Energy Changes in Chemical Reactions. System loses heat (negative); gains heat (positive) Describe the difference between the two.

Size: px
Start display at page:

Download "Energy Changes in Chemical Reactions. System loses heat (negative); gains heat (positive) Describe the difference between the two."

Transcription

1 Energy Changes in Chemical Reactions Most reactions give off or absorb energy Energy is the capacity to do work or supply heat. Heat: transfer of thermal (kinetic) energy between two systems at different temperatures (from hot to cold) Metal bar in water Metal bar drilled 1 Work (w): energy transfer when forces are applied to a system Heat (q): energy transferred from a hot object to a cold one Radiant energy heat from the sun Thermal energy associated with motion of particles Potential energy energy associated with object s position or substance s chemical bonds Kinetic energy energy associated with object s motion Describe the difference between the two. SI unit of energy: J 1kg m 1J s 1 watt = 1 J/s, so a 100 Watt bulb uses 100 J each second We often use the unit of kj to refer to chemical heat exchanges in a reaction. 1 kj = 1000 J Energy is also reported in calories: Amount of energy needed to raise 1 gram of water by 1 o C 1 cal = J; 1 Cal = 4184 J Cal (or kcal) is used on food labels Molecular heat transfer Heat: form of energy transferred from object at higher temperature to one at lower temperature (from hot object to cold object) Thermochemistry: study of heat changes in chemical reactions, in part to predict whether or not a reaction will occur Thermodynamics: study of heat and its transformations First Law of Thermodynamics: Energy can be converted from one form to another but cannot be created or destroyed System loses heat (negative); gains heat (positive) 1

2 Endothermic reaction: q is positive (q > 0) Reaction (system) absorbs heat Surroundings feel cooler Exothermic reaction: q is negative (q < 0) Reaction releases heat Surroundings feel warmer Determine if the following processes are or exothermic Combustion of methane Reacting Ba(OH) with NH 4 Cl Neutralization of HCl Melting CaCO 3 (s) CaO (s) + CO (g) 8 Combustion of methane Reacting Ba(OH) with NH 4 Cl Neutralization of HCl Melting CaCO 3 (s) CaO (s) + CO (g) exothermic exothermic Combustion, neutralization, and combination reactions tend to be exothermic Decomposition reactions tend to be Melting, boiling, and sublimation are 9 10 Specific heat (sp. ht.): amount of heat required to raise 1 gram of substance by 1 o C Use mass, specific heat, and DT to calculate the amount of heat gained or lost: q = msdt ms = C q = CDT Heat capacity (C): amount of heat required to raise the temperature of a given quantity of a substance by 1 o C; C = q / DT = J / o C Molar heat capacity (C m ): amount of heat that can be absorbed by 1 mole of material when temperature increases 1 o C; q = (C m ) x (moles of substance) x (DT) = J / mol o C

3 Calculate the amount of heat transferred when 50 g of H O (with a specific heat of J/g oc) is heated from o C to 98 o C. q = msdt Is heat being put into the system or given off by the system? If a piece of hot metal is placed in cold water, what gains heat and what loses heat? Which one will have a positive q value and which will have a negative q value? 34.8 g of an unknown metal at 5. o C is mixed with 60.1 g of H O at 96. o C (sp. ht. = J/g oc). The final temperature of the system comes to 88.4 o C. Identify the unknown metal. Specific heats of metals: Al J/g oc Fe J/g oc Cu J/g oc Sn 0.8J/g oc 14 Heat changes in a reaction can be determined by measuring the heat flow at constant pressure Apparatus to do this is called a calorimeter. Heat evolved by a reaction is absorbed by water; heat capacity of calorimeter is the heat capacity of water. A 8. gram sample of nickel is heated to 99.8 o C and placed in a coffee cup calorimeter containing grams of water at 3.5 o C. After the metal cools, the final temperature of the metal and water is 5.0 o C. q absorbed + q released = 0 Which substance absorbed heat? Which substance released heat? Calculate the heat absorbed by the substance you indicated above. 15 A hot piece of copper (at 98.7 o C, specific heat = J/g o C) weighs g. When placed in room temperature water, it is calculated that J of heat are released by the metal. What gains heat? What loses heat? What is the final temperature of the metal? Watch signs!!!! Enthalpy (H) describes heat flow into and out of a system under constant pressure Enthalpy (a measure of energy) is heat transferred per mole of substance. At constant pressure, q p DH = H products H reactants DH > 0 (net absorption of energy from environment; products have more internal energy) DH < 0 exothermic (net loss of energy to environment; reactants have more internal energy) 3

4 Why does T become constant during melting and evaporating? Melting, vaporization, and sublimation are We can calculate total heat needed to convert a 15 gram piece of ice at -0 o C to steam at 10 o C..080 J/g o C 50 J/g J/g o C 334 J/g.09 J/g o C Heat of fusion (DH fus ): Amount of heat required to melt (solid liquid) Heat of vaporization (DH vap ): Amount of heat required to evaporate (liquid gas) Heat of sublimation (DH sub ): Amount of heat required to sublime (solid gas) Why are there no values for DH freezing, DH condendsation, or DH deposition? 19 Shows both mass and enthalpy relationships Al (s) + Fe O 3 (s) Fe (s) + Al O 3 (s) DH o = -85 kj Amount of heat given off depends on amount of material: 85 kj of heat are released for every mol Al, 1 mol Fe O 3, mol Fe, and 1 mol Al O 3 Al (s) + Fe O 3 (s) Fe (s) + Al O 3 (s) DH o = -85 kj How much heat is released if 10.0 grams of Fe O 3 reacts with excess Al? What if we reversed the reaction? Heat would have to be put in to make the reaction proceed: Fe (s) + Al O 3 (s) Al (s) + Fe O 3 (s) DH o = +85 kj If a compound cannot be directly synthesized from its elements, we can add the enthalpies of multiple reactions to calculate the enthalpy of reaction in question. Hess s Law: change in enthalpy is the same whether the reaction occurs in one step or in a series of steps Look at direction of reaction and amount of reactants/products Value changes sign with direction Figure

