A Brief History of Mathematics

Size: px
Start display at page:

Download "A Brief History of Mathematics"

Transcription

1 A Brief History of Mathematics I. Ancient Period Prehistoric people probably first counted with their fingers. They also had various methods for recording such quantities as the number of animals in a herd or the days since the full moon. To represent such amounts, they used a corresponding number of pebbles, knots in a cord, or marks on wood, bone, or stone. They also learned to use regular shapes when they molded pottery or carved arrowheads. As civilizations developed, the need for numeration systems, measurement techniques and arithmetic procedures also arose. By about 3000 B.C., mathematicians of ancient Egypt used an additive base ten system that was without place values. The Egyptians developed geometric formulas for finding the area and volume of simple figures. Their mathematics had many practical applications, ranging from surveying fields after the annual floods to making the intricate calculations necessary to build the pyramids. By 2100 B.C., the people of ancient Babylonia had developed a sexagesimal numeration system; a system based on groups of sixty. The system had important uses in astronomy and also in commerce, because sixty can be divided easily and works well with a calendar. It was also notable for the use of place value to represent numbers of any size. The system survives today in the way we measure time and angles. The Babylonians also went beyond the Egyptians in algebra and geometry. They found solutions to quadratic equations and developed techniques for calculating square roots. Chinese mathematics originally developed to aid record keeping, land surveying, and building. By the 100's B.C., the Chinese had devised a decimal system of numbers that included fractions, zero, and negative numbers. They solved arithmetic problems with the aid of special sticks called counting rods. The Chinese also used these devices to solve equations even groups of simultaneous equations in several unknowns. Perhaps the best-known early Chinese mathematical work is the Chiu Chang Suan Shu (Nine Chapters on the Mathematical Art, a handbook of practical problems that was compiled in the first two centuries B.C. In 263 A.D., the Chinese mathematician Liu Hui wrote a commentary on the book. Among Liu Hui's greatest achievements was his analysis of a mathematical statement called the Gou-Gu theorem. The theorem, known as the Pythagorean theorem in the West, describes a special relationship that exists between the sides of a right triangle. Liu Hui also calculated the value of pi more accurately than ever before. He did so by using a figure with 3,072 equal sides to approximate a circle. II. Greek Period (600 B.C. to 400 A.D.) Ancient Greek scholars introduced the concepts of logical deduction and proof to create a systematic theory of mathematics. According to tradition, one of the first to provide mathematical proofs based on deduction was the philosopher Thales, who worked in geometry about 600 B.C. He was a Greek merchant whose travels brought him in contact with the mathematics of Babylonia and Egypt. Until this time, geometry had consisted strictly of measuring techniques (in fact the word geometry means earth measurement ). However, Thales made abstract, general statements, such as when two lines intersect, they create pairs of equal angles, and attempted to justify those statements logically. The Greek philosopher Pythagoras, who lived about 550 B.C., explored the nature of numbers, believing that everything could be understood in terms of whole numbers or their ratios. His followers explored number patterns and discovered irrational numbers. They had a significant influence on Greek philosophy and the promotion of mathematics for its own sake. Around 300 B.C, Euclid, one of the foremost Greek mathematicians, organized the geometrical ideas of the previous three hundred years into a systematic, logical structure in his work The Elements of Geometry. In this book an entire system of geometry is constructed by means of abstract definitions,

2 accepted facts (postulates) and logical deductions. It had an enormous impact on mathematical thought and became the model for the development of a mathematical system. During the 200's B.C., the Greek mathematician and physicist Archimedes used the method of exhaustion to find many formulas for the volume and surface areas of solids and to calculate a highly accurate value for pi (the ratio of a circle's circumference to its diameter). He was also famous for creating many engineering devices, such as Archimedes screw and discovering some of the fundamental laws of physics. Working at about the same time, the Greek mathematician Appolonius of Perga, known as the Great Geometer wrote an eight volume work in which he investigated the curves obtained by taking cross sections of a double cone. These curves, the circle, ellipse, parabola and hyperbola, are called conic sections. One of the last great Greek scholars, Ptolemy, applied geometry and trigonometry to astronomy about A.D In a book, known as the Almagest, he presented a scheme for the motions of the heavenly bodies. He claimed that the earth was stationary and that it was in the center of a larger sphere around which the sun, stars, moon and planets revolved at uniform rates of speed. This model became the accepted theory of the solar system throughout the middle ages, both in the European and the Islamic worlds. Pythagoras of Crotona Thales of Miletus Apollonius of Perga Archimedes of Syracuse Euclid and Ptolemy of Alexandria Eratosthenes of Cyrene The World of Greek Mathematics

