Solid of Revolution - Finding Volume by Rotation

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Solid of Revolution - Finding Volume by Rotation"

Transcription

1 Solid of Revolution - Finding Volume by Rotation Finding the volume of a solid revolution is a method of calculating the volume of a 3D object formed by a rotated area of a 2D space. Finding the volume is much like finding the area, but with an added component of rotating the area around a line of symmetry - usually the x or y axis. (1) Recall finding the area under a curve. Find the area of the definite integral Integrate across [0,3]: Now, let's rotate this area 360 degrees around the x axis. We will have a 3D solid that looks like this: Finding volumes 1

2 To find this volume, we could take vertical slices of the solid (each dx wide and f(x) tall) and add them up. This is quite tedious, but thankfully we have calculus! Since the integrated area is being rotated around the axis under the curve, we can use disk integration to find the volume. Since the area is rotated full circle, we can use the formula for area of a cylinder to find our volume. Volume of a cylinder We can merge the formula for volume of a cylinder and our definite integral to find the volume of our solid. The radius for our cylinder would be the function f(x) and the height of our cylinder would be the distance of each disk: dx The volume of each slice would be Finding volumes 2

3 Adding the volumes of the disks with infinitely small dx would give us the formula Using our function, we would get this integrand for the volume Evaluating the integral, we get We obtained 4 Π units 3 as our volume. Since our function is linear and the radius is changing at a constant rate, it is easy to check this by plugging in values to the formula for volume of a cone. Finding volumes 3

4 The answers are the same. Since our function was linear and shaped like a cone when rotated around the x axis, it was okay to use the volume formula for a cone. Many of the volumes we will be working with are not shaped like cone, so we cannot simply substitute values in the formula. While algebra can take care of the nice straight lines, calculus takes care of the not-so-nice curves. Volume by Rotation Examples (2) Now lets try rotating the same area around the y axis. The first rotated solid was integrated in terms x to find the area and rotated around the x axis. Similarly, this solid is also integrated in terms of x for the area, but it is now rotated around the y axis. Notice that this solid can be obtained by subtracting a cone with radius 3 at y = 2 from the cylinder formed from radius 3 and a height of 2. Volume of the Cylinder - Volume of the Cone Finding volumes 4

5 = area revolved around the y axis. There are three ways to find this volume. We can do this by (a) using volume formulas for the cone and cylinder, (b) integrating two different solids and taking the difference, or (c) using shell integration (rotating an area around a different axis than the axis the area touches). Let's try all three methods. (a) Using the volume formulas, we would have The radius for the cylinder and the cone would be 3 and the height would be 2. The volume is 12 Π units 3. Let's check it with integration. (b) When integrating, we find the area from the curve to an axis. Since we are revolving around the y axis, we need to integrate with respect to y. For the Cylinder, our area before it is rotated would look like this: Finding volumes 5

6 The function of y is f(y) = 3 from [0,2]. Now we can set up our integral. Now on to the cone. Since it is rotated around the y axis, we need to integrate the original function with respect to y. All we have to do is solve our original function for x instead of y, making it a function of y. The function of y would look like this: Finding volumes 6

7 The function of y is f(y) = ( 3 2 )y from [0,2]. Let's set up our integral. Now we subtract the volume of the cone from the volume of the cylinder. We get the same answer. Finally, let's carry out shell integration. (c) Notice in disk integration the area was rotated around the same axis that the area was integrated on. In other words, the axis the area touched was the axis of rotation. In shell integration, it is the opposite. Notice that the area is touching the x axis and the solid is rotating around the y axis. Finding volumes 7

8 The formula for shell integration is defined as: where x is the distance to the y axis, or the radius, and f(x) is now the height of the shell. Simply substituting f(x) will give us Finding volumes 8

9 It seems like simply using the volume formulas was the best method, but let's do some different examples where that isn't the case. (3) Find the volume of the following function rotated around the x axis from [0,2 Π] The rotated area would look like this: Unless you know the formula for finding the volume of a vase, we must use integration to find this volume. We cannot use the formula for any simple three dimensional geometric figures like the first two examples. Revolving this solid about the x axis, we would do the same as example (1) and set up an integral using the formula for the volume of a cylinder. The radius of the cylinder is the curve, so we would plug f(x) in for the radius, and then the height would be dx, which is from 0 to 2 Π. Finding volumes 9

10 Volume of a cylinder The total volume of the solid is 9Π 2 units 3. What if we wanted to find the volume of the area rotated around the x axis of the same function, but with some open space in the middle? This type of figure is called a washer, or a donut. They are like discs because they are circular, but there is space in the middle. Consider the same function with f(x) = 1. When rotated, it will look similar to our previous rotation but with a cylinder removed in the middle. Finding volumes 10

11 To find the volume, we simply take the difference of our original area and the area of the space in the center. (4) It could also be beneficial to talk about a solid that is not rotated a full 360 degrees. Think about a portion of a circle that has been shaded. Finding volumes 11

