8 Buoyancy and Stability


 Julie Murphy
 2 years ago
 Views:
Transcription
1 Jianming Yang Fall Buoyancy and Stability 8.1 Archimedes Principle = fluid weight above 2 ABC fluid weight above 1 ADC = weight of fluid equivalent to body volume In general, ( = displaced fluid volume). The line of action is through the centroid of the displaced volume, which is called the center of buoyancy. Example: Oscillating floating block Weight of the block where is displaced water volume by the block and is the specific weight of the liquid, waterline area.
2 058:0160 Chapter 2 Jianming Yang Fall Instantaneous displaced water volume: Solution for this homogeneous linear 2 nd order ODE: Use initial condition ( ) to determine and : Where the angular frequency period Spar Buoy We can increase period by increasing block mass and/or decreasing waterline area. mons/0/03/lateral_view_of_sparbuoy.png
3 Jianming Yang Fall Stability: Immersed Bodies Stable Neutral Unstable Condition for static equilibrium: (1) F v =0 and (2) M=0 Condition (2) is met only when C and G coincide, otherwise we can have either a righting moment (stable) or a heeling moment (unstable) when the body is heeled.
4 Jianming Yang Fall Stability: Floating Bodies For a floating body the situation is slightly more complicated since the center of buoyancy will generally shift when the body is rotated, depending upon the shape of the body and the position in which it is floating. The center of buoyancy (centroid of the displaced volume) shifts laterally to the right for the case shown because part of the original buoyant volume aoc is transferred to a new buoyant volume bod. The point of intersection of the lines of action of the buoyant force before and after heel is called the metacenter M and the distance GM is called the metacentric height. If GM is positive, that is, if M is above G, then the ship is stable; however, if GM is negative, then the ship is unstable.
5 Jianming Yang Fall Consider a ship which has taken a small angle of heel 1. evaluate the lateral displacement of the center of buoyancy, 2. then from trigonometry, we can solve for GM and evaluate the stability of the ship Recall that the center of buoyancy is at the centroid of the displaced volume of fluid (moment of volume about yaxis ship centerplane) This can be evaluated conveniently as follows:
6 058:0160 Chapter 2 Jianming Yang Fall : moment of before heel (goes to zero due to symmetry of original buoyant volume about centerplane) : area moment of inertia of ship waterline about its tilt axis This equation is used to determine the stability of floating bodies: If GM is positive, the body is stable If GM is negative, the body is unstable
7 058:0160 Chapter 2 Jianming Yang Fall Roll The rotation of a ship about the longitudinal axis through the center of gravity. Consider symmetrical ship heeled to a very small angle θ. Solve for the subsequent motion due only to hydrostatic and gravitational forces. Note: recall that, where is the perpendicular distance from to the line of action of : Angular momentum: = mass moment of inertia about long axis through = angular acceleration
8 058:0160 Chapter 2 Jianming Yang Fall For small : Definition of radius of gyration: The solution to equation is, where = the initial heel angle, for no initial velocity, the natural frequency Simple (undamped) harmonic oscillation with period of the motion: Note that large GM decreases the period of roll, which would make for an uncomfortable boat ride (high frequency oscillation). Earlier we found that GM should be positive if a ship is to have transverse stability and, generally speaking, the stability is increased for larger positive GM. However, the present example shows that one encounters a design tradeoff since large GM decreases the period of roll, which makes for an uncomfortable ride.
9 Jianming Yang Fall Case (2): Rigid Body Translation or Rotation In rigid body motion, all particles are in combined translation and/or rotation and there is no relative motion between particles; consequently, there are no strains or strain rates and the viscous term drops out of the NS equation. from which we see that acts in the direction of, and lines of constant pressure must be perpendicular to this direction (by definition, is perpendicular to const.). For the general case of rigid body translation/rotation of fluid shown in the figure, if the center of rotation is at where, the velocity of any arbitrary point is: where = the angular velocity vector, and the acceleration is: First term = acceleration of Second term = centripetal acceleration of relative to Third term = linear acceleration of due to Usually, all these terms are not present. In fact, fluids can rarely move in rigid body motion unless restrained by confining walls for a long time.
