Aktuelle Aktivitäten der IETF auf dem Gebiet der Verkehrssteuerung (Traffic Engineering) in MPLS-Netzen

Size: px
Start display at page:

Download "Aktuelle Aktivitäten der IETF auf dem Gebiet der Verkehrssteuerung (Traffic Engineering) in MPLS-Netzen"

Transcription

1 Aktuelle Aktivitäten der IETF auf dem Gebiet der Verkehrssteuerung (Traffic Engineering) in MPLS-Netzen ITG-FG Next Generation Networks 10. Sitzung am 23. Juli 2004 in Chemnitz Thomas Knoll TU Chemnitz - Professur Daten- und Kommunikationstechnik Telefon knoll@infotech.tu-chemnitz.de Talk Outline Motivation Internet Routing Enhancements MPLS-TE -> DS-MPLS-TE Current TE Requirement Drafts Inter-AS solutions

2 Motivation Networks offering connectionless IP datagram service provide packet delivery along the shortest path with single class best effort treatment. Single Autonomous Systems (AS) have been extended to support MPLS & DiffServ, which offers differentiated path selection and differentiated forwarding behaviour for a set of traffic classes. Extending these capabilities across AS borders is the current hot topic - known as Inter-AS-MPLS-TE. Internet Routing concept Routing Domain = IGP Routing Area Hosts Router Intradomain Routing e.g. OSPF, RIP, EIGRP interior router Interdomain Routing e.g. BGP Hosts border router Intradomain Routing e.g. OSPF, RIP, EIGRP Router Routing Domain = IGP Routing Area (Transit-Domain) Gateway / Area Border Router ( more intelligent Router) Intradomain Routing e.g. OSPF, RIP, EIGRP Router Routing Domain = IGP Routing Area

3 Internet Routing concept - Autonomous Systems AS1 AS2 AS3 IGP area IGP area IGP area AS4 MPLS network AS1 AS2 AS3 IGP area IGP area IGP area MPLS network AS4

4 DiffServ aware MPLS AS1 AS2 AS3 DS domain DS domain DS domain MPLS network AS4 IETF - Working Groups DiffServ (Differentiated Services) 02/99 - Transport Area * An Architecture for Differentiated Services (RFC 2475) * Definition of the DS Field in IPv4 and IPv6 (RFC 2474) * Assured Forwarding PHB Group (RFC 2597) * An Expedited Forwarding PHB (RFC 3246) MPLS (Multiprotocol Label Switching Routing Area * Multiprotocol Label Switching Architecture (RFC 3031) * MPLS Support of Differentiated Services (RFC 3270) TEWG (Internet Traffic Engineering) 12/00 - Sub-IP Area * Overview and Principles of Internet Traffic Engineering (RFC 3272) * Draft: Requirements for Inter-area MPLS Traffic Engineering * Draft: MPLS Inter-AS Traffic Engineering requirements NSIS (Next Steps in Signaling) 03/02 - Transport Area => IP signalling protocol (RSVP simplified)

5 MPLS-TE Requirements RFC2702-9/99 Requirements for Traffic Engineering Over MPLS => functional capabilities required to implement policies that facilitate efficient and reliable MPLS network operation Capabilities applicable to any single AS label switched network with 2 paths between 2 nodes TE = technology & scientific principles for: measurement, modelling, MPLS can help characterisation, and control of Internet traffic => achieve specific performance objectives (optimisation) MPLS-TE Requirements (cont d) Traffic oriented performance objectives: packet loss, delay, throughput, and enforcement of service level agreements peak to peak packet delay variation, loss ratio, and maximum packet transfer delay Resource oriented performance objectives: Single class best effort Internet service model Differentiated services Internet equal resource utilisation -> avoid unnecessary congestion excess demand -> classical cong. control (rate limit., queue dropping...) inefficient resource mapping/allocation -> traffic engineering => load balancing + other allocation policies

6 MPLS-TE Requirements (cont d) IGP case Traffic Engineering = control problem! SPF = topology driven (no BW availability, no traffic characteristic) => causes congestion! All matching traffic onto single path => equal cost path load sharing helps - falls down on stream convergence IGP + Overlay case overlay model: IP over ATM / IP over Frame Relay => virtual channels advertised as IGP links -> works -> very expensive! + constraint-based VC routing + configurable explicit VC paths + admission control functions + traffic shaping and traffic policing functions + VC protection MPLS-TE Requirements (cont d) IGP + MPLS case = integrated overlay model MPLS => independent LSP setup process constraint-based setup explicit route path setup supported admission control = reservation (at least through LSP setup denial) path protection by pre-configured backup LSPs TE-Problems => TE strength! Tripple mapping: IP traffic => FEC => set up LSP(s) => phys. network consistent FEC policies LSP route selection IGP routing (metric definition / drive traffic into LSP) LSP resource reservations / admission control? / traffic shaping?

7 DiffServ aware MPLS-TE Requirements RFC3564-7/03 Requirements for Support of Differentiated Services-aware MPLS Traffic Engineering Behavior Aggregate (BA): same DSCP Per-Hop-Behavior (PHB): BA treatment PHB Scheduling Class (PSC): ordering Ordered Aggregate (OA): ordered BAs Traffic Aggregate (TA): DSCPs -> PHB Traffic Trunk: aggregation of traffic flows of same FEC Traffic Trunk -> LSP(s) E-LSP / L-LSP Class-Type (CT): trunk + link constraint TE-Problems => TE strength! Tripple + mapping: IP traffic => DS classes => FEC => set up LSP(s) => phys. network? DS-MPLS-TE => different trunks -> independent LSP setups! DiffServ-aware MPLS-TE Protocol Extensions draft-ietf-tewg-diff-te-proto-07.txt - 3/04 Protocol extensions for support of DS-aware MPLS-TE IGP-TE extensions * RFC3630-9/03 = OSPF-TE (Opaque Link State Advertisements) * RFC3784-5/04 = ISIS-TE (extended Link State Protocol PDUs) * Maximum Reservable Bandwidth => aggregate bw constraint TLVs * Unreserved Bandwidth TLV in IGP advertisements RSVP-TE extensions * RFC /01 = RSVP-TE (new objects for explicitly routed LSPs) * Class-Type object (format + handling) * Error codes for CT object errors further extension for both defined herein => * no changes to actual constraint-based routing algorithm! Bandwidth Constraints models: Max. Allocation / Russian Doll

