Albert Einstein s Nightmare before Christmas. The spooky world of quantum light

Size: px
Start display at page:

Download "Albert Einstein s Nightmare before Christmas. The spooky world of quantum light"

Transcription

1 Albert Einstein s Nightmare before Christmas The spooky world of quantum light Peter J Mosley Christmas Lecture 2012 Department of Physics, University of Bath If all this is true then it means the end of physics Albert Einstein to Niels Bohr

2 Introduction 1905 Early-career revolutionary 1935 Mid-career conservative Einstein s transformation - revolutionary to conservative Two quantum paradoxes - thought experiments to refute quantum theory Einstein s legacy - current laboratory tests of quantum mechanics

3 Einstein s transformation - revolutionary to conservative A very brief history of quantum mechanics

4 Particles of light Einstein s revolutionary explanation of photoelectric effect in 1905 Light Electrons E k Metal [Light] consists of a finite number of energy quanta which... can be produced and absorbed only as discrete units Albert Einstein

5 Einstein s annus mirabilis Einstein as revolutionary......all while working as patent clerk!

6 Countdown to Copenhagen Planck E = n~! Einstein E k = ~! Bohr L = p l(l + 1)~ Einstein A 21,B 21,B 12 It is a weakness of the theory that it leaves the time and direction of the elementary process to chance I find the idea quite intolerable that an electron exposed to radiation should choose of its own free will not only its moment to jump off but also its direction. In that case I would rather be a cobbler, or even an employee of a gaming house, than a physicist. Albert Einstein

7 Countdown to Copenhagen Planck E = n~! Einstein E k = ~! Bohr L = p l(l + 1)~ Einstein A 21,B 21,B de Broglie = h p I had a sudden inspiration. Einstein's wave-particle dualism was an absolutely general phenomenon extending to all physical nature Louis de Broglie

8 Countdown to Copenhagen Planck E = n~! Einstein E k = ~! Bohr L = p l(l + 1)~ Einstein A 21,B 21,B de Broglie = h p Schrödinger ~ 2 2m r2 + V When one wishes to calculate `the future' from 'the present' one can only get statistical results since one can never discover every detail of the present. Werner Heisenberg Heisenberg x p ~ 2

9 Countdown to Copenhagen Planck E = n~! Einstein E k = ~! Bohr L = p l(l + 1)~ Einstein A 21,B 21,B de Broglie = h p Schrödinger ~ 2 2m r2 + V Heisenberg has laid a big quantum egg. In Göttingen they believe it. I don't. Einstein Heisenberg x p ~ 2

10 Countdown to Copenhagen Planck E = n~! Einstein E k = ~! Bohr L = p l(l + 1)~ Einstein A 21,B 21,B de Broglie = h p Schrödinger ~ 2 2m r2 + V Heisenberg x p ~ 2 Copenhagen interpretation

11 So what s so spooky? The philosophy bit... Copenhagen interpretation suggests... physical properties only have meaning within context of measurement uncertainty always exists in physical systems individual measurement outcomes are inherently unpredictable no underlying physical reality It is wrong to think that the task of physics is to find out how nature is. Physics concerns what we can say about nature Niels Bohr

12 So what s so spooky? The philosophy bit... Copenhagen interpretation suggests... physical properties only have meaning within context of measurement uncertainty always exists in physical systems individual measurement outcomes are inherently unpredictable no underlying physical reality Einstein believed... objective reality exists independent of measurement physics should be capable of predicting all outcomes existence of a more complete, realistic theory Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real thing. The theory says a lot, but it does not really bring us any closer to the secrets of the Old One. I at any rate am convinced that He does not play dice Albert Einstein

13 So what s so spooky? The philosophy bit... Copenhagen interpretation suggests... physical properties only have meaning within context of measurement uncertainty always exists in physical systems individual measurement outcomes are inherently unpredictable no underlying physical reality Einstein believed... objective reality exists independent of measurement physics should be capable of predicting all outcomes existence of a more complete, realistic theory Spent years in debate with Bohr, constructing thought experiments to refute QM

14 Two quantum paradoxes Einstein, Podolsky and Rosen and Schrödinger s cat

15 The EPR paradox Suggested by Einstein in 1933, published in 1935 Attempt to demonstrate that QM not complete description of reality

16 The EPR paradox 2 particles interact, then fly apart Individual variables unknown, but perfectly correlated to each other x 1 (x 1 + x 2 ) x 2 p 1 (p 1 p 2 ) p 2 Measure Measure x 1 know p 1 x 2 know p 2 Assume locality x 2, p 2 must be well-defined in advance! Hidden variables Suggests QM not complete! Physics should represent a reality in time and space, free from spooky action at a distance Albert Einstein

17 The EPR paradox 2 particles interact, then fly apart Individual variables unknown, but perfectly correlated to each other x 1 (x 1 + x 2 ) x 2 p 1 (p 1 p 2 ) p 2 Measure Measure x 1 know p 1 x 2 know p 2 Assume locality x 2, p 2 must be well-defined in advance! Hidden variables Suggests QM not complete! Bohr s response... Two particles behave as one system! Measurement of one particle instantaneously affects other! Particles are entangled