10 Jianming Yang Fall Uniform Linear Acceleration [ ] 1., increase in 2., decrease in 1., decrease in 2. and, decrease in 3. and, increase in Unit vector in the direction of : [ ] Lines of constant pressure are perpendicular to. Angle between the surface of constant pressure and the axes:. In general the rate of increase of pressure in the direction [ ] is given by: gage pressure
11 Jianming Yang Fall Rigid Body Rotation Consider rotation of the fluid about the axis without any translation. and The constant is determined by specifying the pressure at one point; say, at (Note: Pressure is linear in and parabolic in ) Curves of constant pressure are given by: which are paraboloids of revolution, concave upward, with their minimum points on the axis of rotation.
12 Jianming Yang Fall The position of the free surface is found, as it is for linear acceleration, by conserving the volume of fluid. Unit vector in the direction of : [ ] Slope of :. ( is the angle between the surface of constant pressure and the axis) i.e., ( ) is the equation of surfaces.
13 Jianming Yang Fall Case (3): Pressure Distribution in Irrotational Flow Potential flow solutions also solutions of NS under such conditions: 1. If viscous effects are neglected, NavierStokes equation becomes Euler equation: 2. If, 3. Assume a steady flow: ( ) ( ) Vector calculus identity: ( ) ( ) ( ) ( ) Consider: perpendicular to, also perpendicular to and. Stream lines : ; vortex lines : Therefore, contains streamlines and vortex lines:
14 Jianming Yang Fall Assuming irrotational flow: (everywhere same constant) 2. Unsteady irrotational flow ( ) is a timedependent constant. Alternate derivation using streamline coordinates: [ ] [ ]
15 Jianming Yang Fall Time increment: Space increment: [ ] [ ] : local in the direction of flow : local normal to the direction of flow : convective due to convergence/divergence of streamlines : normal due to streamline curvature Euler Equation: Steady flow direction equation: ( ), i.e., B=const. along streamline Steady flow direction equation: across streamline
Fig. 9: an immersed body in a fluid, experiences a force equal to the weight of the fluid it displaces.
Buoyancy Archimedes s 1 st laws of buoyancy: A body immersed in a fluid experiences a vertical buoyant force equal to the weight of the fluid it displaces, see Fig. 9 and 10. Fig. 9: an immersed body in
More informationCE 204 FLUID MECHANICS
CE 204 FLUID MECHANICS Onur AKAY Assistant Professor Okan University Department of Civil Engineering Akfırat Campus 34959 TuzlaIstanbul/TURKEY Phone: +902166771630 ext.1974 Fax: +902166771486 Email:
More informationExperiment (2): Metacentric height of floating bodies
Experiment (2): Metacentric height of floating bodies Introduction: The Stability of any vessel which is to float on water, such as a pontoon or ship, is of paramount importance. The theory behind the
More informationEXPERIMENT (2) BUOYANCY & FLOTATION (METACENTRIC HEIGHT)
EXPERIMENT (2) BUOYANCY & FLOTATION (METACENTRIC HEIGHT) 1 By: Eng. Motasem M. Abushaban. Eng. Fedaa M. Fayyad. ARCHIMEDES PRINCIPLE Archimedes Principle states that the buoyant force has a magnitude equal
More informationCH205: Fluid Dynamics
CH05: Fluid Dynamics nd Year, B.Tech. & Integrated Dual Degree (Chemical Engineering) Solutions of Mid Semester Examination Data Given: Density of water, ρ = 1000 kg/m 3, gravitational acceleration, g
More informationApplied Fluid Mechanics
Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 6. Flow of Fluid and Bernoulli s Equation 7.
More informationFigure 1 Different parts of experimental apparatus.
Objectives Determination of center of buoyancy Determination of metacentric height Investigation of stability of floating objects Apparatus The unit shown in Fig. 1 consists of a pontoon (1) and a water
More informationWhen the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.
Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs
More informationLecture L222D Rigid Body Dynamics: Work and Energy
J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L  D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L3 for
More informationDifferential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
More informationChapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.
Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems
More informationCHAPTER 3. Static Forces on Surfaces Buoyancy. Dr Yunes Mogheir
CHAPTER 3 Static Forces on Surfaces Buoyancy A Dr Yunes Mogheir ١ B C OBJECTIVES 1. Compute the hydrostatic pressures and forces on submerged surfaces in a static fluid. 2. Use the principle of static
More informationHW 7 Q 14,20,20,23 P 3,4,8,6,8. Chapter 7. Rotational Motion of the Object. Dr. Armen Kocharian
HW 7 Q 14,20,20,23 P 3,4,8,6,8 Chapter 7 Rotational Motion of the Object Dr. Armen Kocharian Axis of Rotation The radian is a unit of angular measure The radian can be defined as the arc length s along
More informationChapter 5: Distributed Forces; Centroids and Centers of Gravity
CE297FA09Ch5 Page 1 Wednesday, October 07, 2009 12:39 PM Chapter 5: Distributed Forces; Centroids and Centers of Gravity What are distributed forces? Forces that act on a body per unit length, area or
More informationCh.8 Rotational Equilibrium and Rotational Dynamics.
Ch.8 Rotational Equilibrium and Rotational Dynamics. Conceptual question # 1, 2, 9 Problems# 1, 3, 7, 9, 11, 13, 17, 19, 25, 28, 33, 39, 43, 47, 51, 55, 61, 79 83 Torque Force causes acceleration. Torque
More informationPhysics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
More informationChapter 6 MOMENTUM ANALYSIS OF FLOW SYSTEMS
Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGrawHill, 2010 Chapter 6 MOMENTUM ANALYSIS OF FLOW SYSTEMS Lecture slides by Hasan Hacışevki Copyright The
More informationAngular velocity. Angular velocity measures how quickly the object is rotating. Average angular velocity. Instantaneous angular velocity
Angular velocity Angular velocity measures how quickly the object is rotating. Average angular velocity Instantaneous angular velocity Two coins rotate on a turntable. Coin B is twice as far from the axis
More informationSafety practices related to small fishing vessel stability
8 TRANSVERSE STABILITY When a vessel is floating upright (at equilibrium) in still water, the centre of buoyancy (upthrust) and the centre of gravity (downthrust) will be on the same line, vertically above
More informationPhysics 53. Rotational Motion 1. We're going to turn this team around 360 degrees. Jason Kidd
Physics 53 Rotational Motion 1 We're going to turn this team around 360 degrees. Jason Kidd Rigid bodies To a good approximation, a solid object behaves like a perfectly rigid body, in which each particle
More informationphysics 111N rotational motion
physics 111N rotational motion rotations of a rigid body! suppose we have a body which rotates about some axis! we can define its orientation at any moment by an angle, θ (any point P will do) θ P physics
More informationCBE 6333, R. Levicky 1. Potential Flow
CBE 6333, R. Levicky Part I. Theoretical Background. Potential Flow Potential Flow. Potential flow is irrotational flow. Irrotational flows are often characterized by negligible viscosity effects. Viscous
More information3D Dynamics of Rigid Bodies
3D Dynamics of Rigid Bodies Introduction of third dimension :: Third component of vectors representing force, linear velocity, linear acceleration, and linear momentum :: Two additional components for
More informationAPPLIED MATHEMATICS ADVANCED LEVEL
APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications
More informationChapter 8 Rotational Motion
Chapter 8 Rotational Motion Textbook (Giancoli, 6 th edition): Assignment 9 Due on Thursday, November 26. 1. On page 131 of Giancoli, problem 18. 2. On page 220 of Giancoli, problem 24. 3. On page 221
More informationPeople s Physics book 3e Ch 251
The Big Idea: In most realistic situations forces and accelerations are not fixed quantities but vary with time or displacement. In these situations algebraic formulas cannot do better than approximate
More informationPC1221 Fundamentals of Physics I Inertia Wheel
PC1221 Fundamentals of Physics I Inertia Wheel 1 Purpose Determination of the angular acceleration of the inertial wheel as a function of the applied torque Determination of the moment of inertia I of
More informationForces. using a consistent system of units, such as the metric system, we can define force as:
Forces Force: physical property which causes masses to accelerate (change of speed or direction) a push or pull vector possessing both a magnitude and a direction and adds according to the Parallelogram
More informationExperiment #4 Sugar in Soft Drinks and Fruit Juices. Laboratory Overview CHEM 1361. August 2010
Experiment #4 Sugar in Soft Drinks and Fruit Juices Laboratory Overview CHEM 1361 August 2010 Gary S. Buckley, Ph.D. Department of Physical Sciences Cameron University Learning Objectives Relate density
More informationPHYS 1014M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
PHYS 1014M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in
More informationFirst Semester Learning Targets
First Semester Learning Targets 1.1.Can define major components of the scientific method 1.2.Can accurately carry out conversions using dimensional analysis 1.3.Can utilize and convert metric prefixes
More informationNo Brain Too Small PHYSICS. 2 kg
MECHANICS: ANGULAR MECHANICS QUESTIONS ROTATIONAL MOTION (2014;1) Universal gravitational constant = 6.67 10 11 N m 2 kg 2 (a) The radius of the Sun is 6.96 10 8 m. The equator of the Sun rotates at a
More informationPhysics 1A Lecture 10C
Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. Oprah Winfrey Static Equilibrium
More informationLecture 14. More on rotation. Rotational Kinematics. Rolling Motion. Torque. Cutnell+Johnson: , 9.1. More on rotation
Lecture 14 More on rotation Rotational Kinematics Rolling Motion Torque Cutnell+Johnson: 8.18.6, 9.1 More on rotation We ve done a little on rotation, discussing objects moving in a circle at constant
More informationOpenStaxCNX module: m Angular velocity. Sunil Kumar Singh. 1 General interpretation of angular quantities
OpenStaxCNX module: m14314 1 Angular velocity Sunil Kumar Singh This work is produced by OpenStaxCNX and licensed under the Creative Commons Attribution License 2.0 Abstract Angular quantities are not
More information9.1 Rotational Kinematics: Angular Velocity and Angular Acceleration
Ch 9 Rotation 9.1 Rotational Kinematics: Angular Velocity and Angular Acceleration Q: What is angular velocity? Angular speed? What symbols are used to denote each? What units are used? Q: What is linear
More informationSimple Harmonic Motion Concepts
Simple Harmonic Motion Concepts INTRODUCTION Have you ever wondered why a grandfather clock keeps accurate time? The motion of the pendulum is a particular kind of repetitive or periodic motion called
More informationCircular Motion. We will deal with this in more detail in the Chapter on rotation!
Circular Motion I. Circular Motion and Polar Coordinates A. Consider the motion of ball on a circle from point A to point B as shown below. We could describe the path of the ball in Cartesian coordinates
More informationPhysics 271, Sections H1 & H2 Thursday, Nov 20, 2014
Physics 271, Sections H1 & H2 Thursday, Nov 20, 2014 Problems #11 Oscillations 1) Consider a mass spring system, with mass M and spring constant k. We put a mass m on top of the mass M. The coefficient
More informationPhys 111 Fall P111 Syllabus
Phys 111 Fall 2012 Course structure Five sections lecture time 150 minutes per week Textbook Physics by James S. Walker fourth edition (Pearson) Clickers recommended Coursework Complete assignments from
More informationExemplar Problems Physics
Chapter Eight GRAVITATION MCQ I 8.1 The earth is an approximate sphere. If the interior contained matter which is not of the same density everywhere, then on the surface of the earth, the acceleration
More informationLecture 15. Torque. Center of Gravity. Rotational Equilibrium. Cutnell+Johnson:
Lecture 15 Torque Center of Gravity Rotational Equilibrium Cutnell+Johnson: 9.19.3 Last time we saw that describing circular motion and linear motion is very similar. For linear motion, we have position
More information2 rad c. π rad d. 1 rad e. 2π rad
Name: Class: Date: Exam 4PHYS 101F14 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel, initially at rest, rotates with a constant acceleration
More informationPhysics 211 Week 12. Simple Harmonic Motion: Equation of Motion
Physics 11 Week 1 Simple Harmonic Motion: Equation of Motion A mass M rests on a frictionless table and is connected to a spring of spring constant k. The other end of the spring is fixed to a vertical