12 This circle has been shaded 240 degrees out of 360. How do we find the area? We simply take a fraction of the total area, in this case, , or two thirds. This is the case with volume. If we have a portion of the area rotated, we find out the volume of the solid out of the total volume if it were rotated 360 degrees. Finding volumes 12

13 This solid is also rotated 240 degrees around the x axis. What would the volume be? This is the volume for the rotated portion of the graph on the interval [a,b]. In the previous examples, we rotated areas about the x or y axis. What if we rotated them about an arbitrary axis? When rotating around an axis g(x), we must take into account the change of radius. The formulas for disk and shell integration will be as follows: Finding volumes 13

Applications of Integration Day 1

Applications of Integration Day 1 Applications of Integration Day 1 Area Under Curves and Between Curves Example 1 Find the area under the curve y = x2 from x = 1 to x = 5. (What does it mean to take a slice?) Example 2 Find the area under

More information

Name Calculus AP Chapter 7 Outline M. C.

Name Calculus AP Chapter 7 Outline M. C. Name Calculus AP Chapter 7 Outline M. C. A. AREA UNDER A CURVE: a. If y = f (x) is continuous and non-negative on [a, b], then the area under the curve of f from a to b is: A = f (x) dx b. If y = f (x)

More information

2 Applications of Integration

2 Applications of Integration Brian E. Veitch 2 Applications of Integration 2.1 Area between curves In this section we are going to find the area between curves. Recall that the integral can represent the area between f(x) and the

More information

7.3 Volumes Calculus

7.3 Volumes Calculus 7. VOLUMES Just like in the last section where we found the area of one arbitrary rectangular strip and used an integral to add up the areas of an infinite number of infinitely thin rectangles, we are

More information

Volumes by Cylindrical Shell

Volumes by Cylindrical Shell Volumes by Cylindrical Shell Problem: Let f be continuous and nonnegative on [a, b], and let R be the region that is bounded above by y = f(x), below by the x - axis, and on the sides by the lines x =

More information

Work the following on notebook paper. Find the area bounded by the given graphs. Show all work. Do not use your calculator.

Work the following on notebook paper. Find the area bounded by the given graphs. Show all work. Do not use your calculator. CALCULUS WORKSHEET ON 7. Work the following on notebook paper. Find the area bounded by the given graphs. Show all work. Do not use your calculator.. f x x and g x x on x Find the area bounded by the given

More information

1. AREA BETWEEN the CURVES

1. AREA BETWEEN the CURVES 1 The area between two curves The Volume of the Solid of revolution (by slicing) 1. AREA BETWEEN the CURVES da = {( outer function ) ( inner )} dx function b b A = da = [y 1 (x) y (x)]dx a a d d A = da

More information

Applications of the Integral

Applications of the Integral Chapter 6 Applications of the Integral Evaluating integrals can be tedious and difficult. Mathematica makes this work relatively easy. For example, when computing the area of a region the corresponding

More information

Chapter 5 Applications of Integration

Chapter 5 Applications of Integration MA111 Application of Integration Asst.Prof.Dr.Supranee Lisawadi 1 Chapter 5 Applications of Integration Section 5.1 Area Between Two Curves In this section we use integrals to find areas of regions that

More information

Applications of Integration to Geometry

Applications of Integration to Geometry Applications of Integration to Geometry Volumes of Revolution We can create a solid having circular cross-sections by revolving regions in the plane along a line, giving a solid of revolution. Note that

More information

M1120 Class 5. Dan Barbasch. September 4, Dan Barbasch () M1120 Class 5 September 4, / 16

M1120 Class 5. Dan Barbasch. September 4, Dan Barbasch () M1120 Class 5 September 4, / 16 M1120 Class 5 Dan Barbasch September 4, 2011 Dan Barbasch () M1120 Class 5 September 4, 2011 1 / 16 Course Website http://www.math.cornell.edu/ web1120/index.html Dan Barbasch () M1120 Class 5 September

More information

1 Chapter Chapter Chapter Chapter 4 1

1 Chapter Chapter Chapter Chapter 4 1 Contents 1 Chapter 1 1 2 Chapter 2 1 3 Chapter 3 1 4 Chapter 4 1 5 Applications of Integrals 2 5.1 Area and Definite Integrals............................ 2 5.1.1 Area of a Region Between Two Curves.................