18 Entanglement Entanglement arises from the fact that the two bodies at some earlier time formed in a true sense one system, that is were interacting, and have left behind traces on one another Erwin Schrödinger I do not believe in it. This epistemology-soaked orgy ought to burn itself out. No doubt, however, you smile at me and think that, after all, many a young whore turns into an old praying sister, and many a young revolutionary becomes an old reactionary. Albert Einstein

19 Entanglement Example - polarisation of photons i = 1 p 2 ( H 1 V 2 i + V 1 H 2 i) Individually have 50% chance of being H or V But joint measurements correlated Nonlocal action at a distance (spooky!) Change measurement basis V i %i Hi &i Hi = 1 p 2 %i + &i) V i = 1 p 2 %i &i) i = 1 p 2 ( % 1 % 2 i & 1 & 2 i) Correlation preserved! Hallmark of entanglement

20 Schrödinger s cat Schrödinger s paradox was endorsed by Einstein Showed absurdity of quantum effects on everyday level

21 Schrödinger s cat Schrödinger s paradox was endorsed by Einstein Showed absurdity of quantum effects on everyday level

22 Schrödinger s cat Schrödinger s paradox was endorsed by Einstein Showed absurdity of quantum effects on everyday level Your cat shows we are in complete agreement concerning our assessment of the character of the current theory. A psi-function that contains the living as well as the dead cat just cannot be taken as a description of a real state of affairs.' Albert Einstein

23 Schrödinger s cat Schrödinger s paradox was endorsed by Einstein Showed absurdity of quantum effects on everyday level Debate continues over how to resolve this paradox Interaction of cat with environment is enough to collapse wavefunction! Measurement problem remains in Copenhagen interpretation

24 Einstein s legacy Laboratory tests of quantum theory

25 Young s double slit interference Experiment from nevertheless encapsulates quantum mechanics! Measure at slits - particle-like Measure at screen - wave-like OpenStax College, Measurement affects system - photons, electrons, or even molecules! Single photons Single electrons How does wavefunction collapse occur? Do particles have advance (hidden) knowledge of measurement?

26 Wheeler s delayed choice When does photon choose which behaviour to display? Does it have advance (hidden) information about measurement? Jacques et al, Science 315, 966 (2007) Photon makes choice after entering interferometer! Suggests QM is complete

27 How to test EPR - Bell s inequality x 1 (x 1 + x 2 ) x 2 p 1 (p 1 p 2 ) p 2 Set of measurements on individual particles Find correlation between them, S Hidden variables and locality QM complete, entanglement

28 We need some entanglement! Photon pair production in nonlinear crystal V i Select overlapped regions Hi i = 1 p 2 ( H 1 V 2 i + V 1 H 2 i)

29 Experimental Bell tests Ursin et al, Nature Physics 3, 481 (2007) S = 2.508(37) QM is nonlocal* *Subject to terms and conditions Detector loophole Fair sampling

30 Schrödinger cat states with light Mix quantum and classical light Interfere photon pairs with laser Produces optical Schrödinger cats! How big can they get? Decoherence limits size Ourjoumtsev et al, Nature 448, 784 (2007)

31 Optomechanical cats Quantum behaviour of macroscopic object? Requires object in ground state (very cold!) Cool micro-mirror coupled to EM field Like laser cooling atoms (but tougher!) Fiore et al, PRL 107, (2011) Aspelmeyer group University of Vienna Current state-of-the-art is n = (a few) Quantum effects should be observable soon! Wiederhecker et al, Nature 462, 633 (2009)

32 What would Einstein think? Huge progress in experimental tests of QM since Einstein s death in 1955 Hidden variables seem unlikely All tests have confirmed validity of QM Nevertheless, measurement problem still exists I hope Einstein would still be fighting!

33 Merry Christmas and a Happy New Year!

What does Quantum Mechanics tell us about the universe?

What does Quantum Mechanics tell us about the universe? Fedora GNU/Linux; L A TEX 2ǫ; xfig What does Quantum Mechanics tell us about the universe? Mark Alford Washington University Saint Louis, USA More properly: What do experiments tell us about the universe?

More information

Quantum Phenomena and the Theory of Quantum Mechanics

Quantum Phenomena and the Theory of Quantum Mechanics Quantum Phenomena and the Theory of The Mechanics of the Very Small Waseda University, SILS, Introduction to History and Philosophy of Science . Two Dark Clouds In 1900 at a Friday Evening lecture at the

More information

Unamended Quantum Mechanics Rigorously Implies Awareness Is Not Based in the Physical Brain

Unamended Quantum Mechanics Rigorously Implies Awareness Is Not Based in the Physical Brain Unamended Quantum Mechanics Rigorously Implies Awareness Is Not Based in the Physical Brain Casey Blood, PhD Professor Emeritus of Physics, Rutgers University www.quantummechanicsandreality.com CaseyBlood@gmail.com