More informationChapter 3 Ideal Fluid Flow
2.20  Marine Hydrodynamics, Spring 2005 Lecture 7 2.20  Marine Hydrodynamics Lecture 7 Chapter 3 Ideal Fluid Flow The structure of Lecture 7 has as follows: In paragraph 3.0 we introduce the concept
More informationContents. Microfluidics  Jens Ducrée Physics: NavierStokes Equation 1
Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. InkJet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors
More informationChapter 07: Kinetic Energy and Work
Chapter 07: Kinetic Energy and Work Conservation of Energy is one of Nature s fundamental laws that is not violated. Energy can take on different forms in a given system. This chapter we will discuss work
More informationDIPLOMA IN ENGINEERING I YEAR I SEMESTER ENGINEERING PHYSICS  I
GOVERNMENT OF TAMILNADU DIRECTORATE OF TECHNICAL EDUCATION DIPLOMA IN ENGINEERING I YEAR SEMESTER SYSTEM L  SCHEME 20112012 I SEMESTER ENGINEERING PHYSICS  I CURRICULUM DEVELOPMENT CENTER STATE BOARD
More informationPHYS 211 FINAL FALL 2004 Form A
1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each
More informationHigher Technological Institute Civil Engineering Department. Lectures of. Fluid Mechanics. Dr. Amir M. Mobasher
Higher Technological Institute Civil Engineering Department Lectures of Fluid Mechanics Dr. Amir M. Mobasher 1/14/2013 Fluid Mechanics Dr. Amir Mobasher Department of Civil Engineering Faculty of Engineering
More informationF mg (10.1 kg)(9.80 m/s ) m
Week 9 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationUnit (Section 3) Represent and analyze the motion of an object graphically. Analyze the speed of two objects in terms of distance and time
Curriculum: Physics A Curricular Unit: One Dimensional Kinematics Instructional Unit: A. Describe the relationship of an object s position, velocity and acceleration over time when it moves in one dimension
More informationCircular Motion. Physics 1425 Lecture 18. Michael Fowler, UVa
Circular Motion Physics 1425 Lecture 18 Michael Fowler, UVa How Far is it Around a Circle? A regular hexagon (6 sides) can be made by putting together 6 equilateral triangles (all sides equal). The radius
More informationRotation, Rolling, Torque, Angular Momentum
Halliday, Resnick & Walker Chapter 10 & 11 Rotation, Rolling, Torque, Angular Momentum Physics 1A PHYS1121 Professor Michael Burton Rotation 101 Rotational Variables! The motion of rotation! The same
More informationLet s first see how precession works in quantitative detail. The system is illustrated below: ...
lecture 20 Topics: Precession of tops Nutation Vectors in the body frame The free symmetric top in the body frame Euler s equations The free symmetric top ala Euler s The tennis racket theorem As you know,
More information3.6 Solving Problems Involving Projectile Motion
INTRODUCTION 12 Physics and its relation to other fields introduction of physics, its importance and scope 15 Units, standards, and the SI System description of the SI System description of base and
More informationForce on Moving Charges in a Magnetic Field
[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after
More informationdu u U 0 U dy y b 0 b
BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:
More informationConcept Review. Physics 1
Concept Review Physics 1 Speed and Velocity Speed is a measure of how much distance is covered divided by the time it takes. Sometimes it is referred to as the rate of motion. Common units for speed or
More informationChapter 3: Pressure and Fluid Statics
Pressure Pressure is defined as a normal force exerted by a fluid per unit area. Units of pressure are N/m 2, which is called a pascal (Pa). Since the unit Pa is too small for pressures encountered in
More informationRotational Mechanics  1
Rotational Mechanics  1 The Radian The radian is a unit of angular measure. The radian can be defined as the arc length s along a circle divided by the radius r. s r Comparing degrees and radians 360
More informationLecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6
Lecture 16 Newton s Second Law for Rotation Moment of Inertia Angular momentum Cutnell+Johnson: 9.4, 9.6 Newton s Second Law for Rotation Newton s second law says how a net force causes an acceleration.