3 III. Hindu-Arabian Period (200 B.C. to 1200 A.D. ) Mathematics and the sciences entered a long period of stagnation with the decline of the Greek and Roman civilizations. This inactivity was uninterrupted until after the Islamic religion and the resulting Islamic culture were founded by the prophet Muhammad in A.D Within a century, the Islamic empire stretched from Spain, Sicily, and Northern Africa to India. Islamic culture encouraged the development of the sciences as well as the arts. Arab scholars translated many Greek and Hindu works in mathematics and the sciences, including Apollonius's work on conic sections. It is likely that much of the Greeks' work in science and mathematics would have been lost if not for these Arab scholars. The Arab mathematician Mohammed ibn Musa al-khowarizmi wrote two important books around A.D. 830, each of which was translated into Latin in the twelfth century. Much of the mathematical knowledge of medieval Europe was derived from the Latin translations of al-khowarizmi's two works. Al-Khowarizmi's first book, on arithmetic, was titled Algorithmi de numero Indorum (or al- Khowarizmi on Indian Numbers). The Latin translation of this book introduced to Europe the Hindu number system and the simpler calculation techniques (such as the procedures for multiplication and long division) that system allows. This system is now called the Hindu-Arabic number system. The book's title is the origin of the word algorithm, which means a procedure for solving a certain type of problem, such as the procedure for long division. Al-Khowarizmi's second book, Al-Jabr w'al Muqabatah, discussed linear and quadratic equations. In fact, the word algebra comes from the title of this second book. This title, which translates literally as Restoration and Opposition, refers to the solving of an equation by adding the same thing to each side of the equation (which "restores the balance" of the equation) and simplifying the result by canceling opposite terms (which is the title's "opposition"). For example (using modern symbolic algebra): 6x = 5x+ 11 6x + -5x = 5x x "al-jabr" or restoration of balance x = 11 al-muqabalah" or opposition The quote below, from a translation of Al-Jabr w'al Muqabalah, demonstrates several important features of al-khowarizmi 's algebra. First, it is entirely verbal, as was the algebra of Apollonius there is no symbolic algebra at all. Second, this algebra differs from that of Apollonius in that it is not based on proportions. Third, the terminology betrays the algebra's connections with geometry. When al- Khowarizmi refers to "a square," he is actually referring to the area of a square; when he refers to "a root," he is actually referring to the length of one side of the square (hence the modern phrase "square root"). Modern symbolic algebra uses the notations x 2 and x in place of "a square" and "a root." The quote from Al-Jabr w'al Muqabalah is on the left; a modern version of

4 the same instructions is on the right. You might recognize this modern version from intermediate algebra, where it is called "completing the square." The following is an example of squares and roots equal to numbers: a square and 10 roots are equal to 39 units. The question therefore in this type of equation is about as follows: what is the square which combined with ten of its roots will give a sum total of 39? The manner of solving this type of equation is to take one half of the roots just mentioned. Now the roots in the problem before us are 10. Therefore take 5, which multiplied by itself gives 25, an amount which you add to 39, giving 64. Having taken then the square root of this which is 8, subtract from it the half of the roots, 5, leaving 3. The number three therefore represents one root of this square, which itself, of course, is 9. Nine therefore gives that square. x x = 39 Solve for x 2 ½ 10 = = 25 x x + 25 = x x + 25 = 64 (x + 5) 2 = 64 x + 5 = 8 x = 8-3 x = 3 x 2 = 9 Al-Khowarizmi, like Apollonius, understood numbers to be lengths of line segments, areas, and volumes. He did not recognize negative numbers, because neither a line nor an area nor a volume can be represented by a negative number. Arab astronomers of the 900's made major contributions to trigonometry. During the 1000s, an Arab physicist known as Alhazen applied geometry to optics. The Persian poet and astronomer Omar Khayyam wrote an important book on algebra about In the 1200s, Nasiral-Din al-tusi, a Persian mathematician, created ingenious mathematical models for use in astronomy. IV. Period of Transmission (1000 AD 1500 AD) Contest between abacus and newer methods The Moors (Moslems from North Africa) entered Spain in A.D. 711 and built universities in Toledo, Cordoba, and Seville. This culture was the only major exception to the mathematical and scientific stagnation in Europe that started with the end of the Roman Empire and continued through the Middle Ages. By the twelfth century, many Arabic mathematical and scientific works (including al-khowarizmi's two books), as well as Greek and Hindu works, were translated into Latin, often by Jewish scholars in Spain. Greek works of literature and philosophy were also translated. In 1202, Leonardo of Pisa (Fibonacci), an Italian mathematician, published a book on algebra, the Arab number system, and pen and paper arithmetic techniques that helped promote this system. Hindu-Arabic numerals gradually replaced Roman numerals and the use of an abacus in Europe. During the 1400s and 1500's, European explorers sought new overseas trade routes, stimulating the application of mathematics to navigation and commerce. As trade expanded, Arab and Greek knowledge was transmitted throughout Europe. In 1453 the Turks conquered Constantinople, the last remaining center of Greek culture. Many Eastern scholars moved from Constantinople to Europe, bringing Greek knowledge and manuscripts with them. Around the same time, Gutenberg invented the movable-type printing press, which greatly increased the availability of scientific information in the form of both new works and translations of ancient works. Translations of Euclid's work, Ptolemy s Almagest and some of Apollonius's work on geometry were printed, as was the Franciscan monk Luca Pacioli's Summa de arithmetica, geometrica, proportioni et proportionalita, which was a summary of the arithmetic, geometry, algebra, and double-entry bookkeeping known at that time.