8 Constraint-based Routing / QoS Routing Mapping (LSP overlay) : LSP => physical network mapping traffic trunk attributes (configured or derived) - traffic parameters + policing -> ATM (theory of effect. BW) - path selection + maintenance (resource inclusion/exclusion) - priority, preemption, resilience attributes resource attributes (configured) - maximum allocation multiplier (over-/under-booking factor) - resource class attribute (e.g. coloring for resource addressing -> policy application,inclusion/exclusion-> disjuncted paths etc.) Constraint-based Routing: map traffic & resource attributes & topology information simple solution: prune not matching resources + SPF Current TE Requirement Drafts Requirement draft: normative set of functional constraints for suggested solutions guideline for definition, selection and specification of such solutions problem description to clear understanding wish list Most current activities draft-ietf-tewg-interarea-mpls-te-req-02.txt (June 2004) draft-ietf-tewg-interas-mpls-te-req-07.txt (June 2004) draft-ietf-mpls-p2mp-requirement-03.txt (July 2004) inter-area = IGP areas of single authority Inter-AS = IGP area coupling among different authorities P2MP = Point-to-Multi-Point (multicast LSPs) P2P-LSP mesh -> head-end replication P2MP-LSP -> branch point replication

9 Inter-AS-MPLS Traffic Engineering solutions 1 IGP metrics (within AS) + BGP attribute (across ASes) Coarse control of paths No bandwidth guaranties No fast recovery No demand for TE in IP-only networks IP/MPLS networks targeted 2 IGP-TE + RSVP-TE => RFC3785 5/04 Use of Interior Gateway Protocol (IGP) Metric as a second MPLS Traffic Engineering Metric + BGP attribute (across ASes) Path computation upon multiple constraints Resource reservation BGP based Inter-AS Traffic Engineering TE by enforced BGP-based inter-as routing policies "Closest exit" routing = egress traffic path defined by the lowest IGP or intra-as MPLS TE tunnel metrics of the BGP next-hop of exterior routes learned from other AS over the inter-as links "BGP path attribute" based routing = egress traffic path selection by interconnect (peering or transit) policies based upon one or a combination of BGP path attributes Sub-optimum traffic distribution across inter-as links Un-deterministic traffic condition changes due to uncoordinated IGP and BGP routing policies or topology changes within other AS

10 Inter-Area MPLS-TE extensions traffic engineering database (no inter-area TE db update) path calculation (split/per segment calculation by ABRs -> concept of loose routing object) maintenance protection/restoration Inter-Area TE - LSP Setup Signalling: RSVP-TE! - CR-LDP (RFC3212) discontinued! (ordered controlled LSP setup / downstream-on-demand label binding) head-end LSR to set up inter-area TE LSP + explicitly specify: * set of LSRs (including ABRs) by means of strict or loose hops * signal certain resources to be explicitly excluded Path optimization across AS borders aim: same optimization strategy and quality as with single AS => CSPF across IGP areas! Routing: IGP hierarchy confinement -> head end LSR only local topology view (no end-to-end) * maintain containment of routing information + preserve IGP scalability * preclude leaking across area of any TE Topology related information * non topology related information (e.g. TE router ids) allowed * inter-area TE-LSP not to be advertised as link in IGP!

11 Inter-Area TE - LSP Setup (cont`d) Path computation: - Per-area path computation based on ERO expansion on the Head-End LSR and on ABRs, with two options for ABR selection: * Static configuration of ABRs as loose hops at the head-end LSR. * Dynamic ABR selection. - Inter-area end-to-end path computation * e.g. recursive constraint based searching (ABR collaboration) Route diversity: * LSP protection (primary & backup LSP) * sum bandwidth constraint through set of multiple TE-LSPs (SRLGs) Route protection * local mechanisms (e.g. Fast Reroute,...) * ensure LSP independant RSVP signalling Inter-area RSVP-TE => ERO expansion Cisco wp example ERO next hop = loose object -> compute a path to this loose hop

12 Inter-AS scenario: Extended or Virtual PoP (VPoP) either Inter-AS MPLS-LSPs Inter-AS links Inter-AS links AS1 SP1 VPoP PE P / PE AS2 - SP2 P / PE AS1 SP1 Inter-AS scenario: Extended or Virtual Trunck either Inter-AS MPLS-LSPs P / PE P / PE Local loop SP1 - CEs AS2 - SP2 Inter-AS links AS1 SP1

13 Inter-AS scenario: End-to-End Inter-AS MPLS-LSP CE1 CE2 P / PE AS2 - SP2 Inter-AS links P / PE AS1 SP1 What if... AS already triggers setup of segement LSP => LSP nesting vs. updated loose hop advertisement? over-provisioned network is (currently) cheaper than DS-aware-MPLS and still sufficient? sufficient quality path can t be found? Expectation: MPLS-TE replaces overlay -> for sure MPLS trunk support by almost static provision (explicit paths) => seems to be current practice DS support possibly pushed into core by local area support multicast support in the long run TE + DS + DS/MPLS interaction => simple (not optimal) & manageable (technical/juristical) solution

14 Thank you for your attention!

MPLS TE Technology Overview

MPLS TE Technology Overview C H A P T E R MPLS TE Technology Overview In this chapter, you review the following topics: MPLS TE Introduction Basic Operation of MPLS TE DiffServ-Aware Traffic Engineering Fast Reroute This chapter