5 Values of enthalpy change For a reaction in the reverse direction, enthalpy is numerically equal but opposite in sign Reverse direction, heat flow changes; becomes exothermic (and vice versa); sign of DH changes Proportional to the amount of reactant consumed Twice as many moles = twice as much heat; half as many moles = half as much heat DH T = DH 1 + DH + DH 3 +. Thermochemical equation: H (g) + I (s) HI(g) DH = kj Two possible changes: Reverse the equation: HI(g) H (g) + I (s) DH = kj Double the amount of material: H (g) + I (s) 4HI(g) DH = kj 5 6 Calculate DH o for NO (g) + O (g) N O 4 (g) DH o =? N O 4 (g) NO (g) DH o = 57. kj NO (g) + ½ O (g) NO (g) DH o = kj We can use known values of DH o to calculate unknown values for other reactions P 4 (s) + 3 O (g) P 4 O 6 (s) DH = kj P 4 (s) + 5 O (g) P 4 O 10 (s) DH = kj What is DH o for the following reaction? P 4 O 6 (s) + O (g) P 4 O 10 (s) DH =? 8 Given: NH 3 (g) N H 4 (l) + H (g) DH = 54 kj 1 N (g) + 3 H (g) NH 3 (g) DH = -69 kj CH 4 O(l) CH O(g) + H (g) DH = -195 kj Find the enthalpy for the following reaction: N H 4 (l) + CH 4 O(l) CH O (g) + N (g) + 3H (g) DH =? kj 5

6 Given the following equations: CO (g) O (g) + CO (g) DH = kj ½ N (g) + ½ O (g) NO (g) DH = 90.3 kj Calculate the enthalpy change for: CO (g) + NO (g) CO (g) + N (g) DH =? Standard heat of formation (DH o f): heat needed to make 1 mole of a substance from its stable elements in their standard states DH o f = 0 for a stable (naturally occurring) element Which of these have DH o f = 0? CO(g), Cu(s), Br (l), Cl(g), O (g), O 3 (g), O (s), P 4 (s) Do the following equations represent standard enthalpies of formation? Why or why not? Ag (l) + Cl (g) AgCl (s) Ca (s) + F (g) CaF (s) 31 3 Can use measured enthalpies of formation to determine the enthalpy of a reaction (use Appendix B in back of book) DH o rxn = SnDH o f (products) SnDH o f (reactants) S sum; n = number of moles (coefficients) Direct calculation of enthalpy of reaction if the reactants are all in elemental form Sr (s) + Cl (g) SrCl (g) DH o rxn = [DH o f (SrCl )] [DH o f (Sr) + DH o f (Cl )] = kj/mol Some Common Substances (5 o C) DH o rxn = S DH o f,products - S DH o f,reactants Calculate values of DH o for the following rxns: 1) CaCO 3 (s) CaO (s) + CO (g) ) C 6 H 6 (l) + 15O (g) 1CO (g) + 6H O (l) DH o f values: CaCO 3 : kj/mol; CaO: kj/mol; CO : kj/mol; C 6 H 6 : 49.0 kj/mol; H O(l): kj/mol Use Standard Heat of Formation values to calculate the enthalpy of reaction for: C 6 H 1 O 6 (s) C H 5 OH(l) + CO (g) Hint: Is the equation balanced? DH o f (C 6 H 1 O 6 (s ) = kj/mol DH o f (C H 5 OH(l ) = kj/mol DH o f (CO (g ) = kj/mol 35 6

7 Bond Dissociation Energy (or Bond Energy, BE): energy required to break a bond in 1 mole of a gaseous molecule Reactions generally proceed to form compounds with more stable (stronger) bonds (greater bond energy) H Bond Energy Bond energies vary somewhat from one mole- cule to another so we use average bond dissociation energy (D) H-OH 50 kj/mol Avg O-H = 453 H-O 47 kj/mol kj/mol H-OOH 431 kj/mol DH o rxn = SBE (reactants) + - SBE (products) released energy input SBE(react) > SBE(prod) SBE(react) < SBE(prod) exothermic exothermic energy Use only when heats of formation are not available, since bond energies are average values for gaseous molecules Use bond energies to calculate the enthalpy change for the following reaction: N (g) + 3H (g) NH 3 (g) DH rxn = [BE N N + 3BE H-H ] + [-6BE N-H ] DH rxn = [ (436)] [6(390)] = -87 kj measured value = -9. kj Why are the calculated and measured values different? Use bond energies to calculate the enthalpy change for the decomposition of nitrogen trichloride: NCl 3 (g) N (g) + Cl (g) How many distinct bond types are there in each molecule? How many of each bond type do we need to calculate DH rxn? BE (N-Cl) = 00 kj/mol BE (N N) = 945 kj/mol BE (Cl-Cl) = 43 kj/mol

8 6(N-Cl) + -1(N N) + -3(Cl-Cl) 6(00) + -(945) + -3(43) = -474 kj Use q = msdt (s = J/g oc) If given mass of reactant, convert to moles and multiply by enthalpy to find total heat transferred If given multiple equations with enthalpies, use Hess s Law If given DH o f values: products reactants If given bond energy (BE) values: +reactants + -products Identify how to set up the following problems: Calculate the DH o of reaction for: C 3 H 8 (g) + 5O (g) 3CO (g) + 4H O (l) DH o f C 3 H 8 (g): kj/mol; DH o f CO (g): kj/mol; DH o f H O(l): kj/mol 8750 J of heat are applied to a 170 g sample of metal, causing a 56 o C increase in its temperature. What is the specific heat of the metal? Which metal is it? C H 4 (g ) + 6F (g) CF 4 (g) + 4HF(g) DH o =? H (g) + F (g) HF (g) C (s) + F (g) CF 4 (g) DH o = -537 kj DH o = -680 kj C (s) + H (g) C H 4 (g) DH o = 5.3 kj Use average bond energies to determine the enthalpy of the following reaction CH 4 (g) + Cl (g) CH 3 Cl (g) + HCl (g) (BE C-Cl = 38 kj/mol) 8