5 V. Early Modern Period (1500 AD 1800 AD) Development of Algebra and Analytic Geometry For the Arab mathematicians, algebra was a set of specific techniques that could be used to solve specific equations. There was little generalization, and there was no way to write an equation to represent an entire class of equations, as we would now write x 2 + bx + c = 0 to represent all quadratic equations. There were only ways to write specific equations such as 3x 2 + 5x +7 = 0. Thus, it was impossible to write a formula like the quadratic formula [if ax 2 + bx + c = 0, then x = (-b ± )/2a]. It was only possible to give an example, such as al-khowarizmi's example of completing the square. In the late sixteenth century, algebra matured into a much more powerful tool. It became more symbolic. Exponents were introduced; what had been written as "cubus," "A cubus" or "AAA" could now be written as "A 3." The symbols +. -, and = were also introduced. Francois Viete, a French lawyer who studied mathematics as a hobby, began using vowels to represent variables and consonants to represent constants. This allowed mathematicians to represent the entire class of quadratic equations by writing "A 2 + BA = C" (where the vowel A is the variable and the consonants B and C are the constants) and made it possible to discuss general techniques that could be used to solve classes of equations. All these notational changes were slow to gain acceptance. No one mathematician adopted all the new notations. Viete's algebra was quite verbal. He did not even adopt the symbol + until late in his life. In 1637, the famous French philosopher and mathematician Rene Descartes published La Geometrie, a work that explored the relationship between algebra and geometry in a way unforeseen by Apollonius and al-khowarizmi. Descartes showed how to interpret algebraic operations and solve quadratic equations geometrically. He also showed that algebra could be applied to geometric problems. This approach is now called analytic geometry. To the readers of Descartes it was an amazing method that combined algebra and geometry in new and unique ways. However, it did not especially resemble our modern analytic geometry, which consists of ordered pairs, x and y axes, and a correspondence between algebraic equations and their graphs. Descartes used an x axis, but he did not have a y axis. Although he knew that an equation in two unknowns determines a curve, he had very little interest in sketching curves: he never plotted a new curve directly from its equation. In 1629, eight years before Descartes's La Geometrie, the French lawyer and amateur mathematician Pierre de Fermat attempted to recreate one of the lost works of Apollonius on conic sections using references to that work made by other Greek mathematicians. Fermat applied Viete's algebra to Apollonius's work and created an analytic geometry much more similar to the modern one than was Descartes's. Fermat emphasized the sketching of graphs of equations. He showed a parallelism between certain types of equations and certain types of graphs. For example, he showed that the graph of "d planum p. a planum aequetur b in e (d 2 + a 2 = be) is always a parabola. Modern analytic geometry is thus considered to be an invention of both Descartes and Fermat. Descartes's algebra was more modern and sophisticated than Fermat s or any of his contemporaries. Fermat, on the other hand, developed the important relation between geometric shapes and a coordinate graph. Together they are credited with developing analytic geometry to the point where calculus could be invented.

6 Problems: 1. What type of mathematics are the Greeks known for? 2. What are the conic sections? 3. Which Greek mathematician is known for his work on conic sections? 4. What influential book did Ptolemy write? Why is it important? 5. How did Thales influence Greek mathematics? 6. The mathematics and science of the Greeks could well have been lost if it were not for a certain culture. Which culture saved this Greek knowledge, expanded it, and reintroduced it to Europe? 7. What were the subjects of al-khowarizmi's two books? 8. Why is our modern number system called the Hindu-Arabic number system? What is important about this system? 9. Al-Khowarizmi described his method of solving quadratic equations with an example; he did not generalize his method into a formula. What characteristic of the mathematics of his time limited him to this form of a description? What change in mathematics lifted this limitation? To whom is that change due? Approximately how many years after al- Khowarizmi did this change occur? 10. What is analytic geometry? 11. What did Descartes contribute to analytic geometry? 12. What did Fermat contribute to analytic geometry? 13. What did Viete contribute to algebra?

MTH124: Honors Algebra I

MTH124: Honors Algebra I MTH124: Honors Algebra I This course prepares students for more advanced courses while they develop algebraic fluency, learn the skills needed to solve equations, and perform manipulations with numbers,

More information

Algebra 1 Course Title

Algebra 1 Course Title Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

More information

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers. Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

More information

The program also provides supplemental modules on topics in geometry and probability and statistics.