More information

4 More Applications of Definite Integrals: Volumes, arclength and other matters

4 More Applications of Definite Integrals: Volumes, arclength and other matters 4 More Applications of Definite Integrals: Volumes, arclength and other matters Volumes of surfaces of revolution 4. Find the volume of a cone whose height h is equal to its base radius r, by using the

More information

Definite Integrals and Riemann Sums

Definite Integrals and Riemann Sums MTH229 Project 1 Exercises Definite Integrals and Riemann Sums NAME: SECTION: INSTRUCTOR: Exercise 1: a. Create a script m-file containing the content above, only change the value of n to 2,5. What is

More information

The graphs of f and g intersect at (0, 0) and one other point. Find that point: f(y) = g(y) y 2 4y 2y 2 6y = = 2y y 2. 2y(y 3) = 0

The graphs of f and g intersect at (0, 0) and one other point. Find that point: f(y) = g(y) y 2 4y 2y 2 6y = = 2y y 2. 2y(y 3) = 0 . Compute the area between the curves x y 4y and x y y. Let f(y) y 4y y(y 4). f(y) when y or y 4. Let g(y) y y y( y). g(y) when y or y. x 3 y? The graphs of f and g intersect at (, ) and one other point.

More information

This function is symmetric with respect to the y-axis, so I will let - /2 /2 and multiply the area by 2.

This function is symmetric with respect to the y-axis, so I will let - /2 /2 and multiply the area by 2. INTEGRATION IN POLAR COORDINATES One of the main reasons why we study polar coordinates is to help us to find the area of a region that cannot easily be integrated in terms of x. In this set of notes,

More information

Definition: Let S be a solid with cross-sectional area A(x) perpendicular to the x-axis at each point x [a, b]. The volume of S is V = A(x)dx.

Definition: Let S be a solid with cross-sectional area A(x) perpendicular to the x-axis at each point x [a, b]. The volume of S is V = A(x)dx. Section 7.: Volume Let S be a solid and suppose that the area of the cross-section of S in the plane P x perpendicular to the x-axis passing through x is A(x) for a x b. Consider slicing the solid into

More information

Mathematics Calculus II Summer Session II, 15 Test #1

Mathematics Calculus II Summer Session II, 15 Test #1 Mathematics 2172-001 Calculus II Summer Session II, 15 Test #1 Instructor: Dr. Alexandra Shlapentokh (1) Compute the area ounded y the curves y = x 2 + 12 and y = x + 12. (a) 5 6 () 7 6 (c) 11 6 (d) 1

More information

Week #15 - Word Problems & Differential Equations Section 8.1

Week #15 - Word Problems & Differential Equations Section 8.1 Week #15 - Word Problems & Differential Equations Section 8.1 From Calculus, Single Variable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 25 by John Wiley & Sons, Inc. This material is used by

More information

Davis Buenger Math Solutions September 8, 2015

Davis Buenger Math Solutions September 8, 2015 Davis Buenger Math 117 6.7 Solutions September 8, 15 1. Find the mass{ of the thin bar with density 1 x function ρ(x) 1 + x < x. Solution: As indicated by the box above, to find the mass of a linear object

More information

Engineering Math II Spring 2015 Solutions for Class Activity #2

Engineering Math II Spring 2015 Solutions for Class Activity #2 Engineering Math II Spring 15 Solutions for Class Activity # Problem 1. Find the area of the region bounded by the parabola y = x, the tangent line to this parabola at 1, 1), and the x-axis. Then find

More information

Applications of the definite integral to calculating volume and length

Applications of the definite integral to calculating volume and length Chapter 5 Applications of the definite integral to calculating volume and length In this chapter we consider applications of the definite integral to calculating geometric quantities such as volumes. The

More information

15.5. Lengths of curves and surfaces of revolution. Introduction. Prerequisites. Learning Outcomes. Learning Style

15.5. Lengths of curves and surfaces of revolution. Introduction. Prerequisites. Learning Outcomes. Learning Style Lengths of curves and surfaces of revolution 15.5 Introduction Integration can be used to find the length of a curve and the area of the surface generated when a curve is rotated around an axis. In this

More information

PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS

PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving

More information

Section 2.1 Rectangular Coordinate Systems

Section 2.1 Rectangular Coordinate Systems P a g e 1 Section 2.1 Rectangular Coordinate Systems 1. Pythagorean Theorem In a right triangle, the lengths of the sides are related by the equation where a and b are the lengths of the legs and c is

More information

1. A plane passes through the apex (top point) of a cone and then through its base. What geometric figure will be formed from this intersection?

1. A plane passes through the apex (top point) of a cone and then through its base. What geometric figure will be formed from this intersection? Student Name: Teacher: Date: District: Description: Miami-Dade County Public Schools Geometry Topic 7: 3-Dimensional Shapes 1. A plane passes through the apex (top point) of a cone and then through its

More information

MATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4.

MATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4. MATH 55 SOLUTIONS TO PRACTICE FINAL EXAM x 2 4.Compute x 2 x 2 5x + 6. When x 2, So x 2 4 x 2 5x + 6 = (x 2)(x + 2) (x 2)(x 3) = x + 2 x 3. x 2 4 x 2 x 2 5x + 6 = 2 + 2 2 3 = 4. x 2 9 2. Compute x + sin

More information

Area Between Curves. The idea: the area between curves y = f(x) and y = g(x) (if the graph of f(x) is above that of g(x)) for a x b is given by

Area Between Curves. The idea: the area between curves y = f(x) and y = g(x) (if the graph of f(x) is above that of g(x)) for a x b is given by MATH 42, Fall 29 Examples from Section, Tue, 27 Oct 29 1 The First Hour Area Between Curves. The idea: the area between curves y = f(x) and y = g(x) (if the graph of f(x) is above that of g(x)) for a x

More information

2 Topics in 3D Geometry

2 Topics in 3D Geometry 2 Topics in 3D Geometry In two dimensional space, we can graph curves and lines. In three dimensional space, there is so much extra space that we can graph planes and surfaces in addition to lines and

More information

REVISED GCSE Scheme of Work Mathematics Higher Unit 6. For First Teaching September 2010 For First Examination Summer 2011 This Unit Summer 2012

REVISED GCSE Scheme of Work Mathematics Higher Unit 6. For First Teaching September 2010 For First Examination Summer 2011 This Unit Summer 2012 REVISED GCSE Scheme of Work Mathematics Higher Unit 6 For First Teaching September 2010 For First Examination Summer 2011 This Unit Summer 2012 Version 1: 28 April 10 Version 1: 28 April 10 Unit T6 Unit

More information

Volumes of Revolution

Volumes of Revolution Mathematics Volumes of Revolution About this Lesson This lesson provides students with a physical method to visualize -dimensional solids and a specific procedure to sketch a solid of revolution. Students

More information

We can use more sectors (i.e., decrease the sector s angle θ) to get a better approximation:

We can use more sectors (i.e., decrease the sector s angle θ) to get a better approximation: Section 1.4 Areas of Polar Curves In this section we will find a formula for determining the area of regions bounded by polar curves. To do this, wee again make use of the idea of approximating a region

More information

Free Response Questions Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom

Free Response Questions Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom Free Response Questions 1969-005 Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom 1 AP Calculus Free-Response Questions 1969 AB 1 Consider the following functions

More information

Michigan Grade Level Content Expectations for Mathematics, Grade 8, Correlated to Glencoe s Michigan Pre-Algebra

Michigan Grade Level Content Expectations for Mathematics, Grade 8, Correlated to Glencoe s Michigan Pre-Algebra Eighth Grade Mathematics Grade Level Content Expectations Michigan Pre-Algebra 2010 Michigan Grade Level Content Expectations for Mathematics, Grade 8, Correlated to Glencoe s Michigan Pre-Algebra Lessons

More information

Estimating the Average Value of a Function

Estimating the Average Value of a Function Estimating the Average Value of a Function Problem: Determine the average value of the function f(x) over the interval [a, b]. Strategy: Choose sample points a = x 0 < x 1 < x 2 < < x n 1 < x n = b and

More information

Test Two Review Cal 2

Test Two Review Cal 2 Name: Class: Date: ID: A Test Two Review Cal 2 Short Answer 1. Set up the definite integral that gives the area of the region bounded by the graph of y 1 x 2 2x 1 and y 2 2x.. Find the area of the region

More information

14.1. Multiple Integration. Iterated Integrals and Area in the Plane. Objectives. Iterated Integrals. Iterated Integrals

14.1. Multiple Integration. Iterated Integrals and Area in the Plane. Objectives. Iterated Integrals. Iterated Integrals 14 Multiple Integration 14.1 Iterated Integrals and Area in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Objectives! Evaluate an iterated

More information

Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) =

Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) = Vertical Asymptotes Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: lim f (x) = x a lim f (x) = lim x a lim f (x) = x a

More information

21-114: Calculus for Architecture Homework #1 Solutions

21-114: Calculus for Architecture Homework #1 Solutions 21-114: Calculus for Architecture Homework #1 Solutions November 9, 2004 Mike Picollelli 1.1 #26. Find the domain of g(u) = u + 4 u. Solution: We solve this by considering the terms in the sum separately:

More information

a b c d e You have two hours to do this exam. Please write your name on this page, and at the top of page three. GOOD LUCK! 3. a b c d e 12.

a b c d e You have two hours to do this exam. Please write your name on this page, and at the top of page three. GOOD LUCK! 3. a b c d e 12. MA123 Elem. Calculus Fall 2015 Exam 3 2015-11-19 Name: Sec.: Do not remove this answer page you will turn in the entire exam. No books or notes may be used. You may use an ACT-approved calculator during

More information

MAC Calculus II Spring Homework #2 SOLUTIONS

MAC Calculus II Spring Homework #2 SOLUTIONS MAC 232-593-Calculus II Spring 23 Homework #2 SOLUTIONS Note. Beginning already with this homework, sloppiness costs points. Missing dx (or du, depending on the variable of integration), missing parentheses,

More information

Solutions to Homework 10

Solutions to Homework 10 Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

More information

12-6 Surface Area and Volumes of Spheres. Find the surface area of each sphere or hemisphere. Round to the nearest tenth. SOLUTION: ANSWER: 1017.