Chapter 5. Thermochemistry

Chapter 5. Thermochemistry Chapter 5. Thermochemistry THERMODYNAMICS - study of energy and its transformations Thermochemistry - study of energy changes associated with chemical reactions Energy - capacity to do work or to transfer

More information

6.1 Some basic principles

6.1 Some basic principles Ch 6 Thermochemistry: Energy Flow and Chemical Change 6.1 Forms of Energy and Their Interconversion 6.2 Enthalpy: Heats of Reaction and Chemical Change 6.3 Calorimetry: Laboratory Measurement of Heats

More information

H 2 (g) + ½ O 2 (g) H 2 O(l) H o f [NO(g)] = 90.2 kj/mol; H o f [H 2 O(g)] = kj/mol H o f [NH 3 (g)] = kj/mol; H o f [O 2 (g)] =?

H 2 (g) + ½ O 2 (g) H 2 O(l) H o f [NO(g)] = 90.2 kj/mol; H o f [H 2 O(g)] = kj/mol H o f [NH 3 (g)] = kj/mol; H o f [O 2 (g)] =? Chapter 16 Thermodynamics GCC CHM152 Thermodynamics You are responsible for Thermo concepts from CHM 151. You may want to review Chapter 8, specifically sections 2, 5, 6, 7, 9, and 10 (except work ). Thermodynamics:

More information

THERMOCHEMISTRY & DEFINITIONS

THERMOCHEMISTRY & DEFINITIONS THERMOCHEMISTRY & DEFINITIONS Thermochemistry is the study of the study of relationships between chemistry and energy. All chemical changes and many physical changes involve exchange of energy with the

More information

Chapter Six. Energy Relationships in Chemical Reactions

Chapter Six. Energy Relationships in Chemical Reactions Chapter Six Energy Relationships in Chemical Reactions 1 Energy (U): Capacity to Do Work Radiant energy Energy from the sun Nuclear energy Energy stored in the nucleus of an atom Thermal energy Energy

More information

Name Date Class THERMOCHEMISTRY. SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510)

Name Date Class THERMOCHEMISTRY. SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510) 17 THERMOCHEMISTRY SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510) This section explains the relationship between energy and heat, and distinguishes between heat capacity and specific heat.

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry I. Nature of Energy Energy units SI unit is joule, J From E = 1/2 mv 2, 1J = 1kg. m 2 /s 2 Traditionally, we use the calorie as a unit of energy. 1 cal = 4.184J (exactly) The

More information

Thermochemistry. Thermochemistry 1/25/2010. Reading: Chapter 5 (omit 5.8) As you read ask yourself

Thermochemistry. Thermochemistry 1/25/2010. Reading: Chapter 5 (omit 5.8) As you read ask yourself Thermochemistry Reading: Chapter 5 (omit 5.8) As you read ask yourself What is meant by the terms system and surroundings? How are they related to each other? How does energy get transferred between them?

More information

Practice Test Questions:

Practice Test Questions: Practice Test Questions: There are a lot of questions. Please feel free to do a problem, skip around and make sure you are doing all types of problems heat exchange, Hess Law problems, specific heat problems,

More information

Bomb Calorimetry. Example 4. Energy and Enthalpy

Bomb Calorimetry. Example 4. Energy and Enthalpy Bomb Calorimetry constant volume often used for combustion reactions heat released by reaction is absorbed by calorimeter contents need heat capacity of calorimeter q cal = q rxn = q bomb + q water Example

More information

Thermochemistry. Chapter 6. Concept Check 6.1. Concept Check 6.2. Solution

Thermochemistry. Chapter 6. Concept Check 6.1. Concept Check 6.2. Solution Chapter 6 Thermochemistry Concept Check 6.1 A solar-powered water pump has photovoltaic cells on protruding top panels. These cells collect energy from sunlight, storing it momentarily in a battery, which

More information

Example: orange juice from frozen concentrate.

Example: orange juice from frozen concentrate. Dilution: a process in which the concentration (molarity) of a solution is lowered. The amount of solute (atoms, moles, grams, etc.) remains the same, but the volume is increased by adding more solvent.

More information

ENERGY. Thermochemistry. Heat. Temperature & Heat. Thermometers & Temperature. Temperature & Heat. Energy is the capacity to do work.

ENERGY. Thermochemistry. Heat. Temperature & Heat. Thermometers & Temperature. Temperature & Heat. Energy is the capacity to do work. ENERGY Thermochemistry Energy is the capacity to do work. Chapter 6 Kinetic Energy thermal, mechanical, electrical, sound Potential Energy chemical, gravitational, electrostatic Heat Heat, or thermal energy,

More information

Chapter 5 Thermo. Energy & Chemistry. Energy & Chemistry. Units of Energy. Energy & Chemistry. Potential & Kinetic Energy. Some Basic Principles

Chapter 5 Thermo. Energy & Chemistry. Energy & Chemistry. Units of Energy. Energy & Chemistry. Potential & Kinetic Energy. Some Basic Principles 1 Energy & Chemistry effrey Mack California State University, Sacramento Chapter 5 Principles of Chemical Reactivity: Energy and Chemical Reactions Questions that need to be addressed: How do we measure

More information

Unit 14 Thermochemistry

Unit 14 Thermochemistry Unit 14 Thermochemistry Name May 5 6 Unit 13 Acids and Bases Test Intro to Thermochemistry Videos (p.2-3) HW: p. 4-5 9 10 11 12 13 Thermochemistry Interpret graphs Heat of reaction & Specific Heat Heat

More information

CHEMISTRY Practice exam #4 answer key October 16, 2007

CHEMISTRY Practice exam #4 answer key October 16, 2007 CHEMISTRY 123-01 Practice exam #4 answer key October 16, 2007 1. An endothermic reaction causes the surroundings to a. warm up. b. become acidic. c. condense. 2. Which of the following is an example of