The program also provides supplemental modules on topics in geometry and probability and statistics. Algebra 1 Course Overview Students develop algebraic fluency by learning the skills needed to solve equations and perform important manipulations with numbers, variables, equations, and inequalities. Students

More information

Year 12 Pure Mathematics ALGEBRA 1. Edexcel Examination Board (UK)

Year 12 Pure Mathematics ALGEBRA 1. Edexcel Examination Board (UK) Year 1 Pure Mathematics ALGEBRA 1 Edexcel Examination Board (UK) Book used with this handout is Heinemann Modular Mathematics for Edexcel AS and A-Level, Core Mathematics 1 (004 edition). Snezana Lawrence

More information

MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab

MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab MATH 0110 is established to accommodate students desiring non-course based remediation in developmental mathematics. This structure will

More information

Higher Education Math Placement

Higher Education Math Placement Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

More information

Math Placement Test Study Guide. 2. The test consists entirely of multiple choice questions, each with five choices.

Math Placement Test Study Guide. 2. The test consists entirely of multiple choice questions, each with five choices. Math Placement Test Study Guide General Characteristics of the Test 1. All items are to be completed by all students. The items are roughly ordered from elementary to advanced. The expectation is that

More information

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,

More information

1.2 Chord Tables of Hipparchus and Ptolemy (Copyright: Bryan Dorner all rights reserved)

1.2 Chord Tables of Hipparchus and Ptolemy (Copyright: Bryan Dorner all rights reserved) 1.2 Chord Tables of Hipparchus and Ptolemy (Copyright: Bryan Dorner all rights reserved) Hipparchus: The birth of trigonometry occurred in the chord tables of Hipparchus (c 190-120 BCE) who was born shortly

More information

4.2 Euclid s Classification of Pythagorean Triples

4.2 Euclid s Classification of Pythagorean Triples 178 4. Number Theory: Fermat s Last Theorem Exercise 4.7: A primitive Pythagorean triple is one in which any two of the three numbers are relatively prime. Show that every multiple of a Pythagorean triple

More information

with functions, expressions and equations which follow in units 3 and 4.

with functions, expressions and equations which follow in units 3 and 4. Grade 8 Overview View unit yearlong overview here The unit design was created in line with the areas of focus for grade 8 Mathematics as identified by the Common Core State Standards and the PARCC Model

More information

GRADES 7, 8, AND 9 BIG IDEAS

GRADES 7, 8, AND 9 BIG IDEAS Table 1: Strand A: BIG IDEAS: MATH: NUMBER Introduce perfect squares, square roots, and all applications Introduce rational numbers (positive and negative) Introduce the meaning of negative exponents for

More information

Algebra and Geometry Review (61 topics, no due date)

Algebra and Geometry Review (61 topics, no due date) Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

More information

Number Sense and Operations

Number Sense and Operations Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents

More information

What are the place values to the left of the decimal point and their associated powers of ten?

What are the place values to the left of the decimal point and their associated powers of ten? The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

More information

INTRODUCTION TO EUCLID S GEOMETRY

INTRODUCTION TO EUCLID S GEOMETRY 78 MATHEMATICS INTRODUCTION TO EUCLID S GEOMETRY CHAPTER 5 5.1 Introduction The word geometry comes form the Greek words geo, meaning the earth, and metrein, meaning to measure. Geometry appears to have

More information

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

More information

Expression. Variable Equation Polynomial Monomial Add. Area. Volume Surface Space Length Width. Probability. Chance Random Likely Possibility Odds

Expression. Variable Equation Polynomial Monomial Add. Area. Volume Surface Space Length Width. Probability. Chance Random Likely Possibility Odds Isosceles Triangle Congruent Leg Side Expression Equation Polynomial Monomial Radical Square Root Check Times Itself Function Relation One Domain Range Area Volume Surface Space Length Width Quantitative

More information

Common Core Unit Summary Grades 6 to 8

Common Core Unit Summary Grades 6 to 8 Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations

More information

Prentice Hall Connected Mathematics 2, 7th Grade Units 2009

Prentice Hall Connected Mathematics 2, 7th Grade Units 2009 Prentice Hall Connected Mathematics 2, 7th Grade Units 2009 Grade 7 C O R R E L A T E D T O from March 2009 Grade 7 Problem Solving Build new mathematical knowledge through problem solving. Solve problems

More information

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

More information

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

More information

WORK SCHEDULE: MATHEMATICS 2007

WORK SCHEDULE: MATHEMATICS 2007 , K WORK SCHEDULE: MATHEMATICS 00 GRADE MODULE TERM... LO NUMBERS, OPERATIONS AND RELATIONSHIPS able to recognise, represent numbers and their relationships, and to count, estimate, calculate and check

More information

Squaring the Circle. A Case Study in the History of Mathematics Part II

Squaring the Circle. A Case Study in the History of Mathematics Part II Squaring the Circle A Case Study in the History of Mathematics Part II π It is lost in the mists of pre-history who first realized that the ratio of the circumference of a circle to its diameter is a constant.

