last Class: Confidence Intervals Statistics 111 - Lecture 14 Itroductio to Iferece Hypothesis Tests Admiistrative Notes Sprig Break! No lectures o Tuesday, March 8 th ad Thursday March 10 th Exteded Sprig Break! There is o Stat 111 recitatio

More information

Equation of a line. Line in coordinate geometry. Slope-intercept form ( 斜 截 式 ) Intercept form ( 截 距 式 ) Point-slope form ( 點 斜 式 )

Equation of a line. Line in coordinate geometry. Slope-intercept form ( 斜 截 式 ) Intercept form ( 截 距 式 ) Point-slope form ( 點 斜 式 ) Chapter : Liear Equatios Chapter Liear Equatios Lie i coordiate geometr I Cartesia coordiate sstems ( 卡 笛 兒 坐 標 系 統 ), a lie ca be represeted b a liear equatio, i.e., a polomial with degree. But before

More information