More informationm i: is the mass of each particle
Center of Mass (CM): The center of mass is a point which locates the resultant mass of a system of particles or body. It can be within the object (like a human standing straight) or outside the object
More informationPractice final for Basic Physics spring 2005 answers on the last page Name: Date:
Practice final for Basic Physics spring 2005 answers on the last page Name: Date: 1. A 12 ohm resistor and a 24 ohm resistor are connected in series in a circuit with a 6.0 volt battery. Assuming negligible
More informationFundamentals of Rocket Stability
Fundamentals of Rocket Stability This pamphlet was developed using information for the Glenn Learning Technologies Project. For more information, visit their web site at: http://www.grc.nasa.gov/www/k12/aboutltp/educationaltechnologyapplications.html
More informationPhysics 131: Test/Exam Problems: Rotations
Physics 131: Test/Exam Problems: Rotations 1) A uniform onemeter bar has a mass of 10 kg. One end of the bar is hinged to a building, and the other end is suspended by a cable that makes an angle of 45
More informationKERN COMMUNITY COLLEGE DISTRICT CERRO COSO COLLEGE PHYS C111 COURSE OUTLINE OF RECORD
KERN COMMUNITY COLLEGE DISTRICT CERRO COSO COLLEGE PHYS C111 COURSE OUTLINE OF RECORD 1. DISCIPLINE AND COURSE NUMBER: PHYS C111 2. COURSE TITLE: Mechanics 3. SHORT BANWEB TITLE: Mechanics 4. COURSE AUTHOR:
More informationOcean Structures and Materials Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras
Ocean Structures and Materials Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras Module  1 Lecture  8 Environmental loads II Ladies and gentlemen,
More informationStructural Axial, Shear and Bending Moments
Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants
More informationChapter 4: Buoyancy & Stability
Chapter 4: Buoyancy & Stability Learning outcomes By the end of this lesson students should be able to: Understand the concept of buoyancy hence determine the buoyant force exerted by a fluid to a body
More informationCalculus and the centroid of a triangle
Calculus and the centroid of a triangle The goal of this document is to verify the following physical assertion, which is presented immediately after the proof of Theorem I I I.4.1: If X is the solid triangular
More informationProjectile Motion. directions simultaneously. deal with is called projectile motion. ! An object may move in both the x and y
Projectile Motion! An object may move in both the x and y directions simultaneously! The form of twodimensional motion we will deal with is called projectile motion Assumptions of Projectile Motion! The
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A lawn roller in the form of a uniform solid cylinder is being pulled horizontally by a horizontal
More informationPhysics 123 Fluid Mechanics Review
Physics 123 Fluid Mechanics Review I. Definitions & Facts Density Specific gravity (= D material / D water ) Pressure Atmosphere, bar, Pascal Streamline, laminar flow Gauge pressure Turbulence Density
More informationChapter 24 Physical Pendulum
Chapter 4 Physical Pendulum 4.1 Introduction... 1 4.1.1 Simple Pendulum: Torque Approach... 1 4. Physical Pendulum... 4.3 Worked Examples... 4 Example 4.1 Oscillating Rod... 4 Example 4.3 Torsional Oscillator...
More informationMechanics Lecture Notes. 1 Notes for lectures 12 and 13: Motion in a circle
Mechanics Lecture Notes Notes for lectures 2 and 3: Motion in a circle. Introduction The important result in this lecture concerns the force required to keep a particle moving on a circular path: if the
More informationUnit 4 Practice Test: Rotational Motion
Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle
More informationHere is a guide if you are looking for practice questions in the old Physics 111 tests. SUMMARY
31 May 11 1 phys115_in_phys111_examsnew.docx PHYSICS 115 MATERIAL IN OLD PHYSICS 111 EXAMS Here is a guide if you are looking for practice questions in the old Physics 111 tests. SUMMARY Giambattista
More informationChapter 7  Rotational Motion w./ QuickCheck Questions
Chapter 7  Rotational Motion w./ QuickCheck Questions 2015 Pearson Education, Inc. Anastasia Ierides Department of Physics and Astronomy University of New Mexico October 1, 2015 Review of Last Time Uniform
More informationPhysics 2101, First Exam, Fall 2007
Physics 2101, First Exam, Fall 2007 September 4, 2007 Please turn OFF your cell phone and MP3 player! Write down your name and section number in the scantron form. Make sure to mark your answers in the
More informationSinking Bubble in Vibrating Tanks Christian Gentry, James Greenberg, Xi Ran Wang, Nick Kearns University of Arizona
Sinking Bubble in Vibrating Tanks Christian Gentry, James Greenberg, Xi Ran Wang, Nick Kearns University of Arizona It is experimentally observed that bubbles will sometimes sink to the bottom of their
More informationPrerequisites 20122013
Prerequisites 20122013 Engineering Computation The student should be familiar with basic tools in Mathematics and Physics as learned at the High School level and in the first year of Engineering Schools.