More information

Prentice Hall: Middle School Math, Course 1 2002 Correlated to: New York Mathematics Learning Standards (Intermediate)

Prentice Hall: Middle School Math, Course 1 2002 Correlated to: New York Mathematics Learning Standards (Intermediate) New York Mathematics Learning Standards (Intermediate) Mathematical Reasoning Key Idea: Students use MATHEMATICAL REASONING to analyze mathematical situations, make conjectures, gather evidence, and construct

More information

Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

More information

McDougal Littell California:

McDougal Littell California: McDougal Littell California: Pre-Algebra Algebra 1 correlated to the California Math Content s Grades 7 8 McDougal Littell California Pre-Algebra Components: Pupil Edition (PE), Teacher s Edition (TE),

More information

of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433

of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433 Absolute Value and arithmetic, 730-733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property

More information

CAMI Education linked to CAPS: Mathematics

CAMI Education linked to CAPS: Mathematics - 1 - TOPIC 1.1 Whole numbers _CAPS curriculum TERM 1 CONTENT Mental calculations Revise: Multiplication of whole numbers to at least 12 12 Ordering and comparing whole numbers Revise prime numbers to

More information

Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary

Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:

More information

Chapter 3 The Science of Astronomy

Chapter 3 The Science of Astronomy Chapter 3 The Science of Astronomy Days of the week were named for Sun, Moon, and visible planets. What did ancient civilizations achieve in astronomy? Daily timekeeping Tracking the seasons and calendar

More information

Pennsylvania System of School Assessment

Pennsylvania System of School Assessment Pennsylvania System of School Assessment The Assessment Anchors, as defined by the Eligible Content, are organized into cohesive blueprints, each structured with a common labeling system that can be read

More information

Objectives After completing this section, you should be able to:

Objectives After completing this section, you should be able to: Chapter 5 Section 1 Lesson Angle Measure Objectives After completing this section, you should be able to: Use the most common conventions to position and measure angles on the plane. Demonstrate an understanding

More information

Answer Key for California State Standards: Algebra I

Answer Key for California State Standards: Algebra I Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

More information

Big Ideas in Mathematics

Big Ideas in Mathematics Big Ideas in Mathematics which are important to all mathematics learning. (Adapted from the NCTM Curriculum Focal Points, 2006) The Mathematics Big Ideas are organized using the PA Mathematics Standards

More information

Polynomial Operations and Factoring

Polynomial Operations and Factoring Algebra 1, Quarter 4, Unit 4.1 Polynomial Operations and Factoring Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Identify terms, coefficients, and degree of polynomials.

More information

Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper

Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic

More information

Functional Math II. Information CourseTitle. Types of Instruction

Functional Math II. Information CourseTitle. Types of Instruction Functional Math II Course Outcome Summary Riverdale School District Information CourseTitle Functional Math II Credits 0 Contact Hours 135 Instructional Area Middle School Instructional Level 8th Grade

More information

North Carolina Math 2

North Carolina Math 2 Standards for Mathematical Practice 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively 3. Construct viable arguments and critique the reasoning of others 4.

More information

CURRICULUM FOR THE COMMON CORE SUBJECT OF MATHEMATICS

CURRICULUM FOR THE COMMON CORE SUBJECT OF MATHEMATICS CURRICULUM FOR THE COMMON CORE SUBJECT OF Dette er ei omsetjing av den fastsette læreplanteksten. Læreplanen er fastsett på Nynorsk Established as a Regulation by the Ministry of Education and Research

More information

Standards for Mathematical Practice: Commentary and Elaborations for 6 8

Standards for Mathematical Practice: Commentary and Elaborations for 6 8 Standards for Mathematical Practice: Commentary and Elaborations for 6 8 c Illustrative Mathematics 6 May 2014 Suggested citation: Illustrative Mathematics. (2014, May 6). Standards for Mathematical Practice:

More information

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1 Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

More information

Polynomials and Factoring

Polynomials and Factoring Lesson 2 Polynomials and Factoring A polynomial function is a power function or the sum of two or more power functions, each of which has a nonnegative integer power. Because polynomial functions are built

More information

Unit 1: Integers and Fractions

Unit 1: Integers and Fractions Unit 1: Integers and Fractions No Calculators!!! Order Pages (All in CC7 Vol. 1) 3-1 Integers & Absolute Value 191-194, 203-206, 195-198, 207-210 3-2 Add Integers 3-3 Subtract Integers 215-222 3-4 Multiply

More information

Senior Phase Grade 8 Today Planning Pack MATHEMATICS

Senior Phase Grade 8 Today Planning Pack MATHEMATICS M780636110236 Senior Phase Grade 8 Today Planning Pack MATHEMATICS Contents: Work Schedule: Page Grade 8 2 Lesson Plans: Grade 8 4 Rubrics: Rubric 1: Recognising, classifying and representing numbers...22