More information

3. Of energy, work, enthalpy, and heat, how many are state functions? a) 0 b) 1 c) 2 d) 3 e) 4 ANS: c) 2 PAGE: 6.1, 6.2

3. Of energy, work, enthalpy, and heat, how many are state functions? a) 0 b) 1 c) 2 d) 3 e) 4 ANS: c) 2 PAGE: 6.1, 6.2 1. A gas absorbs 0.0 J of heat and then performs 15.2 J of work. The change in internal energy of the gas is a) 24.8 J b) 14.8 J c) 55.2 J d) 15.2 J ANS: d) 15.2 J PAGE: 6.1 2. Calculate the work for the

More information

Chapter 6: Thermochemistry (Chemical Energy) (Ch6 in Chang, Ch6 in Jespersen)

Chapter 6: Thermochemistry (Chemical Energy) (Ch6 in Chang, Ch6 in Jespersen) Chapter 6: Thermochemistry (Chemical Energy) (Ch6 in Chang, Ch6 in Jespersen) Energy is defined as the capacity to do work, or transfer heat. Work (w) - force (F) applied through a distance. Force - any

More information

Chapter 5 Energy Relationships in Chemistry: Thermochemistry

Chapter 5 Energy Relationships in Chemistry: Thermochemistry Chapter 5 Energy Relationships in Chemistry: Thermochemistry In order to study thermochemical changes, we first have to define (a) system that specify part of the universe of interest to us. (b) surrounding

More information

Chemistry Thermochemistry Lesson 10 Lesson Plan David V. Fansler

Chemistry Thermochemistry Lesson 10 Lesson Plan David V. Fansler Chemistry Thermochemistry Lesson 10 Lesson Plan David V. Fansler The Flow of Energy-Heat Objectives: Explain the relationship between energy and heat; Distinguish between heat capacity and specific heat.

More information

Name: Thermochemistry. Practice Test B. General Chemistry Honors Chemistry

Name: Thermochemistry. Practice Test B. General Chemistry Honors Chemistry Name: Thermochemistry B Practice Test B General Chemistry Honors Chemistry 1 Objective 1: Use the relationship between mass, specific heat, and temperature change to calculate the heat flow during a chemical

More information

HEAT, TEMPERATURE, & THERMAL ENERGY

HEAT, TEMPERATURE, & THERMAL ENERGY HEAT, TEMPERATURE, & THERMAL ENERGY Energy A property of matter describing the ability to do. Work - is done when an object is moved through a distance by a force acting on the object. Kinetic Energy Associated

More information

Enthalpy changes and calorimetry. Enthalpy changes in reactions Calorimetry and heat measurement Hess s Law Heats of formation

Enthalpy changes and calorimetry. Enthalpy changes in reactions Calorimetry and heat measurement Hess s Law Heats of formation Enthalpy changes and calorimetry Enthalpy changes in reactions Calorimetry and heat measurement Hess s Law Heats of formation Learning objectives Describe the standard state for thermodynamic functions

More information

The Relationships Between. Internal Energy, Heat, Enthalpy, and Calorimetry

The Relationships Between. Internal Energy, Heat, Enthalpy, and Calorimetry The Relationships Between Internal Energy, Heat, Enthalpy, and Calorimetry Recap of Last Class Last class, we began our discussion about energy changes that accompany chemical reactions Chapter 5 discusses:

More information

AP* Chemistry THERMOCHEMISTRY

AP* Chemistry THERMOCHEMISTRY AP* Chemistry THERMOCHEMISTRY Terms for you to learn that will make this unit understandable: Energy (E) the ability to do work or produce heat ; the sum of all potential and kinetic energy in a system

More information

Heats of Transition, Heats of Reaction, Specific Heats, and Hess s Law

Heats of Transition, Heats of Reaction, Specific Heats, and Hess s Law Heats of Transition, Heats of Reaction, Specific Heats, and Hess s Law GOAL AND OVERVIEW A simple calorimeter will be made and calibrated. It will be used to determine the heat of fusion of ice, the specific

More information

ENTHALPY CHANGES FOR A CHEMICAL REACTION scaling a rxn up or down (proportionality) quantity 1 from rxn heat 1 from Δ r H. = 32.

ENTHALPY CHANGES FOR A CHEMICAL REACTION scaling a rxn up or down (proportionality) quantity 1 from rxn heat 1 from Δ r H. = 32. CHEMISTRY 103 Help Sheet #10 Chapter 4 (Part II); Sections 4.6-4.10 Do the topics appropriate for your lecture Prepared by Dr. Tony Jacob http://www.chem.wisc.edu/areas/clc (Resource page) Nuggets: Enthalpy

More information

Energy and Chemical Reactions. Characterizing Energy:

Energy and Chemical Reactions. Characterizing Energy: Energy and Chemical Reactions Energy: Critical for virtually all aspects of chemistry Defined as: We focus on energy transfer. We observe energy changes in: Heat Transfer: How much energy can a material

More information

Name: Thermochemistry. Practice Test A. General Chemistry Honors Chemistry

Name: Thermochemistry. Practice Test A. General Chemistry Honors Chemistry Name: Thermochemistry Practice Test A General Chemistry Honors Chemistry 1 Objective 1: Use the relationship between mass, specific heat, and temperature change to calculate the heat flow during a chemical

More information

CHAPTER 17: THERMOCHEMISTRY. Heat vs. Temperature. Heat vs. Temperature. q = mc T. Heat Capacity vs. Specific Heat

CHAPTER 17: THERMOCHEMISTRY. Heat vs. Temperature. Heat vs. Temperature. q = mc T. Heat Capacity vs. Specific Heat CHAPTER 17: THERMOCHEMISTRY Page 504 539 Heat vs. Temperature ATOM Heat energy= Kinetic energy SUBSTANCE Heat energy = TOTAL Kinetic energy of all atoms in a substance Temperature = AVERAGE Kinetic energy

More information

Thermodynamics. Energy can be used * to provide heat * for mechanical work * to produce electric work * to sustain life

Thermodynamics. Energy can be used * to provide heat * for mechanical work * to produce electric work * to sustain life Thermodynamics Energy can be used * to provide heat * for mechanical work * to produce electric work * to sustain life Thermodynamics is the study of the transformation of energy into heat and for doing

More information

Chapter 7 Energy and Chemical Change: Breaking and Making Bonds

Chapter 7 Energy and Chemical Change: Breaking and Making Bonds Multiple Choice Chapter 7 Energy and Chemical Change: Breaking and Making Bonds Section 7.1 1. Which one of the following is a unit of energy, but not an SI unit of energy? a. joule b. newton c. pascal

More information

Thermochemical equations allow stoichiometric calculations.