More information

MPLS is the enabling technology for the New Broadband (IP) Public Network

MPLS is the enabling technology for the New Broadband (IP) Public Network From the MPLS Forum Multi-Protocol Switching (MPLS) An Overview Mario BALI Turin Polytechnic Mario.Baldi@polito.it www.polito.it/~baldi MPLS is the enabling technology for the New Broadband (IP) Public

More information

Multi-Protocol Label Switching To Support Quality of Service Needs

Multi-Protocol Label Switching To Support Quality of Service Needs Technical Report, IDE1008, February 2010 Multi-Protocol Label Switching To Support Quality of Service Needs Master s Thesis in Computer Network Engineering - 15hp AMJAD IFTIKHAR AOON MUHAMMAD SHAH & FOWAD

More information

How To Provide Qos Based Routing In The Internet

How To Provide Qos Based Routing In The Internet CHAPTER 2 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 22 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 2.1 INTRODUCTION As the main emphasis of the present research work is on achieving QoS in routing, hence this

More information

Migrating to MPLS Technology and Applications

Migrating to MPLS Technology and Applications Migrating to MPLS Technology and Applications Serge-Paul Carrasco June 2003 asiliconvalleyinsider.com Table Of Content Why to migrate to MPLS? Congestion on the Internet Traffic Engineering MPLS Fundamentals

More information

Introducing Basic MPLS Concepts

Introducing Basic MPLS Concepts Module 1-1 Introducing Basic MPLS Concepts 2004 Cisco Systems, Inc. All rights reserved. 1-1 Drawbacks of Traditional IP Routing Routing protocols are used to distribute Layer 3 routing information. Forwarding

More information

Project Report on Traffic Engineering and QoS with MPLS and its applications

Project Report on Traffic Engineering and QoS with MPLS and its applications Project Report on Traffic Engineering and QoS with MPLS and its applications Brief Overview Multiprotocol Label Switching (MPLS) is an Internet based technology that uses short, fixed-length labels to

More information

Introduction to MPLS and Traffic Engineering

Introduction to MPLS and Traffic Engineering troduction to MPLS and Traffic Engineering Session 2 Topics Motivations for MPLS MPLS Overview Applications Roadmap 3 Why MPLS? tegrate best of Layer 2 and Layer 3 Keep up with growth Reduce operations

More information

Evolution of QoS routing in the Internet

Evolution of QoS routing in the Internet Evolution of QoS routing in the Internet Olivier Bonaventure Dept. Computing Science and Engineering Université catholique de Louvain http://www.info.ucl.ac.be/people/obo June 4th, 2004 Page 1 Agenda Routing

More information

An Introduction to MPLS

An Introduction to MPLS Research An Introduction to MPLS Timothy G. Griffin griffin@research.att.com http://www.research.att.com/~griffin November 21, 2002 1 What s all this talk about MPLS? MPLS is going to solve all of our

More information

MPLS Based Recovery Mechanisms

MPLS Based Recovery Mechanisms MPLS Based Recovery Mechanisms Master Thesis Johan Martin Olof Petersson UNIVERSITY OF OSLO May 2005 2 Foreword This thesis is part of my Candidatus Scientiarum studies in communication systems at the

More information

MPLS Concepts. Overview. Objectives

MPLS Concepts. Overview. Objectives MPLS Concepts Overview This module explains the features of Multi-protocol Label Switching (MPLS) compared to traditional ATM and hop-by-hop IP routing. MPLS concepts and terminology as well as MPLS label

More information

ICTTEN6172A Design and configure an IP- MPLS network with virtual private network tunnelling

ICTTEN6172A Design and configure an IP- MPLS network with virtual private network tunnelling ICTTEN6172A Design and configure an IP- MPLS network with virtual private network tunnelling Release: 1 ICTTEN6172A Design and configure an IP-MPLS network with virtual private network tunnelling Modification

More information

MPLS Basics. For details about MPLS architecture, refer to RFC 3031 Multiprotocol Label Switching Architecture.

MPLS Basics. For details about MPLS architecture, refer to RFC 3031 Multiprotocol Label Switching Architecture. Multiprotocol Label Switching (), originating in IPv4, was initially proposed to improve forwarding speed. Its core technology can be extended to multiple network protocols, such as IPv6, Internet Packet

More information

IMPLEMENTING CISCO MPLS V3.0 (MPLS)

IMPLEMENTING CISCO MPLS V3.0 (MPLS) IMPLEMENTING CISCO MPLS V3.0 (MPLS) COURSE OVERVIEW: Multiprotocol Label Switching integrates the performance and traffic-management capabilities of data link Layer 2 with the scalability and flexibility

More information

Implementation of Traffic Engineering and Addressing QoS in MPLS VPN Based IP Backbone

Implementation of Traffic Engineering and Addressing QoS in MPLS VPN Based IP Backbone International Journal of Computer Science and Telecommunications [Volume 5, Issue 6, June 2014] 9 ISSN 2047-3338 Implementation of Traffic Engineering and Addressing QoS in MPLS VPN Based IP Backbone Mushtaq

More information

Implementing Cisco MPLS

Implementing Cisco MPLS Implementing Cisco MPLS Course MPLS v2.3; 5 Days, Instructor-led Course Description This design document is for the refresh of the Implementing Cisco MPLS (MPLS) v2.3 instructor-led training (ILT) course,

More information

Testing Multi-Protocol Label Switching (MPLS) enabled Networks

Testing Multi-Protocol Label Switching (MPLS) enabled Networks Technical Paper Testing Multi-Protocol Label Switching (MPLS) enabled Networks Kevin Boyne, COO of UUNet mentioned at a recent talk at an MPLS conference at Virginia, USA that today s opportunity is moving

More information

IMPLEMENTING CISCO MPLS V2.3 (MPLS)

IMPLEMENTING CISCO MPLS V2.3 (MPLS) IMPLEMENTING CISCO MPLS V2.3 (MPLS) COURSE OVERVIEW: The course will enable learners to gather information from the technology basics to advanced VPN configuration. The focus of the course is on VPN technology