More information

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions. Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

More information

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

More information

Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard

Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express

More information

Tennessee Mathematics Standards 2009-2010 Implementation. Grade Six Mathematics. Standard 1 Mathematical Processes

Tennessee Mathematics Standards 2009-2010 Implementation. Grade Six Mathematics. Standard 1 Mathematical Processes Tennessee Mathematics Standards 2009-2010 Implementation Grade Six Mathematics Standard 1 Mathematical Processes GLE 0606.1.1 Use mathematical language, symbols, and definitions while developing mathematical

More information

Discovery of Pi: Day 1

Discovery of Pi: Day 1 Discovery of Pi: Day 1 75 min Minds On Action! Consolidate Debrief Reflection Math Learning Goals Make sense of the relationships between radius, diameter, and circumference of circles. Use of variety

More information

Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Copyrighted Material. Chapter 1 DEGREE OF A CURVE Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two

More information

LAKE ELSINORE UNIFIED SCHOOL DISTRICT

LAKE ELSINORE UNIFIED SCHOOL DISTRICT LAKE ELSINORE UNIFIED SCHOOL DISTRICT Title: PLATO Algebra 1-Semester 2 Grade Level: 10-12 Department: Mathematics Credit: 5 Prerequisite: Letter grade of F and/or N/C in Algebra 1, Semester 2 Course Description:

More information

Year 9 set 1 Mathematics notes, to accompany the 9H book.

Year 9 set 1 Mathematics notes, to accompany the 9H book. Part 1: Year 9 set 1 Mathematics notes, to accompany the 9H book. equations 1. (p.1), 1.6 (p. 44), 4.6 (p.196) sequences 3. (p.115) Pupils use the Elmwood Press Essential Maths book by David Raymer (9H

More information

In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.

In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target

More information

How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.

How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left. The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics

More information

Prentice Hall Mathematics: Course 1 2008 Correlated to: Arizona Academic Standards for Mathematics (Grades 6)

Prentice Hall Mathematics: Course 1 2008 Correlated to: Arizona Academic Standards for Mathematics (Grades 6) PO 1. Express fractions as ratios, comparing two whole numbers (e.g., ¾ is equivalent to 3:4 and 3 to 4). Strand 1: Number Sense and Operations Every student should understand and use all concepts and

More information

Georgia Standards of Excellence Curriculum Map. Mathematics. GSE 8 th Grade

Georgia Standards of Excellence Curriculum Map. Mathematics. GSE 8 th Grade Georgia Standards of Excellence Curriculum Map Mathematics GSE 8 th Grade These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement. GSE Eighth Grade

More information

MODERN APPLICATIONS OF PYTHAGORAS S THEOREM

MODERN APPLICATIONS OF PYTHAGORAS S THEOREM UNIT SIX MODERN APPLICATIONS OF PYTHAGORAS S THEOREM Coordinate Systems 124 Distance Formula 127 Midpoint Formula 131 SUMMARY 134 Exercises 135 UNIT SIX: 124 COORDINATE GEOMETRY Geometry, as presented

More information

NEW MEXICO Grade 6 MATHEMATICS STANDARDS

NEW MEXICO Grade 6 MATHEMATICS STANDARDS PROCESS STANDARDS To help New Mexico students achieve the Content Standards enumerated below, teachers are encouraged to base instruction on the following Process Standards: Problem Solving Build new mathematical

More information

Quick Reference ebook

Quick Reference ebook This file is distributed FREE OF CHARGE by the publisher Quick Reference Handbooks and the author. Quick Reference ebook Click on Contents or Index in the left panel to locate a topic. The math facts listed

More information

6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives 6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise

More information

Math 1. Month Essential Questions Concepts/Skills/Standards Content Assessment Areas of Interaction

Math 1. Month Essential Questions Concepts/Skills/Standards Content Assessment Areas of Interaction Binghamton High School Rev.9/21/05 Math 1 September What is the unknown? Model relationships by using Fundamental skills of 2005 variables as a shorthand way Algebra Why do we use variables? What is a

More information

Prentice Hall Mathematics Courses 1-3 Common Core Edition 2013

Prentice Hall Mathematics Courses 1-3 Common Core Edition 2013 A Correlation of Prentice Hall Mathematics Courses 1-3 Common Core Edition 2013 to the Topics & Lessons of Pearson A Correlation of Courses 1, 2 and 3, Common Core Introduction This document demonstrates

More information

numerical place value additional topics rounding off numbers power of numbers negative numbers addition with materials fundamentals

numerical place value additional topics rounding off numbers power of numbers negative numbers addition with materials fundamentals Math Scope & Sequence fundamentals number sense and numeration of the decimal system Count to 10 by units Associate number to numeral (1-10) KN 1 KN 1 KN 2 KN 2 Identify odd and even numbers/numerals and