Thermochemical equations allow stoichiometric calculations. CHEM 1105 THERMOCHEMISTRY 1. Change in Enthalpy ( H) Heat is evolved or absorbed in all chemical reactions. Exothermic reaction: heat evolved - heat flows from reaction mixture to surroundings; products

More information

3A Energy. What is chemical energy?

3A Energy. What is chemical energy? 3A Energy What is chemical energy? Chemical energy is a form of potential energy which is stored in chemical bonds. Chemical bonds are the attractive forces that bind atoms together. As a reaction takes

More information

UNIT 1 THERMOCHEMISTRY

UNIT 1 THERMOCHEMISTRY UNIT 1 THERMOCHEMISTRY THERMOCHEMISTRY LEARNING OUTCOMES Students will be expected to: THERMOCHEMISTRY STSE analyse why scientific and technological activities take place in a variety individual and group

More information

CHAPTER 6 THERMOCHEMISTRY

CHAPTER 6 THERMOCHEMISTRY Chapter 6 Thermochemistry Page 1 CHAPTER 6 THERMOCHEMISTRY 6-1. The standard state of an element or compound is determined at a pressure of and a temperature of. (a) 760 atm, 0 o C (b) 1 mmhg, 273 o C

More information

Example. c. Calculate the amount of heat (in kj) required to heat 1.00 kg (~1 L) of water at 25 C to its boiling point.

Example. c. Calculate the amount of heat (in kj) required to heat 1.00 kg (~1 L) of water at 25 C to its boiling point. Example When consuming an ice-cold drink, one must raise the temperature of the beverage to 37.0 C (normal body temperature). Can one lose weight by drinking ice-cold beverages if the body uses up about

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry 1. The ΔE of a system that releases 14.4 J of heat and does 4.8 J of work on the surroundings is J. (a). 19.2 J (b). 14.4 J (c). 4.8 J (d). - 19.2 J Explanation: The ΔE can be

More information

Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson

Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson Thermochemistry r2 d:\files\courses\1110-20\99heat&thermorans.doc Ron Robertson I. What is Energy? A. Energy is a property of matter that allows work to be done B. Potential and Kinetic Potential energy

More information

CHEM 1411, chapter 6. Thermochemistry Exercises

CHEM 1411, chapter 6. Thermochemistry Exercises CHEM 1411, chapter 6. Thermochemistry Exercises 1. The heat capacity of 20.0 g of water is 83.7 J/ C. A) True B) False 2. Find the heat absorbed from the surroundings when 15 g of O 2 reacts according

More information

Chapter 6 Quantities in Chemical Reactions

Chapter 6 Quantities in Chemical Reactions Chapter 6 Quantities in Chemical Reactions The Meaning of a Balanced Chemical Equation Mole-Mole Conversions Mass-Mass Conversions Limiting Reactants Percent Yield Energy Changes Copyright The McGraw-Hill

More information

System. System, Boundary and surroundings: Nature of heat and work: Sign convention of heat: Unit-7 Thermodynamics

System. System, Boundary and surroundings: Nature of heat and work: Sign convention of heat: Unit-7 Thermodynamics Unit-7 Thermodynamics Introduction: The term Thermo means heat and dynamics means flow or movement.. So thermodynamics is concerned with the flow of heat. The different forms of the energy are interconvertible

More information

1. Thermite reaction 2. Enthalpy of reaction, H 3. Heating/cooling curves and changes in state 4. More thermite thermodynamics

1. Thermite reaction 2. Enthalpy of reaction, H 3. Heating/cooling curves and changes in state 4. More thermite thermodynamics Chem 105 Fri 10-23-09 1. Thermite reaction 2. Enthalpy of reaction, H 3. Heating/cooling curves and changes in state 4. More thermite thermodynamics 10/23/2009 1 Please PICK UP your graded EXAM in front.

More information

CHEMISTRY 110 Assignment #3 - answers 2011.

CHEMISTRY 110 Assignment #3 - answers 2011. 1. Titanium metal is used as a structural material in many high tech applications such as in jet engines. What is the specific heat of titanium in J/() if it takes 89.7 J to raise the temperature of a

More information

Chapter 16 Review Packet

Chapter 16 Review Packet Chapter 16 Review Packet AP Chemistry Chapter 16 Practice Multiple Choice Portion 1. For which process is ΔS negative? Note: ΔS = S final S initial therefore, if ΔS is positive, S final > S initial if

More information

Thermodynamics- Chapter 19 Schedule and Notes

Thermodynamics- Chapter 19 Schedule and Notes Thermodynamics- Chapter 19 Schedule and Notes Date Topics Video cast DUE Assignment during class time One Review of thermodynamics 1_thermo_review AND Review of thermo Wksheet 2.1ch19_intro Optional: 1sc_thermo

More information

Standard States. Standard Enthalpy of formation

Standard States. Standard Enthalpy of formation Standard States In any thermochemical equation, the states of all reactants and products must be specified; otherwise it becomes difficult for scientists to understand the experimental results of other

More information

Chemistry 102 Chapter 17 THERMODYNAMICS

Chemistry 102 Chapter 17 THERMODYNAMICS THERMODYNAMICS Thermodynamics is concerned with the energy changes that accompany chemical and physical processes. Two conditions must be fulfilled in order to observe a chemical or physical change: The