12-6 Surface Area and Volumes of Spheres. Find the surface area of each sphere or hemisphere. Round to the nearest tenth. SOLUTION: ANSWER: 1017. Find the surface area of each sphere or hemisphere. Round to the nearest tenth. 3. sphere: area of great circle = 36π yd 2 We know that the area of a great circle is r.. Find 1. Now find the surface area.

More information

Calculating Areas Section 6.1

Calculating Areas Section 6.1 A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics Calculating Areas Section 6.1 Dr. John Ehrke Department of Mathematics Fall 2012 Measuring Area By Slicing We first defined

More information

Engineering Drawing. Anup Ghosh. September 12, Department of Aerospace Engineering Indian Institute of Technology Kharagpur

Engineering Drawing. Anup Ghosh. September 12, Department of Aerospace Engineering Indian Institute of Technology Kharagpur Department of Aerospace Engineering Indian Institute of Technology Kharagpur September 12, 2011 Example -1 1 A vertical square prism (50mm side) 2 A horizontal square prism (35mm side) with axis to VP

More information

Math 181 Spring 2007 HW 1 Corrected

Math 181 Spring 2007 HW 1 Corrected Math 181 Spring 2007 HW 1 Corrected February 1, 2007 Sec. 1.1 # 2 The graphs of f and g are given (see the graph in the book). (a) State the values of f( 4) and g(3). Find 4 on the x-axis (horizontal axis)

More information

Worksheet for Week 1: Circles and lines

Worksheet for Week 1: Circles and lines Worksheet Math 124 Week 1 Worksheet for Week 1: Circles and lines This worksheet is a review of circles and lines, and will give you some practice with algebra and with graphing. Also, this worksheet introduces

More information

Section 7.1 Solving Linear Systems by Graphing. System of Linear Equations: Two or more equations in the same variables, also called a.

Section 7.1 Solving Linear Systems by Graphing. System of Linear Equations: Two or more equations in the same variables, also called a. Algebra 1 Chapter 7 Notes Name Section 7.1 Solving Linear Systems by Graphing System of Linear Equations: Two or more equations in the same variables, also called a. Solution of a System of Linear Equations:

More information

Calculus II MAT 146 Integration Applications: Area Between Curves

Calculus II MAT 146 Integration Applications: Area Between Curves Calculus II MAT 46 Integration Applications: Area Between Curves A fundamental application of integration involves determining the area under a curve for some interval on the x- or y-axis. In a previous

More information

a b c d e You have two hours to do this exam. Please write your name on this page, and at the top of page three. GOOD LUCK! 3. a b c d e 12.

a b c d e You have two hours to do this exam. Please write your name on this page, and at the top of page three. GOOD LUCK! 3. a b c d e 12. MA123 Elem. Calculus Fall 2015 Exam 2 2015-10-22 Name: Sec.: Do not remove this answer page you will turn in the entire exam. No books or notes may be used. You may use an ACT-approved calculator during

More information

Extra Problems for Midterm 2

Extra Problems for Midterm 2 Extra Problems for Midterm Sudesh Kalyanswamy Exercise (Surfaces). Find the equation of, and classify, the surface S consisting of all points equidistant from (0,, 0) and (,, ). Solution. Let P (x, y,

More information

Section 1.1 Real numbers. Set Builder notation. Interval notation

Section 1.1 Real numbers. Set Builder notation. Interval notation Section 1.1 Real numbers Set Builder notation Interval notation Functions a function is the set of all possible points y that are mapped to a single point x. If when x=5 y=4,5 then it is not a function

More information

Area Bounded By Curves

Area Bounded By Curves Area under Curves The most important topic of Integral calculus is Calculation of area. Integration in general is considered to be a tough topic and area calculation tests a person s Integration and that

More information

VECTOR-VALUED FUNCTIONS OF A SCALAR VARIABLE

VECTOR-VALUED FUNCTIONS OF A SCALAR VARIABLE VECTOR-VALUED FUNCTIONS OF A SCALAR VARIABLE A good example of a 2-component or 3-component function of a scalar variable is provided by the parametric representation of a curve in 2 or 3 dimensions. In

More information

Test 3 Review. Jiwen He. Department of Mathematics, University of Houston. math.uh.edu/ jiwenhe/math1431

Test 3 Review. Jiwen He. Department of Mathematics, University of Houston. math.uh.edu/ jiwenhe/math1431 Test 3 Review Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math1431 November 25, 2008 1 / Test 3 Test 3: Dec. 4-6 in CASA Material - Through 6.3. November

More information

In the first part of the lesson, students plot

In the first part of the lesson, students plot NATIONAL MATH + SCIENCE INITIATIVE Mathematics Using Linear Equations to Define Geometric Solids Level Geometry within a unit on volume applications Module/Connection to AP* Area and Volume *Advanced Placement

More information

(c) What values are the input of the function? (in other words, which axis?) A: The x, or horizontal access are the input values, or the domain.