More information

3-9 EPR and Bell s theorem. EPR Bohm s version. S x S y S z V H 45

3-9 EPR and Bell s theorem. EPR Bohm s version. S x S y S z V H 45 1 3-9 EPR and Bell s theorem EPR Bohm s version S x S y S z n P(n) n n P(0) 0 0 V H 45 P(45) D S D P(0) H V 2 ( ) Neumann EPR n P(n) EPR PP(n) n EPR ( ) 2 5 2 3 But even at this stage there is essentially

More information

Superposition & the paradoxes of quantum mechanics

Superposition & the paradoxes of quantum mechanics Superposition & the paradoxes of quantum mechanics phil 20229 Jeff Speaks February 5, 2008 1 Some examples of quantum weirdness........................... 1 1.1 Color and hardness..................................

More information

Does Quantum Mechanics Make Sense? Size

Does Quantum Mechanics Make Sense? Size Does Quantum Mechanics Make Sense? Some relatively simple concepts show why the answer is yes. Size Classical Mechanics Quantum Mechanics Relative Absolute What does relative vs. absolute size mean? Why

More information

DO WE REALLY UNDERSTAND QUANTUM MECHANICS?

DO WE REALLY UNDERSTAND QUANTUM MECHANICS? DO WE REALLY UNDERSTAND QUANTUM MECHANICS? COMPRENONS-NOUS VRAIMENT LA MECANIQUE QUANTIQUE? VARIOUS INTERPRETATIONS OF QUANTUM MECHANICS IHES, 29 janvier 2015 Franck Laloë, LKB, ENS Paris 1 INTRODUCTION

More information

There is a physics joke about the stages of learning quantum mechanics:

There is a physics joke about the stages of learning quantum mechanics: Preface The only way to learn physics is to do physics. However, almost all physics textbooks leave a huge gap between the level of the problems that they solve as examples, and the level of the problems

More information

"in recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta". h is the Planck constant he called it

in recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta. h is the Planck constant he called it 1 2 "in recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta". h is the Planck constant he called it the quantum of action 3 Newton believed in the corpuscular

More information

A Modest View of Bell s Theorem. Steve Boughn, Princeton University and Haverford College

A Modest View of Bell s Theorem. Steve Boughn, Princeton University and Haverford College A Modest View of Bell s Theorem Steve Boughn, Princeton University and Haverford College Talk given at the 2016 Princeton-TAMU Symposium on Quantum Noise Effects in Thermodynamics, Biology and Information

More information

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS Quantum Mechanics or wave mechanics is the best mathematical theory used today to describe and predict the behaviour of particles and waves.

More information

PHY1020 BASIC CONCEPTS IN PHYSICS I

PHY1020 BASIC CONCEPTS IN PHYSICS I PHY1020 BASIC CONCEPTS IN PHYSICS I Jackson Levi Said 14 lectures/tutorials/past paper session Project on one of the interesting fields in physics (30%) Exam in January/February (70%) 1 The Course RECOMMENDED

More information

arxiv:quant-ph/0404128v1 22 Apr 2004

arxiv:quant-ph/0404128v1 22 Apr 2004 How to teach Quantum Mechanics arxiv:quant-ph/0404128v1 22 Apr 2004 Oliver Passon Fachbereich Physik, University of Wuppertal Postfach 100 127, 42097 Wuppertal, Germany E-mail: Oliver.Passon@cern.ch In

More information

The quantum understanding of pre-university physics students

The quantum understanding of pre-university physics students The quantum understanding of pre-university physics students Gren Ireson Department of Education, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK Students in England and Wales wishing

More information

Level 3 Achievement Scale

Level 3 Achievement Scale Unit 1: Atoms Level 3 Achievement Scale Can state the key results of the experiments associated with Dalton, Rutherford, Thomson, Chadwick, and Bohr and what this lead each to conclude. Can explain that

More information

Nanoelectronics. Chapter 2 Classical Particles, Classical Waves, and Quantum Particles. Q.Li@Physics.WHU@2015.3

Nanoelectronics. Chapter 2 Classical Particles, Classical Waves, and Quantum Particles. Q.Li@Physics.WHU@2015.3 Nanoelectronics Chapter 2 Classical Particles, Classical Waves, and Quantum Particles Q.Li@Physics.WHU@2015.3 1 Electron Double-Slit Experiment Q.Li@Physics.WHU@2015.3 2 2.1 Comparison of Classical and

More information

The Phenomenon of Photoelectric Emission:

The Phenomenon of Photoelectric Emission: The Photoelectric Effect. The Wave particle duality of light Light, like any other E.M.R (electromagnetic radiation) has got a dual nature. That is there are experiments that prove that it is made up of

More information

TIME, SYMMETRY OF. Although everyday experience leads us to believe that time "flows" in one direction, the

TIME, SYMMETRY OF. Although everyday experience leads us to believe that time flows in one direction, the TIME, SYMMETRY OF Although everyday experience leads us to believe that time "flows" in one direction, the equations of both classical and modern physics work equally well in either time direction. Since

More information

What Einstein meant when he said God does not play dice...