More information

Thermodynamics Review

Thermodynamics Review Thermodynamics Review 1. According to Reference Table I, the dissolving of NH 4Cl(s) in water is 1) exothermic and the heat of reaction is negative 2) exothermic and the heat of reaction is positive 3)

More information

1/7/2013. Chapter 10. Energy Changes in Chemical Reactions. Chemistry: Atoms First Julia Burdge & Jason Overby. Thermochemistry

1/7/2013. Chapter 10. Energy Changes in Chemical Reactions. Chemistry: Atoms First Julia Burdge & Jason Overby. Thermochemistry /7/03 Chemistry: Atoms First Julia Burdge & Jason Overby 0 Thermochemistry Chapter 0 Energy Changes in Chemical Reactions Kent L. McCorkle Cosumnes River College Sacramento, CA Copyright (c) The McGraw-Hill

More information

EXPERIMENT 9. Thermochemistry: Hess Law and the Heat of Formation of MgO

EXPERIMENT 9. Thermochemistry: Hess Law and the Heat of Formation of MgO Outcomes EXPERIMENT 9 Thermochemistry: Hess Law and the Heat of Formation of MgO After completing this experiment, the student should be able to: 1. Differentiate between exothermic and endothermic reactions.

More information

STOICHIOMETRY. - the study of the quantitative aspects of chemical

STOICHIOMETRY. - the study of the quantitative aspects of chemical STOICHIOMETRY - the study of the quantitative aspects of chemical GENERAL PLAN FOR STOICHIOMETRY Mass reactant Mass product Moles reactant Stoichiometric factor Moles product STOICHIOMETRY It rests on

More information

Unit 5 Practice Test. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Unit 5 Practice Test. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Unit 5 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The internal energy of a system is always increased by. A) adding

More information

Chem 1A Exam 2 Review Problems

Chem 1A Exam 2 Review Problems Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?

More information

Thermodynamics: First Law, Calorimetry, Enthalpy. Calorimetry. Calorimetry: constant volume. Monday, January 23 CHEM 102H T.

Thermodynamics: First Law, Calorimetry, Enthalpy. Calorimetry. Calorimetry: constant volume. Monday, January 23 CHEM 102H T. Thermodynamics: First Law, Calorimetry, Enthalpy Monday, January 23 CHEM 102H T. Hughbanks Calorimetry Reactions are usually done at either constant V (in a closed container) or constant P (open to the

More information

CHEMISTRY 3310 PROBLEM SHEET #4

CHEMISTRY 3310 PROBLEM SHEET #4 CHEMISTRY 3310 PROBLEM SHEET #4 1. The specific heats of a number of materials are listed below. Calculate the molar heat capacity for each. (a) gold, (b) rust (Fe 2 O 3 ) (c) sodium chloride 2. Calculate

More information

Chapter 14. CHEMICAL EQUILIBRIUM

Chapter 14. CHEMICAL EQUILIBRIUM Chapter 14. CHEMICAL EQUILIBRIUM 14.1 THE CONCEPT OF EQUILIBRIUM AND THE EQUILIBRIUM CONSTANT Many chemical reactions do not go to completion but instead attain a state of chemical equilibrium. Chemical

More information

DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3

DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3 DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3 Standard Enthalpy Change Standard Enthalpy Change for a reaction, symbolized as H 0 298, is defined as The enthalpy change when the molar quantities of reactants

More information

Chemical Equations C5.6b Predict single replacement reactions.

Chemical Equations C5.6b Predict single replacement reactions. Chemistry 2SEM Chemical Equations C5.6b Predict single replacement reactions. Common Assessment Review Predict the following single replacement reactions: a. Zn + Pb(C2H3O2)2 ----> Pb + Zn(C2H3O2)2_ b.

More information

As long as the relative ratios are constant the amounts are correct. Using these ratios to determine quantities is called Stoichiometry.

As long as the relative ratios are constant the amounts are correct. Using these ratios to determine quantities is called Stoichiometry. The Meaning of the Balanced Equation Tuesday, October 11, 2011 2:05 PM The Balanced Equation is a measure of the relative amounts of a compounds that participate in or are produced by a reaction. Since

More information

Introductory Chemistry, 3 rd Edition Nivaldo Tro. Roy Kennedy Massachusetts Bay Community College Wellesley Hills, Maqqwertd ygoijpk[l

Introductory Chemistry, 3 rd Edition Nivaldo Tro. Roy Kennedy Massachusetts Bay Community College Wellesley Hills, Maqqwertd ygoijpk[l Introductory Chemistry, 3 rd Edition Nivaldo Tro Quantities in Car an octane and oxygen molecules and carbon dioxide and water Chemical Reactions Roy Kennedy Massachusetts Bay Community College Wellesley

More information

( )( L L)

( )( L L) Chemistry 360 Dr. Jean M. Standard Problem Set 5 Solutions 1. Determine the amount of pressure-volume work performed by 1 mole of water freezing to ice at 0 C and 1 atm pressure. The density of liquid

More information

Thermodynamics. Thermodynamics 1

Thermodynamics. Thermodynamics 1 Thermodynamics 1 Thermodynamics Some Important Topics First Law of Thermodynamics Internal Energy U ( or E) Enthalpy H Second Law of Thermodynamics Entropy S Third law of Thermodynamics Absolute Entropy

More information

Procedure. Day 1 - Calibration of the Calorimeter. (Part I) The Heat Capacity of the Calorimeter.

Procedure. Day 1 - Calibration of the Calorimeter. (Part I) The Heat Capacity of the Calorimeter. Thermochemistry Experiment 10 Thermochemistry is the study of the heat energy involved in chemical reactions and changes of physical state. Heat energy is always spontaneously transferred from hotter to

More information

ΔU = q + w = q - P ΔV. 3. What are extensive and intensive properties and some examples of each?

ΔU = q + w = q - P ΔV. 3. What are extensive and intensive properties and some examples of each? Worksheet 2 1. Energy and Enthalpy. A system can exchange energy with its surroundings either by transferring heat or by doing work. Using q to represent transferred heat and w = - P ΔV, the total energy

More information

Chapter 12. (a) n = = (10.0 g) = mol; T = = 2.77 K = 2.77 C. T f = T i + T = = 17.8 C. T = = K.