More information

National 5 Mathematics Course Assessment Specification (C747 75)

National 5 Mathematics Course Assessment Specification (C747 75) National 5 Mathematics Course Assessment Specification (C747 75) Valid from August 013 First edition: April 01 Revised: June 013, version 1.1 This specification may be reproduced in whole or in part for

More information

Chapter 111. Texas Essential Knowledge and Skills for Mathematics. Subchapter B. Middle School

Chapter 111. Texas Essential Knowledge and Skills for Mathematics. Subchapter B. Middle School Middle School 111.B. Chapter 111. Texas Essential Knowledge and Skills for Mathematics Subchapter B. Middle School Statutory Authority: The provisions of this Subchapter B issued under the Texas Education

More information

AMSCO S Ann Xavier Gantert

AMSCO S Ann Xavier Gantert AMSCO S Integrated ALGEBRA 1 Ann Xavier Gantert AMSCO SCHOOL PUBLICATIONS, INC. 315 HUDSON STREET, NEW YORK, N.Y. 10013 Dedication This book is dedicated to Edward Keenan who left a profound influence

More information

Welcome to Math 7 Accelerated Courses (Preparation for Algebra in 8 th grade)

Welcome to Math 7 Accelerated Courses (Preparation for Algebra in 8 th grade) Welcome to Math 7 Accelerated Courses (Preparation for Algebra in 8 th grade) Teacher: School Phone: Email: Kim Schnakenberg 402-443- 3101 kschnakenberg@esu2.org Course Descriptions: Both Concept and Application

More information

Geometry and Measurement

Geometry and Measurement The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for

More information

The Australian Curriculum Mathematics

The Australian Curriculum Mathematics The Australian Curriculum Mathematics Mathematics ACARA The Australian Curriculum Number Algebra Number place value Fractions decimals Real numbers Foundation Year Year 1 Year 2 Year 3 Year 4 Year 5 Year

More information

Pre-Algebra 2008. Academic Content Standards Grade Eight Ohio. Number, Number Sense and Operations Standard. Number and Number Systems

Pre-Algebra 2008. Academic Content Standards Grade Eight Ohio. Number, Number Sense and Operations Standard. Number and Number Systems Academic Content Standards Grade Eight Ohio Pre-Algebra 2008 STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express large numbers and small

More information

For example, estimate the population of the United States as 3 times 10⁸ and the

For example, estimate the population of the United States as 3 times 10⁸ and the CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number

More information

Common Core State Standards for Mathematics Accelerated 7th Grade

Common Core State Standards for Mathematics Accelerated 7th Grade A Correlation of 2013 To the to the Introduction This document demonstrates how Mathematics Accelerated Grade 7, 2013, meets the. Correlation references are to the pages within the Student Edition. Meeting

More information

ModuMath Basic Math Basic Math 1.1 - Naming Whole Numbers Basic Math 1.2 - The Number Line Basic Math 1.3 - Addition of Whole Numbers, Part I

ModuMath Basic Math Basic Math 1.1 - Naming Whole Numbers Basic Math 1.2 - The Number Line Basic Math 1.3 - Addition of Whole Numbers, Part I ModuMath Basic Math Basic Math 1.1 - Naming Whole Numbers 1) Read whole numbers. 2) Write whole numbers in words. 3) Change whole numbers stated in words into decimal numeral form. 4) Write numerals in

More information

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document

More information

MATH. ALGEBRA I HONORS 9 th Grade 12003200 ALGEBRA I HONORS

MATH. ALGEBRA I HONORS 9 th Grade 12003200 ALGEBRA I HONORS * Students who scored a Level 3 or above on the Florida Assessment Test Math Florida Standards (FSA-MAFS) are strongly encouraged to make Advanced Placement and/or dual enrollment courses their first choices

More information

Illinois State Standards Alignments Grades Three through Eleven

Illinois State Standards Alignments Grades Three through Eleven Illinois State Standards Alignments Grades Three through Eleven Trademark of Renaissance Learning, Inc., and its subsidiaries, registered, common law, or pending registration in the United States and other

More information

1.2. Successive Differences

1.2. Successive Differences 1. An Application of Inductive Reasoning: Number Patterns In the previous section we introduced inductive reasoning, and we showed how it can be applied in predicting what comes next in a list of numbers

More information

INTERESTING PROOFS FOR THE CIRCUMFERENCE AND AREA OF A CIRCLE

INTERESTING PROOFS FOR THE CIRCUMFERENCE AND AREA OF A CIRCLE INTERESTING PROOFS FOR THE CIRCUMFERENCE AND AREA OF A CIRCLE ABSTRACT:- Vignesh Palani University of Minnesota - Twin cities e-mail address - palan019@umn.edu In this brief work, the existing formulae

More information

Problem of the Month: Circular Reasoning

Problem of the Month: Circular Reasoning Problem of the Month: Circular Reasoning The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

Scale of the Solar System. Sizes and Distances: How Big is Big? Sizes and Distances: How Big is Big? (Cont.)