What Einstein meant when he said God does not play dice... What Einstein meant when he said God does not play dice... Vasant Natarajan We analyze Einstein s views on God and religion, and his views on Quantum Mechanics. One of Albert Einstein s most famous statements

More information

Atomic Structure: Chapter Problems

Atomic Structure: Chapter Problems Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand

More information

Wave Function, ψ. Chapter 28 Atomic Physics. The Heisenberg Uncertainty Principle. Line Spectrum

Wave Function, ψ. Chapter 28 Atomic Physics. The Heisenberg Uncertainty Principle. Line Spectrum Wave Function, ψ Chapter 28 Atomic Physics The Hydrogen Atom The Bohr Model Electron Waves in the Atom The value of Ψ 2 for a particular object at a certain place and time is proportional to the probability

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing Javier Enciso encisomo@in.tum.de Joint Advanced Student School 009 Technische Universität München April, 009 Abstract In this paper, a gentle introduction to Quantum Computing

More information

Atomic Structure Ron Robertson

Atomic Structure Ron Robertson Atomic Structure Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\atomicstructuretrans.doc I. What is Light? Debate in 1600's: Since waves or particles can transfer energy, what is

More information

Commentary on Sub-Quantum Physics

Commentary on Sub-Quantum Physics David L. Bergman 1 Sub-Quantum Physics Commentary on Sub-Quantum Physics David L. Bergman Common Sense Science P.O. Box 1013 Kennesaw, GA 30144 USA INTRODUCTION According to Alan McCone, Jr., the objectives

More information

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics 13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

More information

Chapter 18: The Structure of the Atom

Chapter 18: The Structure of the Atom Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.

More information

THE CURRENT-VOLTAGE CHARACTERISTICS OF AN LED AND A MEASUREMENT OF PLANCK S CONSTANT Physics 258/259

THE CURRENT-VOLTAGE CHARACTERISTICS OF AN LED AND A MEASUREMENT OF PLANCK S CONSTANT Physics 258/259 DSH 2004 THE CURRENT-VOLTAGE CHARACTERISTICS OF AN LED AND A MEASUREMENT OF PLANCK S CONSTANT Physics 258/259 I. INTRODUCTION Max Planck (1858-1947) was an early pioneer in the field of quantum physics.

More information

Calculating particle properties of a wave

Calculating particle properties of a wave Calculating particle properties of a wave A light wave consists of particles (photons): The energy E of the particle is calculated from the frequency f of the wave via Planck: E = h f (1) A particle can

More information

On the Nature of Measurement in Quantum Mechanics. Abstract. Text

On the Nature of Measurement in Quantum Mechanics. Abstract. Text of Measurement in Quantum Mechanics DOUGLAS M. SNYDER LOS ANGELES, CALIFORNIA Abstract A number of issues related to measurement show that self-consistency is lacking in quantum mechanics as this theory

More information

Proposed experiment to test the non-locality hypothesis in transient light-interference phenomena

Proposed experiment to test the non-locality hypothesis in transient light-interference phenomena Proposed experiment to test the non-locality hypothesis in transient light-interference phenomena Masanori Sato Honda Electronics Co., Ltd., 20 Oyamazuka, Oiwa-cho, Toyohashi, Aichi 441-3193, Japan Abstract

More information

QUANTUM COMPUTING (AND OTHER SHORTCUTS FOR SOLVING HARD PROBLEMS)

QUANTUM COMPUTING (AND OTHER SHORTCUTS FOR SOLVING HARD PROBLEMS) QUANTUM COMPUTING (AND OTHER SHORTCUTS FOR SOLVING HARD PROBLEMS) Lecture 25 CS2110 Spring 2014 The world isn t as simple as it seems! 2 Starting as early as the Greek philosophers, people have wondered

More information

Generally Covariant Quantum Mechanics

Generally Covariant Quantum Mechanics Chapter 15 Generally Covariant Quantum Mechanics by Myron W. Evans, Alpha Foundation s Institutute for Advance Study (AIAS). (emyrone@oal.com, www.aias.us, www.atomicprecision.com) Dedicated to the Late

More information

HUNTER COLLEGE READING/WRITING CENTER THE WRITING PROCESS Invention: Annotating a Text

HUNTER COLLEGE READING/WRITING CENTER THE WRITING PROCESS Invention: Annotating a Text HUNTER COLLEGE READING/WRITING CENTER THE WRITING PROCESS Invention: Annotating a Text Annotating a text, or marking the pages with notes, is an excellent, if not essential, way to make the most out of

More information

Entanglement: The Holy Grail of High-Speed Design

Entanglement: The Holy Grail of High-Speed Design by Barry Olney column BEYOND DESIGN Entanglement: The Holy Grail of High-Speed Design While high-speed SERDES serial communications seems to currently be at the cutting edge of technology, maybe it will

More information

How To Understand Light And Color

How To Understand Light And Color PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order