Chapter 12. (a) n = = (10.0 g) = mol; T = = 2.77 K = 2.77 C. T f = T i + T = = 17.8 C. T = = K. 12.1 A system is isolated if it exchanges neither energy nor matter with its surroundings, closed if it exchanges energy but not matter, and open if it exchanges both: (a) Open, energy and matter are constantly

More information

Form A. CORRECT: As gases mix, the disorder or number of microstates with the same energy increases. As a result, entropy increases as well.

Form A. CORRECT: As gases mix, the disorder or number of microstates with the same energy increases. As a result, entropy increases as well. Chem 130 Name Exam 3, Ch 7, 19, and a little 14 November 11, 2011 100 Points Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with

More information

Chemistry B11 Chapter 4 Chemical reactions

Chemistry B11 Chapter 4 Chemical reactions Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl

More information

Enthalpy of Reaction and Calorimetry worksheet

Enthalpy of Reaction and Calorimetry worksheet Enthalpy of Reaction and Calorimetry worksheet 1. Calcium carbonate decomposes at high temperature to form carbon dioxide and calcium oxide, calculate the enthalpy of reaction. CaCO 3 CO 2 + CaO 2. Carbon

More information

CHEM 101 WINTER EXAM II

CHEM 101 WINTER EXAM II CHEM 101 WINTER 09-10 EXAM II On the answer sheet (Scantron) write you name, student ID number, and recitation section number. Choose the best (most correct) answer for each question and enter it on your

More information

CHM1045 Practice Test 3 v.1 - Answers Name Fall 2013 & 2011 (Ch. 5, 6, 7, & part 11) Revised April 10, 2014

CHM1045 Practice Test 3 v.1 - Answers Name Fall 2013 & 2011 (Ch. 5, 6, 7, & part 11) Revised April 10, 2014 CHM1045 Practice Test 3 v.1 - Answers Name Fall 013 & 011 (Ch. 5, 6, 7, & part 11) Revised April 10, 014 Given: Speed of light in a vacuum = 3.00 x 10 8 m/s Planck s constant = 6.66 x 10 34 J s E (-.18x10

More information

Chapter 17 Thermodynamics: Directionality of Chemical Reactions

Chapter 17 Thermodynamics: Directionality of Chemical Reactions Reactant- & Product-Favored Processes John W. Moore Conrad L. Stanitski Peter C. Jurs http://academic.cengage.com/chemistry/moore Chapter 17 hermodynamics: Directionality of Chemical Reactions Why are

More information

The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work.

The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work. The first law: transformation of energy into heat and work Chemical reactions can be used to provide heat and for doing work. Compare fuel value of different compounds. What drives these reactions to proceed

More information

Periodic Table of the Elements

Periodic Table of the Elements Periodic Table of the Elements 1A 8A 1 18 1 2 H 2A 3A 4A 5A 6A 7A He 1.0079 2 13 14 15 16 17 4.0026 3 4 5 6 7 8 9 10 Li Be B C N O F Ne 6.941 9.0122 10.811 12.011 14.0067 15.9994 18.9984 20.1797 11 12

More information

Chapter 20. Thermodynamics p. 811 842. Spontaneity. What have we learned about spontaneity during this course?

Chapter 20. Thermodynamics p. 811 842. Spontaneity. What have we learned about spontaneity during this course? Chapter 20 p. 811 842 Spontaneous process: Ex. Nonspontaneous process: Ex. Spontaneity What have we learned about spontaneity during this course? 1) Q vs. K? 2) So.. Spontaneous process occurs when a system

More information

Name Chemistry / / Melting/Freezing/Boiling & Condensing

Name Chemistry / / Melting/Freezing/Boiling & Condensing Name Chemistry / / Melting/Freezing/Boiling & Condensing As a substance melts, freezes, boils or condenses, heat is either absorbed or released. But, as this change in state occurs, there is no change

More information

Sample Exercise 15.1 Writing Equilibrium-Constant Expressions

Sample Exercise 15.1 Writing Equilibrium-Constant Expressions Sample Exercise 15.1 Writing Equilibrium-Constant Expressions Write the equilibrium expression for K c for the following reactions: Solution Analyze: We are given three equations and are asked to write

More information

AP Practice Questions

AP Practice Questions 1) AP Practice Questions The tables above contain information for determining thermodynamic properties of the reaction below. C 2 H 5 Cl(g) + Cl 2 (g) C 2 H 4 Cl 2 (g) + HCl(g) (a) Calculate ΔH for

More information

Chemistry Guide

Chemistry Guide 551534 - Chemistry Guide 1- Contents Question Item Objective Type Skill 1 0102 M03.02.04 Multiple-choice answer Mastery of Problem Solving 2 0099 M03.03.02 Multiple-choice answer Mastery of Concepts 3

More information

Enthalpy of Neutralization. Introduction

Enthalpy of Neutralization. Introduction Enthalpy of Neutralization Introduction Energy changes always accompany chemical reactions. If energy, in the form of heat, is liberated the reaction is exothermic and if energy is absorbed the reaction

More information

CH1010 Exam #3 Study Guide For reference see Chemistry: An Atoms-focused Approach by Gilbert, Kirss, and Foster

CH1010 Exam #3 Study Guide For reference see Chemistry: An Atoms-focused Approach by Gilbert, Kirss, and Foster Fall 2016_CH1010_Dr. Kreider-Mueller CH1010 Exam #3 Study Guide For reference see Chemistry: An Atoms-focused Approach by Gilbert, Kirss, and Foster (In addition to this study guide you need to review

More information

Calorimeter: A device in which the heat associated with a specific process is measured.