Scale of the Solar System. Sizes and Distances: How Big is Big? Sizes and Distances: How Big is Big? (Cont.) Scale of the Solar System Scale of the Universe How big is Earth compared to our solar system? How far away are the stars? How big is the Milky Way Galaxy? How big is the Universe? How do our lifetimes

More information

Essential Mathematics for Computer Graphics fast

Essential Mathematics for Computer Graphics fast John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made

More information

Scope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B

Scope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B Scope and Sequence Earlybird Kindergarten, Standards Edition Primary Mathematics, Standards Edition Copyright 2008 [SingaporeMath.com Inc.] The check mark indicates where the topic is first introduced

More information

SAT Subject Math Level 2 Facts & Formulas

SAT Subject Math Level 2 Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses

More information

Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9

Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9 Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,

More information

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

More information

New York State Student Learning Objective: Regents Geometry

New York State Student Learning Objective: Regents Geometry New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students

More information

MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

More information

Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)

Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary) Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify

More information

Prentice Hall Algebra 2 2011 Correlated to: Colorado P-12 Academic Standards for High School Mathematics, Adopted 12/2009

Prentice Hall Algebra 2 2011 Correlated to: Colorado P-12 Academic Standards for High School Mathematics, Adopted 12/2009 Content Area: Mathematics Grade Level Expectations: High School Standard: Number Sense, Properties, and Operations Understand the structure and properties of our number system. At their most basic level

More information

Mathematics programmes of study: key stage 4. National curriculum in England

Mathematics programmes of study: key stage 4. National curriculum in England Mathematics programmes of study: key stage 4 National curriculum in England July 2014 Contents Purpose of study 3 Aims 3 Information and communication technology (ICT) 4 Spoken language 4 Working mathematically

More information

SOLVING EQUATIONS WITH RADICALS AND EXPONENTS 9.5. section ( 3 5 3 2 )( 3 25 3 10 3 4 ). The Odd-Root Property

SOLVING EQUATIONS WITH RADICALS AND EXPONENTS 9.5. section ( 3 5 3 2 )( 3 25 3 10 3 4 ). The Odd-Root Property 498 (9 3) Chapter 9 Radicals and Rational Exponents Replace the question mark by an expression that makes the equation correct. Equations involving variables are to be identities. 75. 6 76. 3?? 1 77. 1

More information

Anchorage School District/Alaska Sr. High Math Performance Standards Algebra

Anchorage School District/Alaska Sr. High Math Performance Standards Algebra Anchorage School District/Alaska Sr. High Math Performance Standards Algebra Algebra 1 2008 STANDARDS PERFORMANCE STANDARDS A1:1 Number Sense.1 Classify numbers as Real, Irrational, Rational, Integer,

More information

The Fibonacci Sequence and the Golden Ratio

The Fibonacci Sequence and the Golden Ratio 55 The solution of Fibonacci s rabbit problem is examined in Chapter, pages The Fibonacci Sequence and the Golden Ratio The Fibonacci Sequence One of the most famous problems in elementary mathematics

More information

Continued Fractions. Darren C. Collins

Continued Fractions. Darren C. Collins Continued Fractions Darren C Collins Abstract In this paper, we discuss continued fractions First, we discuss the definition and notation Second, we discuss the development of the subject throughout history

More information

Florida Math 0018. Correlation of the ALEKS course Florida Math 0018 to the Florida Mathematics Competencies - Lower

Florida Math 0018. Correlation of the ALEKS course Florida Math 0018 to the Florida Mathematics Competencies - Lower Florida Math 0018 Correlation of the ALEKS course Florida Math 0018 to the Florida Mathematics Competencies - Lower Whole Numbers MDECL1: Perform operations on whole numbers (with applications, including

More information

KEANSBURG SCHOOL DISTRICT KEANSBURG HIGH SCHOOL Mathematics Department. HSPA 10 Curriculum. September 2007

KEANSBURG SCHOOL DISTRICT KEANSBURG HIGH SCHOOL Mathematics Department. HSPA 10 Curriculum. September 2007 KEANSBURG HIGH SCHOOL Mathematics Department HSPA 10 Curriculum September 2007 Written by: Karen Egan Mathematics Supervisor: Ann Gagliardi 7 days Sample and Display Data (Chapter 1 pp. 4-47) Surveys and

More information

MATH 100 PRACTICE FINAL EXAM

MATH 100 PRACTICE FINAL EXAM MATH 100 PRACTICE FINAL EXAM Lecture Version Name: ID Number: Instructor: Section: Do not open this booklet until told to do so! On the separate answer sheet, fill in your name and identification number

More information