More information

Heisenberg Uncertainty

Heisenberg Uncertainty Heisenberg Uncertainty Outline - Heisenberg Microscope - Measurement Uncertainty - Example: Hydrogen Atom - Example: Single Slit Diffraction - Example: Quantum Dots 1 TRUE / FALSE A photon (quantum of

More information

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

More information

What quantum computing can do for you

What quantum computing can do for you What quantum computing can do for you What quantum computing can do for you Inaugural lecture delivered on the appointment to the chair of Theoretical Computer Science at the University of Amsterdam on

More information

Quantum Technology: From research to application

Quantum Technology: From research to application June 2015 Report Quantum Technology: From research to application German National Academy of Sciences Leopoldina www.leopoldina.org acatech National Academy of Science and Engineering www.acatech.de Union

More information

1. Basics of LASER Physics

1. Basics of LASER Physics 1. Basics of LASER Physics Dr. Sebastian Domsch (Dipl.-Phys.) Computer Assisted Clinical Medicine Medical Faculty Mannheim Heidelberg University Theodor-Kutzer-Ufer 1-3 D-68167 Mannheim, Germany sebastian.domsch@medma.uni-heidelberg.de

More information

BOX. The density operator or density matrix for the ensemble or mixture of states with probabilities is given by

BOX. The density operator or density matrix for the ensemble or mixture of states with probabilities is given by 2.4 Density operator/matrix Ensemble of pure states gives a mixed state BOX The density operator or density matrix for the ensemble or mixture of states with probabilities is given by Note: Once mixed,

More information

Quantum steering, entanglement and Bell nonlocality.

Quantum steering, entanglement and Bell nonlocality. Quantum steering, entanglement and Bell nonlocality. Frederick Denis Vas October 16, 2014 Supervised by Professor Terence Rudolph Submitted in partial fulfilment of the requirements for the degree of Master

More information

Teaching quantum mechanics on an introductory level 1

Teaching quantum mechanics on an introductory level 1 Teaching quantum mechanics on an introductory level 1 Rainer Müller 2 and Hartmut Wiesner 3 Lehrstuhl für Didaktik der Physik, University of Munich, Schellingstr. 4, D-80799 München, Germany Abstract:

More information

Boardworks AS Physics

Boardworks AS Physics Boardworks AS Physics Vectors 24 slides 11 Flash activities Prefixes, scalars and vectors Guide to the SI unit prefixes of orders of magnitude Matching powers of ten to their SI unit prefixes Guide to

More information

Quantum control of individual electron and nuclear spins in diamond lattice

Quantum control of individual electron and nuclear spins in diamond lattice Quantum control of individual electron and nuclear spins in diamond lattice Mikhail Lukin Physics Department, Harvard University Collaborators: L.Childress, M.Gurudev Dutt, J.Taylor, D.Chang, L.Jiang,A.Zibrov

More information

Om Mani Padme Hum. 'What is that by knowing which all things are known?' 'What makes my mind think, my

Om Mani Padme Hum. 'What is that by knowing which all things are known?' 'What makes my mind think, my Ravichandran 1 Ram Ravichandran Albert Stetz PH 407H May 25 th, 2004 Om Mani Padme Hum -Mantra Of Avalokiteshvara 'What is that by knowing which all things are known?' 'What makes my mind think, my eyes

More information

The Physics Degree. Graduate Skills Base and the Core of Physics

The Physics Degree. Graduate Skills Base and the Core of Physics The Physics Degree Graduate Skills Base and the Core of Physics Version date: September 2011 THE PHYSICS DEGREE This document details the skills and achievements that graduates of accredited degree programmes

More information

Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total

Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total 1. Calculate the energy in joules of a photon of red light that has a frequency

More information

Special Relativity. Photo by Philippe Halsman. Used with permission from Mrs. P. Halsman.

Special Relativity. Photo by Philippe Halsman. Used with permission from Mrs. P. Halsman. Albert Einstein and the Miracle Year Special Relativity The year 1905 is often referred to as the Annus Mirabilis (or year of miracles). In this year, Albert Einstein, a 23-year old with an undergraduate

More information

8 The Timeless Quantum

8 The Timeless Quantum 8 The Timeless Quantum Every particle in Nature has an amplitude to move backward in time... Richard Feynman (1986, 98) Note: This chapter is from my book Timeless Reality: Symmetry, Simplicity, and Multiple

More information

Quantum Computing for Beginners: Building Qubits

Quantum Computing for Beginners: Building Qubits Quantum Computing for Beginners: Building Qubits Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham 28/03/2007 Overview of this presentation What is a Qubit?