Calorimeter: A device in which the heat associated with a specific process is measured. 1 CALORIMETRY p. 661-667 (simple), 673-675 (bomb) Calorimeter: A device in which the heat associated with a specific process is measured. There are two basic types of calorimeters: 1. Constant-pressure

More information

Standard Free Energies of Formation at 298 K. Average Bond Dissociation Energies at 298 K

Standard Free Energies of Formation at 298 K. Average Bond Dissociation Energies at 298 K 1 Thermodynamics There always seems to be at least one free response question that involves thermodynamics. These types of question also show up in the multiple choice questions. G, S, and H. Know what

More information

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided. CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas

More information

6. THERMOCHEMISTRY. Solutions to Exercises

6. THERMOCHEMISTRY. Solutions to Exercises 6. THERMOCHEMISTRY Solutions to Eercises Note on significant figures: If the final answer to a solution needs to be rounded off, it is given first with one nonsignificant figure, and the last significant

More information

Chapter 5: thermochemstry. Internal Energy: E

Chapter 5: thermochemstry. Internal Energy: E Chapter 5: thermochemstry tonight s goals Energy and Enthalpy Review Enthalpies of Reaction Calorimetry Hess Law Enthalpies of Formation Internal Energy: E E = The sum of all kinetic and potential energies

More information

Chemistry Final Exam Review

Chemistry Final Exam Review Name: Date: Block: Chemistry Final Exam Review 2012-2013 Unit 1: Measurement, Numbers, Scientific Notation, Conversions, Dimensional Analysis 1. Write 0.000008732 in scientific notation 8.732x10-6 2. Write

More information

Section 7.1 Describing Reactions (pages )

Section 7.1 Describing Reactions (pages ) Section 7.1 Describing Reactions (pages 192 198) This section discusses the use of chemical equations and how to balance them. It also demonstrates the use of calculations in chemistry. Reading Strategy

More information

Rate of Reaction and the Collision Theory. Factors that Affect the Rate of a Chemical Reaction

Rate of Reaction and the Collision Theory. Factors that Affect the Rate of a Chemical Reaction Chemical Kinetics and Thermodynamics Chemical Kinetics- concerned with: 1. Rates of Chemical Reactions- # of moles of reactant used up or product formed Unit time Or 2. Reaction Mechanisms- Rate of Reaction

More information

5 Answers and Solutions to Text Problems

5 Answers and Solutions to Text Problems Energy and States of Matter 5 Answers and Solutions to Text Problems 5.1 At the top of the hill, all of the energy of the car is in the form of potential energy. As it descends down the hill, potential

More information

2. A process that releases heat into the surroundings is called. A process that can be reversed by an infinitesimal change in a parameter

2. A process that releases heat into the surroundings is called. A process that can be reversed by an infinitesimal change in a parameter Sample quiz and test questions Chapter 2. I. Terms and short answers 1. A system that can exchange neither matter nor energy with its surroundings is called isolated 2. A process that releases heat into

More information

Chapter 8 Basic Concepts of Chemical Bonding

Chapter 8 Basic Concepts of Chemical Bonding Chapter 8 Basic Concepts of Chemical Bonding Why do TiCl 4 and TiCl 3 have different colors?... different chemical properties?... different physical states? Chemical Bonding and Properties Difference in

More information

Thermodynamics. S (reactants) S S (products) AP Chemistry. Period Date / / R e v i e w. 1. Consider the first ionization of sulfurous acid:

Thermodynamics. S (reactants) S S (products) AP Chemistry. Period Date / / R e v i e w. 1. Consider the first ionization of sulfurous acid: AP Chemistry Thermodynamics 1. Consider the first ionization of sulfurous acid: H 2SO 3(aq) H + (aq) + HSO 3 - (aq) Certain related thermodynamic data are provided below: H 2SO 3(aq) H + (aq) HSO 3 - (aq)

More information

Thermochemistry is study of changes in energy (heat) associated with physical or chemical changes.

Thermochemistry is study of changes in energy (heat) associated with physical or chemical changes. Thermochem 1 Thermochemistry Thermochemistry and Energy and Temperature Thermochemistry is study of changes in energy (heat) associated with physical or chemical changes. Force = push F= m a (mass x acceleration)

More information

Prelab attached (p 8-9) (g)! MgO (s) + heat (1)

Prelab attached (p 8-9) (g)! MgO (s) + heat (1) CHEM 151 ENTHALPY OF FORMATION OF MgO FALL 2008 Fill-in Prelab attached (p 8-9) Stamp Here Name Partner Lecture instructor Date INTRODUCTION Chemical reactions either produce heat as they proceed (exothermic)

More information

Test Review # 9. Chemistry R: Form TR9.13A

Test Review # 9. Chemistry R: Form TR9.13A Chemistry R: Form TR9.13A TEST 9 REVIEW Name Date Period Test Review # 9 Collision theory. In order for a reaction to occur, particles of the reactant must collide. Not all collisions cause reactions.

More information

Chapter 6 Thermodynamics: The First Law

Chapter 6 Thermodynamics: The First Law Key Concepts 6.1 Systems Chapter 6 Thermodynamics: The First Law Systems, States, and Energy (Sections 6.1 6.8) thermodynamics, statistical thermodynamics, system, surroundings, open system, closed system,

More information

2. Predict which of the following spontaneous reactions increase the entropy of the system.

2. Predict which of the following spontaneous reactions increase the entropy of the system. Spontaneity and Entropy DCI Name Section 1. Entropy (S) is a second driving force for chemical reactions. Define the word entropy. How is the sign of S for a chemical reaction interpreted? Entropy is a

More information

Calorimetry and Thermochemistry

Calorimetry and Thermochemistry CHEM 121L General Chemistry Laboratory Revision 1.3 Calorimetry and Thermochemistry Learn how to measure Heat flow. Learn about the Specific Heat of substances. Learn about Exothermic and Endothermic chemical

More information

SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY. 1 (a) Use the data in the table below to answer the following questions:

SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY. 1 (a) Use the data in the table below to answer the following questions: SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY ANSWER SCHEME UPS 2004/2005 SK027 1 (a) Use the data in the table below to answer the following questions: Enthalpy change ΔH (kj/mol) Atomization energy

More information