More information

Traffic Engineering Management Concepts

Traffic Engineering Management Concepts 3 CHAPTER This chapter includes an overview of Cisco Prime Fulfillment and of some of the concepts used in this guide. This chapter includes the following sections: Prime Fulfillment TEM Overview, page

More information

Computer Network Architectures and Multimedia. Guy Leduc. Chapter 2 MPLS networks. Chapter 2: MPLS

Computer Network Architectures and Multimedia. Guy Leduc. Chapter 2 MPLS networks. Chapter 2: MPLS Computer Network Architectures and Multimedia Guy Leduc Chapter 2 MPLS networks Chapter based on Section 5.5 of Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose, Keith Ross Addison-Wesley,

More information

Broadband Networks. Prof. Karandikar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture - 26

Broadband Networks. Prof. Karandikar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture - 26 Broadband Networks Prof. Karandikar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 26 Optical Network &MPLS So, as you were discussing in the previous lectures, next

More information

MPLS - A Choice of Signaling Protocol

MPLS - A Choice of Signaling Protocol www.ijcsi.org 289 MPLS - A Choice of Signaling Protocol Muhammad Asif 1, Zahid Farid 2, Muhammad Lal 3, Junaid Qayyum 4 1 Department of Information Technology and Media (ITM), Mid Sweden University Sundsvall

More information

Implementing MPLS VPN in Provider's IP Backbone Luyuan Fang luyuanfang@att.com AT&T

Implementing MPLS VPN in Provider's IP Backbone Luyuan Fang luyuanfang@att.com AT&T Implementing MPLS VPN in Provider's IP Backbone Luyuan Fang luyuanfang@att.com AT&T 1 Outline! BGP/MPLS VPN (RFC 2547bis)! Setting up LSP for VPN - Design Alternative Studies! Interworking of LDP / RSVP

More information

MPLS Multiprotocol Label Switching

MPLS Multiprotocol Label Switching MPLS Multiprotocol Label Switching José Ruela, Manuel Ricardo FEUP Fac. Eng. Univ. Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal INESC Porto, Campus da FEUP, Rua Dr. Roberto Frias, 378, 4200-465

More information

Quality of Service for VoIP

Quality of Service for VoIP Quality of Service for VoIP WCS November 29, 2000 John T. Chapman Cisco Distinguished Engineer Broadband Products and Solutions Course Number Presentation_ID 1999, Cisco Systems, Inc. 1 The QoS Matrix

More information

for guaranteed IP datagram routing

for guaranteed IP datagram routing Core stateless distributed admission control at border routers for guaranteed IP datagram routing Takahiro Oishi Masaaki Omotani Kohei Shiomoto NTT Network Service Systems Laboratories, NTT corporation

More information

QoS Performance Evaluation in BGP/MPLS VPN

QoS Performance Evaluation in BGP/MPLS VPN 1 QoS Performance Evaluation in BGP/MPLS VPN M. C. Castro, N. A. Nassif and W. C. Borelli 1 Abstract-- The recent exponential growth of the Internet has encouraged more applications, users and services

More information

Offline path computation

Offline path computation Uni Innsbruck Informatik - Uni Innsbruck Informatik - 4 Internet Technology The inner network view, part 2 (C): MPLS Michael Welzl http://www.welzl.at DPS NSG Team http://dps.uibk.ac.at dps.uibk.ac.at/nsg

More information

Performance Evaluation of Voice Traffic over MPLS Network with TE and QoS Implementation

Performance Evaluation of Voice Traffic over MPLS Network with TE and QoS Implementation Master Thesis Electrical Engineering November 2011 Performance Evaluation of Voice Traffic over MPLS Network with TE and QoS Implementation Jeevan Kharel Deepak Adhikari School of Computing Blekinge Institute

More information

Using OSPF in an MPLS VPN Environment

Using OSPF in an MPLS VPN Environment Using OSPF in an MPLS VPN Environment Overview This module introduces the interaction between multi-protocol Border Gateway Protocol (MP-BGP) running between Provider Edge routers (s) and Open Shortest

More information

Internet traffic engineering using multi-protocol label switching (MPLS)

Internet traffic engineering using multi-protocol label switching (MPLS) Computer Networks 40 (2002) 111 129 Invited Paper Internet traffic engineering using multi-protocol label switching (MPLS) Daniel O. Awduche a, Bijan Jabbari b, * a Movaz Networks, One Technology Parkway

More information

IP Traffic Engineering over OMP technique

IP Traffic Engineering over OMP technique IP Traffic Engineering over OMP technique 1 Károly Farkas, 1 Zoltán Balogh, 2 Henrik Villför 1 High Speed Networks Laboratory Department of Telecommunications and Telematics Technical University of Budapest,

More information

WAN Topologies MPLS. 2006, Cisco Systems, Inc. All rights reserved. Presentation_ID.scr. 2006 Cisco Systems, Inc. All rights reserved.

WAN Topologies MPLS. 2006, Cisco Systems, Inc. All rights reserved. Presentation_ID.scr. 2006 Cisco Systems, Inc. All rights reserved. MPLS WAN Topologies 1 Multiprotocol Label Switching (MPLS) IETF standard, RFC3031 Basic idea was to combine IP routing protocols with a forwarding algoritm based on a header with fixed length label instead

More information

Protection Methods in Traffic Engineering MPLS Networks

Protection Methods in Traffic Engineering MPLS Networks Peter Njogu Kimani Protection Methods in Traffic Engineering MPLS Networks Helsinki Metropolia University of Applied Sciences Bachelor of Engineering Information technology Thesis 16 th May 2013 Abstract

More information

Industry s First QoS- Enhanced MPLS TE Solution

Industry s First QoS- Enhanced MPLS TE Solution Industry s First QoS- Enhanced MPLS TE Solution Azhar Sayeed Manager, IOS Product Management, asayeed@cisco.com Contact Info: Kim Gibbons, kgibbons@cisco.com,, 408-525 525-4909 1 Agenda MPLS Traffic Engineering

More information

Overview. QoS, Traffic Engineering and Control- Plane Signaling in the Internet. Telematics group University of Göttingen, Germany. Dr.