More information

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves 5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has

More information

Chapter 9: ELECTRONS IN ATOMS AND THE PERIODIC TABLE

Chapter 9: ELECTRONS IN ATOMS AND THE PERIODIC TABLE Chapter 9: ELECTRONS IN ATOMS AND THE PERIODIC TABLE Problems: 1-3, 13-15, 19, 23-25, 31-32, 43, 45-46, 49c, 50a, 50b, 57c, 58 (b,c,d), 61-62, 69, 71-74, 77-88, 91-94 9.5 LIGHT: Electromagnetic Radiation

More information

Applications of Quantum Chemistry HΨ = EΨ

Applications of Quantum Chemistry HΨ = EΨ Applications of Quantum Chemistry HΨ = EΨ Areas of Application Explaining observed phenomena (e.g., spectroscopy) Simulation and modeling: make predictions New techniques/devices use special quantum properties

More information

Atomic structure. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Atomic structure. Resources and methods for learning about these subjects (list a few here, in preparation for your research): Atomic structure This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Einstein s theory of relativity

Einstein s theory of relativity Department of Mathematics, Institute of Origins, December 5, 2008 Overview UCL Institute of Origins Origins UCL has established the Institute of Origins to promote world leading research in topics related

More information

PHYS 1624 University Physics I. PHYS 2644 University Physics II

PHYS 1624 University Physics I. PHYS 2644 University Physics II PHYS 1624 Physics I An introduction to mechanics, heat, and wave motion. This is a calculus- based course for Scientists and Engineers. 4 hours (3 lecture/3 lab) Prerequisites: Credit for MATH 2413 (Calculus

More information

Fernanda Ostermann Institute of Physics, Department of Physics, Federal University of Rio Grande do Sul, Brazil. fernanda.ostermann@ufrgs.

Fernanda Ostermann Institute of Physics, Department of Physics, Federal University of Rio Grande do Sul, Brazil. fernanda.ostermann@ufrgs. Teaching the Postulates of Quantum Mechanics in High School: A Conceptual Approach Based on the Use of a Virtual Mach-Zehnder Interferometer Alexsandro Pereira de Pereira Post-Graduate Program in Physics

More information

Quantum Mechanics and Atomic Structure 1

Quantum Mechanics and Atomic Structure 1 Quantum Mechanics and Atomic Structure 1 INTRODUCTION The word atom is derived from the Greek word, atomos, which means uncut or indivisible. It was Dalton (1808) who established that elementary constituents

More information

Complexity theory and. the quantum interpretation

Complexity theory and. the quantum interpretation The Euromedian Management Approach Complexity theory and the quantum interpretation Walter Baets, PhD, HDR Associate Dean for Research MBA Director Professor Complexity, Knowledge and Innovation Euromed

More information

Theory of electrons and positrons

Theory of electrons and positrons P AUL A. M. DIRAC Theory of electrons and positrons Nobel Lecture, December 12, 1933 Matter has been found by experimental physicists to be made up of small particles of various kinds, the particles of

More information

Infrared Spectroscopy: Theory

Infrared Spectroscopy: Theory u Chapter 15 Infrared Spectroscopy: Theory An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer. IR is used

More information

Homework #10 (749508)

Homework #10 (749508) Homework #10 (749508) Current Score: 0 out of 100 Description Homework on quantum physics and radioactivity Instructions Answer all the questions as best you can. 1. Hewitt10 32.E.001. [481697] 0/5 points

More information

Schrödinger Equation; Copenhagen Interpretation (1926) Pauli Exclusion Principle (1925) Bose-Einstein Condensation Predicted (1924)

Schrödinger Equation; Copenhagen Interpretation (1926) Pauli Exclusion Principle (1925) Bose-Einstein Condensation Predicted (1924) 100 Years of QUANTUM MYSTERIES by Max Tegmark and John Archibald Wheeler Schrödinger Equation; Copenhagen Interpretation (1926) Quantum Electrodynamics and Renormalization (1948) Bohr s Theory of Atomic

More information

Three Pictures of Quantum Mechanics. Thomas R. Shafer April 17, 2009

Three Pictures of Quantum Mechanics. Thomas R. Shafer April 17, 2009 Three Pictures of Quantum Mechanics Thomas R. Shafer April 17, 2009 Outline of the Talk Brief review of (or introduction to) quantum mechanics. 3 different viewpoints on calculation. Schrödinger, Heisenberg,

More information

Electromagnetic Radiation

Electromagnetic Radiation Chapter 7 A Quantum Model of Atoms Chapter Objectives: Understand the relationships between wavelength, frequency, and energy of light. Understand the origin of atomic line spectra. Learn how the quantum

More information

FLAP P11.2 The quantum harmonic oscillator

FLAP P11.2 The quantum harmonic oscillator F L E X I B L E L E A R N I N G A P P R O A C H T O P H Y S I C S Module P. Opening items. Module introduction. Fast track questions.3 Ready to study? The harmonic oscillator. Classical description of

More information

Time and Causation in Gödel s Universe.