(c) What values are the input of the function? (in other words, which axis?) A: The x, or horizontal access are the input values, or the domain. Calculus Placement Exam Material For each function, graph the function by hand using point plotting. You must use a minimum of five points for each function. Plug in 0, positive and negative x-values for

More information

Geometry Notes VOLUME AND SURFACE AREA

Geometry Notes VOLUME AND SURFACE AREA Volume and Surface Area Page 1 of 19 VOLUME AND SURFACE AREA Objectives: After completing this section, you should be able to do the following: Calculate the volume of given geometric figures. Calculate

More information

x = y + 2, and the line

x = y + 2, and the line WS 8.: Areas between Curves Name Date Period Worksheet 8. Areas between Curves Show all work on a separate sheet of paper. No calculator unless stated. Multiple Choice. Let R be the region in the first

More information

1.4 Exponential and logarithm graphs.

1.4 Exponential and logarithm graphs. 1.4 Exponential and logarithm graphs. Example 1. Recall that b = 2 a if and only if a = log 2 (b) That tells us that the functions f(x) = 2 x and g(x) = log 2 (x) are inverse functions. It also tells us

More information

CALCULUS 2. 0 Repetition. tutorials 2015/ Find limits of the following sequences or prove that they are divergent.

CALCULUS 2. 0 Repetition. tutorials 2015/ Find limits of the following sequences or prove that they are divergent. CALCULUS tutorials 5/6 Repetition. Find limits of the following sequences or prove that they are divergent. a n = n( ) n, a n = n 3 7 n 5 n +, a n = ( n n 4n + 7 ), a n = n3 5n + 3 4n 7 3n, 3 ( ) 3n 6n

More information

AP Calculus AB 1998 Scoring Guidelines

AP Calculus AB 1998 Scoring Guidelines AP Calculus AB 1998 Scoring Guidelines These materials are intended for non-commercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced

More information

Applications of the definite integral to calculating volume, mass, and length

Applications of the definite integral to calculating volume, mass, and length Chapter 5 Applications of the definite integral to calculating volume, mass, and length 5.1 Introduction In this chapter, we consider applications of the definite integral to calculating geometric quantities

More information

MATH 132: CALCULUS II SYLLABUS

MATH 132: CALCULUS II SYLLABUS MATH 32: CALCULUS II SYLLABUS Prerequisites: Successful completion of Math 3 (or its equivalent elsewhere). Math 27 is normally not a sufficient prerequisite for Math 32. Required Text: Calculus: Early

More information

MULTIPLE INTEGRALS. h 2 (y) are continuous functions on [c, d] and let f(x, y) be a function defined on R. Then

MULTIPLE INTEGRALS. h 2 (y) are continuous functions on [c, d] and let f(x, y) be a function defined on R. Then MULTIPLE INTEGALS 1. ouble Integrals Let be a simple region defined by a x b and g 1 (x) y g 2 (x), where g 1 (x) and g 2 (x) are continuous functions on [a, b] and let f(x, y) be a function defined on.

More information

3.6 Cylinders and Quadric Surfaces

3.6 Cylinders and Quadric Surfaces 3.6 Cylinders and Quadric Surfaces Objectives I know the definition of a cylinder. I can name the 6 quadric surfaces, write their equation, and sketch their graph. Let s take stock in the types of equations

More information

Geometry Notes PERIMETER AND AREA

Geometry Notes PERIMETER AND AREA Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter

More information

Introduction to Calculus

Introduction to Calculus Introduction to Calculus Contents 1 Introduction to Calculus 3 11 Introduction 3 111 Origin of Calculus 3 112 The Two Branches of Calculus 4 12 Secant and Tangent Lines 5 13 Limits 10 14 The Derivative

More information

Solving Equations with One Variable Type - The Algebraic Approach. Solving Equations with a Variable in the Denominator - The Algebraic Approach

Solving Equations with One Variable Type - The Algebraic Approach. Solving Equations with a Variable in the Denominator - The Algebraic Approach 3 Solving Equations Concepts: Number Lines The Definitions of Absolute Value Equivalent Equations Solving Equations with One Variable Type - The Algebraic Approach Solving Equations with a Variable in

More information

5/22/2015 Assignment Previewer

5/22/2015 Assignment Previewer Practice Exam # 5 (chapter 6) (6968253) Due: Tue May 26 2015 10:30 AM PDT Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1. Question Details SCalcET7 6.1.025. [2466652] Sketch the regions enclosed by

More information

with "a", "b" and "c" representing real numbers, and "a" is not equal to zero.

with a, b and c representing real numbers, and a is not equal to zero. 3.1 SOLVING QUADRATIC EQUATIONS: * A QUADRATIC is a polynomial whose highest exponent is. * The "standard form" of a quadratic equation is: ax + bx + c = 0 with "a", "b" and "c" representing real numbers,

More information

Grade level: secondary Subject: mathematics Time required: 45 to 90 minutes

Grade level: secondary Subject: mathematics Time required: 45 to 90 minutes TI-Nspire Activity: Paint Can Dimensions By: Patsy Fagan and Angela Halsted Activity Overview Problem 1 explores the relationship between height and volume of a right cylinder, the height and surface area,

More information

There are good hints and notes in the answers to the following, but struggle first before peeking at those!