Overview. QoS, Traffic Engineering and Control- Plane Signaling in the Internet. Telematics group University of Göttingen, Germany. Dr. Vorlesung Telematik (Computer Networks) WS2004/05 Overview QoS, Traffic Engineering and Control- Plane Signaling in the Internet Dr. Xiaoming Fu Recent trends in network traffic and capacity QoS principles:

More information

Multiprotocol Label Switching (MPLS)

Multiprotocol Label Switching (MPLS) Multiprotocol Label Switching (MPLS) รศ.ดร. อน นต ผลเพ ม Asso. Prof. Anan Phonphoem, Ph.D. anan.p@ku.ac.th http://www.cpe.ku.ac.th/~anan Computer Engineering Department Kasetsart University, Bangkok, Thailand

More information

A Survey on QoS Behavior in MPLS Networks

A Survey on QoS Behavior in MPLS Networks A Survey on QoS Behavior in MPLS Networks Shruti Thukral 1, Banita Chadha 2 M.Tech Scholar, CSE Department, IEC College of Engg & Technology, Greater Noida, India 1 Assistant Professor, CSE Department,

More information

Course Description. Students Will Learn

Course Description. Students Will Learn Course Description The next generation of telecommunications networks will deliver broadband data and multimedia services to users. The Ethernet interface is becoming the interface of preference for user

More information

Overview of QoS in Packet-based IP and MPLS Networks. Paresh Shah Utpal Mukhopadhyaya Arun Sathiamurthi

Overview of QoS in Packet-based IP and MPLS Networks. Paresh Shah Utpal Mukhopadhyaya Arun Sathiamurthi Overview of QoS in Packet-based IP and MPLS Networks Paresh Shah Utpal Mukhopadhyaya Arun Sathiamurthi 1 Agenda Introduction QoS Service Models DiffServ QoS Techniques MPLS QoS Summary 2 Introduction QoS

More information

Fast Re-Route in IP/MPLS networks using Ericsson s IP Operating System

Fast Re-Route in IP/MPLS networks using Ericsson s IP Operating System Fast Re-Route in IP/MPLS networks using s IP Operating System Introduction: Today, Internet routers employ several routing protocols to exchange routes. As a router learns its potential routes, it builds

More information

Quality of Service Routing in MPLS Networks Using Delay and Bandwidth Constraints

Quality of Service Routing in MPLS Networks Using Delay and Bandwidth Constraints Quality of Service Routing in MPLS Networks Using Delay and Bandwidth Constraints Mohammad HossienYaghmae Computer Department, Faculty of Engineering, Ferdowsi University of Mashad, Mashhad, Iran hyaghmae@ferdowsi.um.ac.ir

More information

NAVAL POSTGRADUATE SCHOOL THESIS

NAVAL POSTGRADUATE SCHOOL THESIS NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS A PERFORMANCE ANALYSIS OF BGP/MPLS VPN FAILOVER FUNCTIONALITY by Guan Chye Tan December 2006 Thesis Advisor: Second Reader: Geoffrey Xie John Gibson

More information

An End-to-End QoS Architecture with the MPLS-Based Core

An End-to-End QoS Architecture with the MPLS-Based Core An End-to-End QoS Architecture with the MPLS-Based Core Victoria Fineberg, PE, Consultant, fineberg@illinoisalumni.org Cheng Chen, PhD, NEC, CChen@necam.com XiPeng Xiao, PhD, Redback, xiaoxipe@cse.msu.edu

More information

TE in action. Some problems that TE tries to solve. Concept of Traffic Engineering (TE)

TE in action. Some problems that TE tries to solve. Concept of Traffic Engineering (TE) 1/28 2/28 TE in action S-38.3192 Verkkopalvelujen tuotanto S-38.3192 Network Service Provisioning Networking laboratory 3/28 4/28 Concept of Traffic Engineering (TE) Traffic Engineering (TE) (Traffic Management)

More information

How To Share Bandwidth On A Diffserv Network

How To Share Bandwidth On A Diffserv Network Proceedings of the 2007 IEEE International Conference on Telecommunications and Malaysia International Conference on Communications, 14-17 May 2007, Penang, Malaysia Bandwidth Sharing Scheme in DiffServ-aware

More information

MPLS Traffic Engineering in ISP Network

MPLS Traffic Engineering in ISP Network MPLS Traffic Engineering in ISP Network Mohsin Khan Birmingham City University, England ABSTRACT Multi Protocol Label Switching (MPLS) is an innovative and vibrant technology. The most famous applications

More information

Implement a QoS Algorithm for Real-Time Applications in the DiffServ-aware MPLS Network

Implement a QoS Algorithm for Real-Time Applications in the DiffServ-aware MPLS Network Implement a QoS Algorithm for Real-Time Applications in the DiffServ-aware MPLS Network Zuo-Po Huang, *Ji-Feng Chiu, Wen-Shyang Hwang and *Ce-Kuen Shieh adrian@wshlab2.ee.kuas.edu.tw, gary@hpds.ee.ncku.edu.tw,

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Chair for

More information

MPLS VPN Services. PW, VPLS and BGP MPLS/IP VPNs

MPLS VPN Services. PW, VPLS and BGP MPLS/IP VPNs A Silicon Valley Insider MPLS VPN Services PW, VPLS and BGP MPLS/IP VPNs Technology White Paper Serge-Paul Carrasco Abstract Organizations have been demanding virtual private networks (VPNs) instead of

More information

Investigation and Comparison of MPLS QoS Solution and Differentiated Services QoS Solutions

Investigation and Comparison of MPLS QoS Solution and Differentiated Services QoS Solutions Investigation and Comparison of MPLS QoS Solution and Differentiated Services QoS Solutions Steve Gennaoui, Jianhua Yin, Samuel Swinton, and * Vasil Hnatyshin Department of Computer Science Rowan University

More information

Boosting Capacity Utilization in MPLS Networks using Load-Sharing MPLS JAPAN 2007. Sanjay Khanna Foundry Networks skhanna@foundrynet.