Time and Causation in Gödel s Universe. Time and Causation in Gödel s Universe. John L. Bell In 1949 the great logician Kurt Gödel constructed the first mathematical models of the universe in which travel into the past is, in theory at least,

More information

Descriptions of Scientific Revolutions: Rorty s Failure at Redescribing Scientific Progress

Descriptions of Scientific Revolutions: Rorty s Failure at Redescribing Scientific Progress Stance Volume 5 2012 Descriptions of Scientific Revolutions: Rorty s Failure at Redescribing Scientific Progress Kyle Cavagnini Abstract: The twentieth century saw extended development in the philosophy

More information

VARIANCE REDUCTION TECHNIQUES FOR IMPLICIT MONTE CARLO SIMULATIONS

VARIANCE REDUCTION TECHNIQUES FOR IMPLICIT MONTE CARLO SIMULATIONS VARIANCE REDUCTION TECHNIQUES FOR IMPLICIT MONTE CARLO SIMULATIONS An Undergraduate Research Scholars Thesis by JACOB TAYLOR LANDMAN Submitted to Honors and Undergraduate Research Texas A&M University

More information

Bohr's Theory of the Hydrogen Atom

Bohr's Theory of the Hydrogen Atom OpenStax-CNX module: m42596 1 Bohr's Theory of the Hydrogen Atom OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract Describe

More information

NMR Nuclear Magnetic Resonance

NMR Nuclear Magnetic Resonance NMR Nuclear Magnetic Resonance Nuclear magnetic resonance (NMR) is an effect whereby magnetic nuclei in a magnetic field absorb and re-emit electromagnetic (EM) energy. This energy is at a specific resonance

More information

TEACHER BACKGROUND INFORMATION THERMAL ENERGY

TEACHER BACKGROUND INFORMATION THERMAL ENERGY TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to

More information

Correlation. What Is Correlation? Perfect Correlation. Perfect Correlation. Greg C Elvers

Correlation. What Is Correlation? Perfect Correlation. Perfect Correlation. Greg C Elvers Correlation Greg C Elvers What Is Correlation? Correlation is a descriptive statistic that tells you if two variables are related to each other E.g. Is your related to how much you study? When two variables

More information

Particle control in a quantum world

Particle control in a quantum world THE NOBEL PRIZE IN PHYSICS 2012 INFORMATION FOR THE PUBLIC Particle control in a quantum world Serge Haroche and David J. Wineland have independently invented and developed ground-breaking methods for

More information

Remodelling the Big Bang

Remodelling the Big Bang Remodelling the Big Bang Dewey B. Larson Unquestionably, the most significant development that has taken place in cosmology in recent years is the replacement of the original Big Bang theory by a totally

More information

1 Now, Why do we want to learn Quantum Mechanics

1 Now, Why do we want to learn Quantum Mechanics 1 Now, Why do we want to learn Quantum Mechanics Quantum mechanics is a mathematical theory that can be used to predict chemical properties. But this fact has been known since the 1920s, so what s new?

More information

WHERE DO OUR MORALS COME FROM? Moral relativism and self-interest theory

WHERE DO OUR MORALS COME FROM? Moral relativism and self-interest theory WHERE DO OUR MORALS COME FROM? Moral relativism and self-interest theory In pairs, discuss the following questions: Are there any other living creatures that live moral lives? Discuss. Where does morality

More information

CRITICAL REMARKS ON K.V. LAURIKAINEN S NATURAL PHILOSOPHY. Ilkka Niiniluoto University of Helsinki Finnish Society for Natural Philosophy, 11.11.

CRITICAL REMARKS ON K.V. LAURIKAINEN S NATURAL PHILOSOPHY. Ilkka Niiniluoto University of Helsinki Finnish Society for Natural Philosophy, 11.11. CRITICAL REMARKS ON K.V. LAURIKAINEN S NATURAL PHILOSOPHY Ilkka Niiniluoto University of Helsinki Finnish Society for Natural Philosophy, 11.11.2013 LAURIKAINEN S THREE MISSIONS K.V. LAURIKAINEN (1916-97)

More information

Chemistry 102 Summary June 24 th. Properties of Light

Chemistry 102 Summary June 24 th. Properties of Light Chemistry 102 Summary June 24 th Properties of Light - Energy travels through space in the form of electromagnetic radiation (EMR). - Examples of types of EMR: radio waves, x-rays, microwaves, visible

More information

QUANTUM COMPUTATION AND MULTI-PARTICLE ENTANGLEMENT WITH TRAPPED ATOMS AND IONS. Ph.D. Thesis Anders Søndberg Sørensen

QUANTUM COMPUTATION AND MULTI-PARTICLE ENTANGLEMENT WITH TRAPPED ATOMS AND IONS. Ph.D. Thesis Anders Søndberg Sørensen QUANTUM COMPUTATION AND MULTI-PARTICLE ENTANGLEMENT WITH TRAPPED ATOMS AND IONS Ph.D. Thesis Anders Søndberg Sørensen Institute of Physics and Astronomy University of Aarhus July 2001 ii Preface This thesis

More information

The phrases above are divided by their function. What is each section of language used to do?

The phrases above are divided by their function. What is each section of language used to do? Functional language for IELTS Speaking correction and brainstorming Work in pairs to correct all the phrases below. I have ever I have personally experience of this. My most favourite is I prefer than

More information

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered

More information

CHEMSITRY NOTES Chapter 13. Electrons in Atoms

CHEMSITRY NOTES Chapter 13. Electrons in Atoms CHEMSITRY NOTES Chapter 13 Electrons in Atoms Goals : To gain an understanding of : 1. Atoms and their structure. 2. The development of the atomic theory. 3. The quantum mechanical model of the atom. 4.