There are good hints and notes in the answers to the following, but struggle first before peeking at those! Integration Worksheet - Using the Definite Integral Show all work on your paper as described in class. Video links are included throughout for instruction on how to do the various types of problems. Important:

More information

Assignment 5 Math 101 Spring 2009

Assignment 5 Math 101 Spring 2009 Assignment 5 Math 11 Spring 9 1. Find an equation of the tangent line(s) to the given curve at the given point. (a) x 6 sin t, y t + t, (, ). (b) x cos t + cos t, y sin t + sin t, ( 1, 1). Solution. (a)

More information

3. Polynomials. 3.1 Parabola primer

3. Polynomials. 3.1 Parabola primer 3. Polynomials 3.1 Parabola primer A parabola is the graph of a quadratic (degree 2) polynomial, that is, a parabola is polynomial of the form: standard form: y = ax 2 + bx + c. When we are given a polynomial

More information

(b) Is the estimate in part (a) an over-estimate or underestimate of the actual area? Justify your conclusion.

(b) Is the estimate in part (a) an over-estimate or underestimate of the actual area? Justify your conclusion. Chapter. Define ( ) f x = x x + x. (a) Estimate the area between the graph of f and the x axis on the interval [, ] using a lefthand sum with four rectangles of equal width. (b) Is the estimate in part

More information

If f is continuous on [a, b], then the function g defined by. f (t) dt. is continuous on [a, b] and differentiable on (a, b), and g (x) = f (x).

If f is continuous on [a, b], then the function g defined by. f (t) dt. is continuous on [a, b] and differentiable on (a, b), and g (x) = f (x). The Fundamental Theorem of Calculus, Part 1 If f is continuous on [a, b], then the function g defined by g(x) = x a f (t) dt a x b is continuous on [a, b] and differentiable on (a, b), and g (x) = f (x).

More information

Chapter 8 Geometry We will discuss following concepts in this chapter.

Chapter 8 Geometry We will discuss following concepts in this chapter. Mat College Mathematics Updated on Nov 5, 009 Chapter 8 Geometry We will discuss following concepts in this chapter. Two Dimensional Geometry: Straight lines (parallel and perpendicular), Rays, Angles

More information

Kindergarten CCSS Math Vocabulary Word List *Terms with an asterisk are meant for teacher knowledge only students do not need to learn them.

Kindergarten CCSS Math Vocabulary Word List *Terms with an asterisk are meant for teacher knowledge only students do not need to learn them. Kindergarten CCSS Math Vocabulary Word List *Terms with an asterisk are meant for teacher knowledge only students do not need to learn them. above A preposition that indicates location of an object. add

More information

8 th Grade Pre-Algebra Textbook Alignment Revised 4/28/2010

8 th Grade Pre-Algebra Textbook Alignment Revised 4/28/2010 Revised 4/28/2010 September Lesson Number & Name GLCE Code & Skill #1 N.MR.08.10 Calculate weighted averages such as course grades, consumer price indices, and sports ratings. #2 D.AN.08.01 Determine which

More information

Math 1B, lecture 5: area and volume

Math 1B, lecture 5: area and volume Math B, lecture 5: area and volume Nathan Pflueger 6 September 2 Introduction This lecture and the next will be concerned with the computation of areas of regions in the plane, and volumes of regions in

More information

Algebra Geometry Glossary. 90 angle

Algebra Geometry Glossary. 90 angle lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:

More information

Solutions to Worksheet 6.1

Solutions to Worksheet 6.1 272 Solutions to Worksheet 6.1 1. Let f(x) = 8x - 10 and g(x] = x 2-4x + 10. a. Find the points of intersection of the graphs and draw the region bounded by these two functions. 70 60 50 40 30 20 10 b.