Boosting Capacity Utilization in MPLS Networks using Load-Sharing MPLS JAPAN 2007. Sanjay Khanna Foundry Networks skhanna@foundrynet. Boosting Capacity Utilization in MPLS Networks using Load-Sharing MPLS JAPAN 2007 Sanjay Khanna Foundry Networks skhanna@foundrynet.com Agenda Why we need Load-Sharing Methods to boost capacity Trunks/Link

More information

MPLS Quality of Service What Is It? Carsten Rossenhövel EANTC (European Advanced Networking Test Center)

MPLS Quality of Service What Is It? Carsten Rossenhövel EANTC (European Advanced Networking Test Center) MPLS Quality of Service What Is It? Carsten Rossenhövel EANTC (European Advanced Networking Test Center) About EANTC EANTC offers vendor independent network quality assurance since 1991 EANTC Berlin -

More information

QoS Support in MPLS Networks

QoS Support in MPLS Networks 1 QoS Support in MPLS Networks MPLS/Frame Relay Alliance White Paper May 2003 By: Victoria Fineberg, Consultant fineberg@illinoisalumni.org Abstract MPLS is sometimes used synonymously with QoS, but more

More information

Route Discovery Protocols

Route Discovery Protocols Route Discovery Protocols Columbus, OH 43210 Jain@cse.ohio-State.Edu http://www.cse.ohio-state.edu/~jain/ 1 Overview Building Routing Tables Routing Information Protocol Version 1 (RIP V1) RIP V2 OSPF

More information

A Performance Study of IP and MPLS Traffic Engineering Techniques under Traffic Variations

A Performance Study of IP and MPLS Traffic Engineering Techniques under Traffic Variations A Performance Study of IP and MPLS Traffic Engineering Techniques under Traffic Variations Sukrit Dasgupta Department of ECE Drexel University Philadelphia, PA, USA sukrit@ece.drexel.edu Jaudelice C. de

More information

IP interconnect interface for SIP/SIP-I

IP interconnect interface for SIP/SIP-I Page INTERCONNECT SPECIFICATION Public 1 (7) IP interconnect interface for SIP/SIP-I 0 Document history... 2 1 Scope... 2 2 References... 2 3 Definitions/Acronyms... 3 4 IP Interconnect specification...

More information

Multi Protocol Label Switching (MPLS) is a core networking technology that

Multi Protocol Label Switching (MPLS) is a core networking technology that MPLS and MPLS VPNs: Basics for Beginners Christopher Brandon Johnson Abstract Multi Protocol Label Switching (MPLS) is a core networking technology that operates essentially in between Layers 2 and 3 of

More information

CS/ECE 438: Communication Networks. Internet QoS. Syed Faisal Hasan, PhD (Research Scholar Information Trust Institute) Visiting Lecturer ECE

CS/ECE 438: Communication Networks. Internet QoS. Syed Faisal Hasan, PhD (Research Scholar Information Trust Institute) Visiting Lecturer ECE CS/ECE 438: Communication Networks Internet QoS Syed Faisal Hasan, PhD (Research Scholar Information Trust Institute) Visiting Lecturer ECE Introduction The Internet only provides a best effort service

More information

Router and Routing Basics

Router and Routing Basics Router and Routing Basics Malin Bornhager Halmstad University Session Number 2002, Svenska-CNAP Halmstad University 1 Routing Protocols and Concepts CCNA2 Routing and packet forwarding Static routing Dynamic

More information

Building MPLS VPNs with QoS Routing Capability i

Building MPLS VPNs with QoS Routing Capability i Building MPLS VPNs with QoS Routing Capability i Peng Zhang, Raimo Kantola Laboratory of Telecommunication Technology, Helsinki University of Technology Otakaari 5A, Espoo, FIN-02015, Finland Tel: +358

More information

QoS Implementation For MPLS Based Wireless Networks

QoS Implementation For MPLS Based Wireless Networks QoS Implementation For MPLS Based Wireless Networks Subramanian Vijayarangam and Subramanian Ganesan Oakland University, Rochester, Michigan Abstract : Voice has been the primary application in wireless

More information

HPSR 2002 Kobe, Japan. Towards Next Generation Internet. Bijan Jabbari, PhD Professor, George Mason University

HPSR 2002 Kobe, Japan. Towards Next Generation Internet. Bijan Jabbari, PhD Professor, George Mason University HPSR 2002 Kobe, Japan Towards Next Generation Internet Bijan Jabbari, PhD Professor, George Mason University May 28, 2002 Overview! Scalability and Interoperability in Internet! Impediments in Deployment

More information

Figure 1: Network Topology

Figure 1: Network Topology Improving NGN with QoS Strategies Marcel C. Castro, Tatiana B. Pereira, Thiago L. Resende CPqD Telecom & IT Solutions Campinas, S.P., Brazil E-mail: {mcastro; tatibp; tresende}@cpqd.com.br Abstract Voice,

More information

Supporting End-to-End QoS in DiffServ/MPLS Networks

Supporting End-to-End QoS in DiffServ/MPLS Networks Supporting End-to-End QoS in DiffServ/MPLS Networks Ji-Feng Chiu, *Zuo-Po Huang, *Chi-Wen Lo, *Wen-Shyang Hwang and Ce-Kuen Shieh Department of Electrical Engineering, National Cheng Kung University, Taiwan

More information

A Review on Quality of Service Architectures for Internet Network Service Provider (INSP)