More information

A simple tscheme guide to securing electronic transactions

A simple tscheme guide to securing electronic transactions A simple tscheme guide to securing electronic transactions 1 A simple tscheme guide to securing electronic transactions Electronic Transactions An electronic transaction is best thought of as a type of

More information

Quantum computing in practice

Quantum computing in practice Quantum computing in practice & applications to cryptography Renaud Lifchitz OPPIDA NoSuchCon, November 19-21, 2014 Renaud Lifchitz NoSuchCon, November 19-21, 2014 1 / 68 Speaker s bio French senior security

More information

Introduction to Geiger Counters

Introduction to Geiger Counters Introduction to Geiger Counters A Geiger counter (Geiger-Muller tube) is a device used for the detection and measurement of all types of radiation: alpha, beta and gamma radiation. Basically it consists

More information

18.2 Comparing Atoms. Atomic number. Chapter 18

18.2 Comparing Atoms. Atomic number. Chapter 18 As you know, some substances are made up of only one kind of atom and these substances are called elements. You already know something about a number of elements you ve heard of hydrogen, helium, silver,

More information

QUANTUM LIGHT :! A BRIEF INTRODUCTION!

QUANTUM LIGHT :! A BRIEF INTRODUCTION! Quantum Physics QUANTUM LIGHT : A BRIEF INTRODUCTION Philippe Grangier Laboratoire Charles Fabry de l'institut d'optique, UMR 85 du CNRS, 927 Palaiseau, France Quantum Physics * Alain Aspect, in «Demain

More information

THE MEANING OF THE FINE STRUCTURE CONSTANT

THE MEANING OF THE FINE STRUCTURE CONSTANT THE MEANING OF THE FINE STRUCTURE CONSTANT Robert L. Oldershaw Amherst College Amherst, MA 01002 USA rloldershaw@amherst.edu Abstract: A possible explanation is offered for the longstanding mystery surrounding

More information

Is Quantum Mechanics Exact?

Is Quantum Mechanics Exact? Is Quantum Mechanics Exact? Anton Kapustin Simons Center for Geometry and Physics Stony Brook University This year Quantum Theory will celebrate its 90th birthday. Werner Heisenberg s paper Quantum theoretic

More information

Multipartite entanglement and sudden death in Quantum Optics: continuous variables domain

Multipartite entanglement and sudden death in Quantum Optics: continuous variables domain Multipartite entanglement and sudden death in Quantum Optics: continuous variables domain Inst. de Física Marcelo Martinelli Lab. de Manipulação Coerente de Átomos e Luz Laboratório de Manipulação Coerente

More information

Flame Tests & Electron Configuration

Flame Tests & Electron Configuration Flame Tests & Electron Configuration INTRODUCTION Many elements produce colors in the flame when heated. The origin of this phenomenon lies in the arrangement, or configuration of the electrons in the

More information

1 Quantifying gravity

1 Quantifying gravity 1 Quantifying gravity We have introduced a network of point masses to satisfy a vanishing energy condition for each point. The next step is to replace the pure point by a fundamental neutral bound system,

More information

13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2

13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2 Assignment 06 A 1- What is the energy in joules of an electron undergoing a transition from n = 3 to n = 5 in a Bohr hydrogen atom? a) -3.48 x 10-17 J b) 2.18 x 10-19 J c) 1.55 x 10-19 J d) -2.56 x 10-19

More information

Quantum Computing and Cryptography Their impact on cryptographic practice

Quantum Computing and Cryptography Their impact on cryptographic practice Quantum Computing and Cryptography Their impact on cryptographic practice Tim Moses Director, Advanced Security Technology Entrust, Inc. January 2009 2009 Entrust, Inc. All rights reserved. Entrust is

More information

PHYSICS FOUNDATIONS SOCIETY THE DYNAMIC UNIVERSE TOWARD A UNIFIED PICTURE OF PHYSICAL REALITY TUOMO SUNTOLA

PHYSICS FOUNDATIONS SOCIETY THE DYNAMIC UNIVERSE TOWARD A UNIFIED PICTURE OF PHYSICAL REALITY TUOMO SUNTOLA PHYSICS FOUNDATIONS SOCIETY THE DYNAMIC UNIVERSE TOWARD A UNIFIED PICTURE OF PHYSICAL REALITY TUOMO SUNTOLA Published by PHYSICS FOUNDATIONS SOCIETY Espoo, Finland www.physicsfoundations.org Printed by

More information

Lesson 33: Photoelectric Effect

Lesson 33: Photoelectric Effect Lesson 33: Photoelectric Effect Hertz Experiment Heinrich Hertz was doing experiments in 1887 to test some of Maxwell's theories of EMR. One of the experiments involved using a coil of wire as a receiver

More information