More information

Trigonometry Notes Sarah Brewer Alabama School of Math and Science. Last Updated: 25 November 2011

Trigonometry Notes Sarah Brewer Alabama School of Math and Science. Last Updated: 25 November 2011 Trigonometry Notes Sarah Brewer Alabama School of Math and Science Last Updated: 25 November 2011 6 Basic Trig Functions Defined as ratios of sides of a right triangle in relation to one of the acute angles

More information

Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20

Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20 Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding

More information

AP Calculus Testbank (Chapter 7) (Mr. Surowski)

AP Calculus Testbank (Chapter 7) (Mr. Surowski) AP Calculus Testbank (Chapter 7) (Mr. Surowski) Part I. Multiple-Choice Questions. Suppose that a function = f() is given with f() for 4. If the area bounded b the curves = f(), =, =, and = 4 is revolved

More information

CONNECT: Volume, Surface Area

CONNECT: Volume, Surface Area CONNECT: Volume, Surface Area 2. SURFACE AREAS OF SOLIDS If you need to know more about plane shapes, areas, perimeters, solids or volumes of solids, please refer to CONNECT: Areas, Perimeters 1. AREAS

More information

Draft copy. Circles, cylinders and prisms. Circles

Draft copy. Circles, cylinders and prisms. Circles 12 Circles, cylinders and prisms You are familiar with formulae for area and volume of some plane shapes and solids. In this chapter you will build on what you learnt in Mathematics for Common Entrance

More information

This formula will give you the volume (in cubic feet) for any cylinder, such as a pipe: LENGTH DIAMETER

This formula will give you the volume (in cubic feet) for any cylinder, such as a pipe: LENGTH DIAMETER Volume Problems How much water a pipe (cylinder) can hold is dependent on how big the pipe is (cross-sectional area) and how long it is (length). The larger and/or the longer the pipe, the more water it

More information

Section 10.7 Parametric Equations

Section 10.7 Parametric Equations 299 Section 10.7 Parametric Equations Objective 1: Defining and Graphing Parametric Equations. Recall when we defined the x- (rcos(θ), rsin(θ)) and y-coordinates on a circle of radius r as a function of

More information

Section P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities

Section P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities Section P.9 Notes Page P.9 Linear Inequalities and Absolute Value Inequalities Sometimes the answer to certain math problems is not just a single answer. Sometimes a range of answers might be the answer.

More information

Interactive Math Glossary Terms and Definitions

Interactive Math Glossary Terms and Definitions Terms and Definitions Absolute Value the magnitude of a number, or the distance from 0 on a real number line Additive Property of Area the process of finding an the area of a shape by totaling the areas

More information

The Derivative and the Tangent Line Problem. The Tangent Line Problem

The Derivative and the Tangent Line Problem. The Tangent Line Problem The Derivative and the Tangent Line Problem Calculus grew out of four major problems that European mathematicians were working on during the seventeenth century. 1. The tangent line problem 2. The velocity

More information

This is Solving Quadratic Equations and Graphing Parabolas, chapter 9 from the book Beginning Algebra (index.html) (v. 1.0).

This is Solving Quadratic Equations and Graphing Parabolas, chapter 9 from the book Beginning Algebra (index.html) (v. 1.0). This is Solving Quadratic Equations and Graphing Parabolas, chapter 9 from the book Beginning Algebra (index.html) (v. 1.0). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/

More information

Math 226 Quiz IV Review

Math 226 Quiz IV Review Math 226 Quiz IV Review. A stone dropped into a still pond sends out a circular ripple whose radius increases at a constant rate of 3 ft/s. How rapidly is the area enclosed by the ripple increasing at

More information

Biggar High School Mathematics Department. National 4 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department. National 4 Learning Intentions & Success Criteria: Assessing My Progress Biggar High School Mathematics Department National 4 Learning Intentions & Success Criteria: Assessing My Progress Expressions and Formulae Topic Learning Intention Success Criteria I understand this Algebra

More information

exponents order of operations expression base scientific notation SOL 8.1 Represents repeated multiplication of the number.

exponents order of operations expression base scientific notation SOL 8.1 Represents repeated multiplication of the number. SOL 8.1 exponents order of operations expression base scientific notation Represents repeated multiplication of the number. 10 4 Defines the order in which operations are performed to simplify an expression.

More information

Contents. 12 Applications of the Definite Integral Area Solids of Revolution Surface Area...

Contents. 12 Applications of the Definite Integral Area Solids of Revolution Surface Area... Contents 12 Applications of the Definite Integral 179 12.1 Area.................................................. 179 12.2 Solids of Revolution......................................... 181 12.3 Surface

More information

29 Wyner PreCalculus Fall 2016

29 Wyner PreCalculus Fall 2016 9 Wyner PreCalculus Fall 016 CHAPTER THREE: TRIGONOMETRIC EQUATIONS Review November 8 Test November 17 Trigonometric equations can be solved graphically or algebraically. Solving algebraically involves

More information

15. PRISMS AND CYLINDERS

15. PRISMS AND CYLINDERS 15. PRISMS AND CYLINDERS 15-1 Drawing prisms 2 15-2 Modelling prisms 4 15-3 Cross-sections of prisms 6 15-4 Nets of prisms 7 15-5 Euler's formula 8 15-6 Stacking prisms 9 15-7 Cylinders 10 15-8 Why is

More information