A Review on Quality of Service Architectures for Internet Network Service Provider (INSP) A Review on Quality of Service Architectures for Internet Network Service Provider (INSP) Herman and Azizah bte Abd. Rahman Faculty of Computer Science and Information System Universiti Teknologi Malaysia

More information

Real-Time Traffic Engineering Management With Route Analytics

Real-Time Traffic Engineering Management With Route Analytics Real-Time Traffic Engineering Management With Route Analytics Executive Summary Increasing numbers of service providers and mobile operators are using RSVP-TE based traffic engineering to provide bandwidth

More information

MPLS Traffic Engineering - A Choice Of Signaling Protocols

MPLS Traffic Engineering - A Choice Of Signaling Protocols MPLS Traffic Engineering - A Choice Of Signaling Protocols Analysis of the similarities and differences between the two primary MPLS label distribution protocols: RSVP and CR-LDP Paul Brittain, pjb@metaswitch.com

More information

IP Quality of Service: Theory and best practices. Vikrant S. Kaulgud

IP Quality of Service: Theory and best practices. Vikrant S. Kaulgud IP Quality of Service: Theory and best practices Vikrant S. Kaulgud 1 Why are we here? Understand need for Quality of Service. Explore Internet QoS architectures. Check QoS best practices. Be vendor neutral,

More information

Disjoint Path Algorithm for Load Balancing in MPLS network

Disjoint Path Algorithm for Load Balancing in MPLS network International Journal of Innovation and Scientific Research ISSN 2351-8014 Vol. 13 No. 1 Jan. 2015, pp. 193-199 2015 Innovative Space of Scientific Research Journals http://www.ijisr.issr-journals.org/

More information

Addressing Inter Provider Connections With MPLS-ICI

Addressing Inter Provider Connections With MPLS-ICI Addressing Inter Provider Connections With MPLS-ICI Introduction Why migrate to packet switched MPLS? The migration away from traditional multiple packet overlay networks towards a converged packet-switched

More information

Routing in Small Networks. Internet Routing Overview. Agenda. Routing in Large Networks

Routing in Small Networks. Internet Routing Overview. Agenda. Routing in Large Networks Routing in Small Networks Internet Routing Overview AS, IGP,, BGP in small networks distance vector or link state protocols like RIP or OSPF can be used for dynamic routing it is possible that every router

More information

GMPLS Network Management: Challenges and Solutions

GMPLS Network Management: Challenges and Solutions GMPLS Network Management: Challenges and Solutions Thomas D. Nadeau Technical Leader 1 Fundamental Question Why is network management so important to the success of GMPLS/UCP? 2 Agenda Motivations and

More information

Highlighting a Direction

Highlighting a Direction IP QoS Architecture Highlighting a Direction Rodrigo Linhares - rlinhare@cisco.com Consulting Systems Engineer 1 Agenda Objective IntServ Architecture DiffServ Architecture Some additional tools Conclusion

More information

Designing and Developing Scalable IP Networks

Designing and Developing Scalable IP Networks Designing and Developing Scalable IP Networks Guy Davies Telindus, UK John Wiley & Sons, Ltd Contents List of Figures List of Tables About the Author Acknowledgements Abbreviations Introduction xi xiii

More information

Exterior Gateway Protocols (BGP)

Exterior Gateway Protocols (BGP) Exterior Gateway Protocols (BGP) Internet Structure Large ISP Large ISP Stub Dial-Up ISP Small ISP Stub Stub Stub Autonomous Systems (AS) Internet is not a single network! The Internet is a collection

More information

Analysis of traffic engineering parameters while using multi-protocol label switching (MPLS) and traditional IP networks

Analysis of traffic engineering parameters while using multi-protocol label switching (MPLS) and traditional IP networks Analysis of traffic engineering parameters while using multi-protocol label switching (MPLS) and traditional IP networks Faiz Ahmed Electronic Engineering Institute of Communication Technologies, PTCL

More information

WHITE PAPER. Addressing Inter Provider Connections with MPLS-ICI CONTENTS: Introduction. IP/MPLS Forum White Paper. January 2008. Introduction...

WHITE PAPER. Addressing Inter Provider Connections with MPLS-ICI CONTENTS: Introduction. IP/MPLS Forum White Paper. January 2008. Introduction... Introduction WHITE PAPER Addressing Inter Provider Connections with MPLS-ICI The migration away from traditional multiple packet overlay networks towards a converged packet-switched MPLS system is now

More information

MPLS Implementation MPLS VPN

MPLS Implementation MPLS VPN MPLS Implementation MPLS VPN Describing MPLS VPN Technology Objectives Describe VPN implementation models. Compare and contrast VPN overlay VPN models. Describe the benefits and disadvantages of the overlay

More information

Internet Quality of Service

Internet Quality of Service Internet Quality of Service Weibin Zhao zwb@cs.columbia.edu 1 Outline 1. Background 2. Basic concepts 3. Supporting mechanisms 4. Frameworks 5. Policy & resource management 6. Conclusion 2 Background:

More information

Lesson 13: MPLS Networks

Lesson 13: MPLS Networks Slide supporting material Lesson 13: MPLS Networks Giovanni Giambene Queuing Theor and Telecommunications: Networks and Applications 2nd edition, Springer All rights reserved IP Over ATM Once defined IP

More information

Class of Service (CoS) in a global NGN

Class of Service (CoS) in a global NGN Class of Service (CoS) in a global NGN Zukunft der Netze Chemnitz 2009 8. Fachtagung des ITG-FA 5.2 Thomas Martin Knoll Chemnitz University of Technology Communication Networks Phone 0371 531 33246 Email

More information

100Gigabit and Beyond: Increasing Capacity in IP/MPLS Networks Today Rahul Vir Product Line Manager Foundry Networks rvir@foundrynet.