More informationCentripetal force, rotary motion, angular velocity, apparent force.
Related Topics Centripetal force, rotary motion, angular velocity, apparent force. Principle and Task A body with variable mass moves on a circular path with adjustable radius and variable angular velocity.
More informationCopyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass
Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of
More informationLecture L13  Conservative Internal Forces and Potential Energy
S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L13  Conservative Internal Forces and Potential Energy The forces internal to a system are of two types. Conservative forces, such as gravity;
More informationM x (a) (b) (c) Figure 2: Lateral Buckling The positions of the beam shown in Figures 2a and 2b should be considered as two possible equilibrium posit
Lateral Stability of a Slender Cantilever Beam With End Load Erik Thompson Consider the slender cantilever beam with an end load shown in Figure 1. The bending moment at any crosssection is in the xdirection.
More informationLecture 34: Principal Axes of Inertia
Lecture 34: Principal Axes of Inertia We ve spent the last few lectures deriving the general expressions for L and T rot in terms of the inertia tensor Both expressions would be a great deal simpler if
More informationSpinning Stuff Review
Spinning Stuff Review 1. A wheel (radius = 0.20 m) is mounted on a frictionless, horizontal axis. A light cord wrapped around the wheel supports a 0.50kg object, as shown in the figure below. When released
More informationUniversal Law of Gravitation
Universal Law of Gravitation Law: Every body exerts a force of attraction on every other body. This force called, gravity, is relatively weak and decreases rapidly with the distance separating the bodies
More informationLecture L18  Exploring the Neighborhood: the Restricted ThreeBody Problem
S. Widnall 16.07 Dynamics Fall 008 Version 1.0 Lecture L18  Exploring the Neighborhood: the Restricted ThreeBody Problem The ThreeBody Problem In Lecture 1517, we presented the solution to the twobody
More informationSimple harmonic motion
PH122 Dynamics Page 1 Simple harmonic motion 02 February 2011 10:10 Force opposes the displacement in A We assume the spring is linear k is the spring constant. Sometimes called stiffness constant Newton's
More information9 ROTATIONAL DYNAMICS
CHAPTER 9 ROTATIONAL DYNAMICS CONCEPTUAL QUESTIONS 1. REASONING AND SOLUTION The magnitude of the torque produced by a force F is given by τ = Fl, where l is the lever arm. When a long pipe is slipped
More informationCenter of Gravity. We touched on this briefly in chapter 7! x 2
Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.
More informationFluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur
Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture  20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all
More informationPhysics 53. Oscillations. You've got to be very careful if you don't know where you're going, because you might not get there.
Physics 53 Oscillations You've got to be very careful if you don't know where you're going, because you might not get there. Yogi Berra Overview Many natural phenomena exhibit motion in which particles
More informationAssignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE State law of parallelogram of vector addition and derive expression for resultant of two vectors
More informationReavis High School Physics Honors Curriculum Snapshot
Reavis High School Physics Honors Curriculum Snapshot Unit 1: Mathematical Toolkit Students will be able to: state definition for physics; measure length using a meter stick; measure the time with a stopwatch
More information1.Name the four types of motion that a fluid element can experience. YOUR ANSWER: Translation, linear deformation, rotation, angular deformation.
CHAPTER 06 1.Name the four types of motion that a fluid element can experience. YOUR ANSWER: Translation, linear deformation, rotation, angular deformation. 2.How is the acceleration of a particle described?
More informationPHY1 Review for Exam 5
Topics 1. Uniform circular Motion a. Centripetal acceleration b. Centripetal force c. Horizontal motion d. ertical motion e. Circular motion with an angle 2. Universal gravitation a. Gravitational force
More informationTennessee State University
Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an Fgrade. Other instructions will be given in the Hall. MULTIPLE CHOICE.
More information