100Gigabit and Beyond: Increasing Capacity in IP/MPLS Networks Today Rahul Vir Product Line Manager Foundry Networks rvir@foundrynet. 100Gigabit and Beyond: Increasing Capacity in IP/MPLS Networks Today Rahul Vir Product Line Manager Foundry Networks rvir@foundrynet.com 1 Agenda 2 40GE/100GE Timeline to Standardization The Ethernet Alliance

More information

PRASAD ATHUKURI Sreekavitha engineering info technology,kammam

PRASAD ATHUKURI Sreekavitha engineering info technology,kammam Multiprotocol Label Switching Layer 3 Virtual Private Networks with Open ShortestPath First protocol PRASAD ATHUKURI Sreekavitha engineering info technology,kammam Abstract This paper aims at implementing

More information

Experiences with Class of Service (CoS) Translations in IP/MPLS Networks

Experiences with Class of Service (CoS) Translations in IP/MPLS Networks Experiences with Class of Service (CoS) Translations in IP/MPLS Networks Rameshbabu Prabagaran & Joseph B. Evans Information and Telecommunications Technology Center Department of Electrical Engineering

More information

MPLS in Private Networks Is It a Good Idea?

MPLS in Private Networks Is It a Good Idea? MPLS in Private Networks Is It a Good Idea? Jim Metzler Vice President Ashton, Metzler & Associates March 2005 Introduction The wide area network (WAN) brings indisputable value to organizations of all

More information

Leveraging Advanced Load Sharing for Scaling Capacity to 100 Gbps and Beyond

Leveraging Advanced Load Sharing for Scaling Capacity to 100 Gbps and Beyond Leveraging Advanced Load Sharing for Scaling Capacity to 100 Gbps and Beyond Ananda Rajagopal Product Line Manager Service Provider Solutions Foundry Networks arajagopal@foundrynet.com Agenda 2 Why Load

More information

Cisco IOS MPLS configuration

Cisco IOS MPLS configuration Introduction Cisco IOS MPLS configuration MPLS can be configured over different platforms It can be implemented on a purely router-based Internet backbone over an ATM switchednetwork -MPLS enables an ATM

More information

Recovery Modeling in MPLS Networks

Recovery Modeling in MPLS Networks Proceedings of the Int. Conf. on Computer and Communication Engineering, ICCCE 06 Vol. I, 9-11 May 2006, Kuala Lumpur, Malaysia Recovery Modeling in MPLS Networks Wajdi Al-Khateeb 1, Sufyan Al-Irhayim

More information

Traffic Engineering for the New Public Network

Traffic Engineering for the New Public Network Traffic Engineering for the New Public Network Chuck Semeria Marketing Engineer Juniper Networks January 25, 1999 Contents Introduction 2 Traffic Engineering 2 Applications for Traffic Engineering 3 Looking

More information

IPv6 over IPv4/MPLS Networks: The 6PE approach

IPv6 over IPv4/MPLS Networks: The 6PE approach IPv6 over IPv4/MPLS Networks: The 6PE approach Athanassios Liakopoulos Network Operation & Support Manager (aliako@grnet.gr) Greek Research & Technology Network (GRNET) III Global IPv6 Summit Moscow, 25

More information

A New Fault Tolerant Routing Algorithm For GMPLS/MPLS Networks

A New Fault Tolerant Routing Algorithm For GMPLS/MPLS Networks A New Fault Tolerant Routing Algorithm For GMPLS/MPLS Networks Mohammad HossienYaghmae Computer Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran hyaghmae@ferdowsi.um.ac.ir

More information

Inter-domain Routing. Outline. Border Gateway Protocol

Inter-domain Routing. Outline. Border Gateway Protocol Inter-domain Routing Outline Border Gateway Protocol Internet Structure Original idea Backbone service provider Consumer ISP Large corporation Consumer ISP Small corporation Consumer ISP Consumer ISP Small

More information

MENTER Overview. Prepared by Mark Shayman UMIACS Contract Review Laboratory for Telecommunications Science May 31, 2001

MENTER Overview. Prepared by Mark Shayman UMIACS Contract Review Laboratory for Telecommunications Science May 31, 2001 MENTER Overview Prepared by Mark Shayman UMIACS Contract Review Laboratory for Telecommunications Science May 31, 2001 MENTER Goal MPLS Event Notification Traffic Engineering and Restoration Develop an

More information

Evaluating performance on an ISP MPLS network

Evaluating performance on an ISP MPLS network Evaluating performance on an ISP MPLS network Dilmohan Narula, Mauricio Rojasmartinez, Venkatachalapati Rayipati Dilmohan.Narula@colorado.edu, Mauricio.Rojasmartinez@colorado.edu, Venkatachalapati.Rayipati@colorado.edu

More information

SBSCET, Firozpur (Punjab), India

SBSCET, Firozpur (Punjab), India Volume 3, Issue 9, September 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Layer Based

More information

MPLS Pseudowire Innovations: The Next Phase Technology for Today s Service Providers

MPLS Pseudowire Innovations: The Next Phase Technology for Today s Service Providers MPLS Innovations: The Next Phase Technology for Today s Service Providers Introduction MPLS technology enables a smooth evolution of core networks within today s service provider infrastructures. In particular,

More information

Introduction to TCP/IP

Introduction to TCP/IP Introduction to TCP/IP Raj Jain The Ohio State University Columbus, OH 43210 Nayna Networks Milpitas, CA 95035 Email: Jain@ACM.Org http://www.cis.ohio-state.edu/~jain/ 1 Overview! Internetworking Protocol

More information

King Fahd University of Petroleum & Minerals Computer Engineering g Dept

King Fahd University of Petroleum & Minerals Computer Engineering g Dept King Fahd University of Petroleum & Minerals Computer Engineering g Dept COE 543 Mobile and Wireless Networks Term 111 Dr. Ashraf S. Hasan Mahmoud Rm 22-148-3 Ext. 1724 Email: ashraf@kfupm.edu.sa 12/24/2011

More information