# 1 Spherical Kinematics

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 ME 115(a): Notes on Rotations 1 Spherical Kinematics Motions of a 3-dimensional rigid body where one point of the body remains fixed are termed spherical motions. A spherical displacement is a rigid body displacement where there is a fixed point in the initial and final positions of the moving body. It can be shown that spherical displacements and spherical motions have 3 independent degrees of freedom. Consider a 3-dimensional rigid body, B. Let C denote the point in B which is fixed during subsequent spherical motions. Choose a fixed reference frame, F whose origin lies at point C. To understand what happens to a rigid body during a spherical motion, select an arbitrary point, P 0, in B. Let v 0 denote the vector from the origin of this fixed reference frame to P 0. I.e., v 0 denotes the coordinates of P 0 as seen by an observer in frame F. Let the body undergo a spherical displacement. After the displacement, let the new location of the point P 0 be denoted by P 1. Similarly, let v 1 denote the coordinates of P 1, as seen in frame F. Let us assume that the transformation of the points in B during the spherical displacement can be represented by the action of a 3 3 matrix, A, acting on the vector of particle coordinates: v 1 = A v 0. Because the body is rigid, the distance between the fixed point of the motion (which is also the origin of the fixed reference frame) and the given particle is constant. That is: This implies that: v 1 = v 0. v 1 = v 0 v T 1 v 1 = v T 0 v 0 v T 0 A T A v 0 = v T 0 v 0. Since this relationship holds for any choice of P 0, it must be true that A T A = I. That is, A is an orthogonal matrix. Recall that for matrices A and B, det(a T ) = det(a) and det(ab) = det(a) det(b). Hence, for an orthogonal matrix A, det(a T A) = det(a T )det(a) = det (A) = det(i) = 1. Therefore, det(a) = ±1 for any orthogonal matrix A. Those orthogonal matrices whose determinant is +1 are physically associated with rotations, while those whose determinant is 1 are associated with reflections. We will be primarily concerned with rotations. Cayley s formula Our goal in this section is to derive Cayley s formula, which shows that any orthogonal matrix is a specific function of a skew symmetric matrix. 1

2 From above, we have v 1 = v 0, which is equivalent to: v 1 v 0 = 0 = v 1 v 1 v 0 v 0 = ( v 1 v 0 ) ( v 1 + v 0 ) Hence, the vectors ( v 1 v 0 ) and ( v 1 + v 0 ) are orthogonal to each other. Let d + = v 1 + v 0 = (A + I) v 0 and d = v 1 v 0 = (A I) v 0. The vectors d + and d are the diagonals on a rhombus whose sides are parallel to v 0 and v 1. Solving for v 0 in terms of d +, it is easy to see that d = (A I) v 0 = (A I)(A + I) 1 d +. If we introduce the notation B = (A I)(A + I) 1 (1) where see that d = Bd +. Note B is a matrix that operates on a vector, d +, to produce an orthogonal vector, d. Note that this derivation was independent of any particular choice of the point P 0. Thus, the matrix B must generally have the property that y T B y = 0 = [ ] b 11 b 1 b 13 y 1 y y 3 b 1 b b 3 b 31 b 31 b 33 y 1 y y 3 = 3 b ii yi + i=1 3 i=1 3 (b ij + b ji )y i y j () for any 3 1 vector y. For B to satisfy Equation (), it must generally be a skew symmetric matrix: 0 b 1 b 13 b 1 0 b 3 (3) b 13 b 3 0 which contains only 3 independent entries. We can solve Equation (1) for A to obtain Cayley s formula: A = (I B) 1 (I + B). (4) Due to the fact that A is an orthogonal matrix (which implies that A T = A 1 ) and the skew symmetry of B, we can derive the following equivalent formula A = (I + B)(I B) 1. That is, the matrices (I + B) and (I B) 1 commute. j=i 3 Eigenvalues/Eigenvectors of a Rotational Matrix Let A by a 3 3 orthogonal matrix, where A has the symbolic form a 11 a 1 a 13 A = a 1 a a 3. (5) a 31 a 3 a 33 The eigenvalues of A can be determined from the roots of the characteristic polynomial det(a λi) = 0 (6)

3 A brute force calculation results in det(a λi) = λ 3 +λ (a 11 +a +a 33 ) λ[cof(a 11 )+cof(a )+cof(a 33 )]+det(a) = 0. (7) where cof(a ii ) is the cofactor the a ii, i.e., the determinant of the matrix formed from elimination the i th row and i th column from A. Note that for A SO(3), det(a) = 1. One can also show that cof(a ii ) = a ii for matrices in SO(3). To see this, note that the columns of A are unit vectors, which can be denoted as: a 11 a 1 x = a 1 y = a z = a 3 a 31 a 3 a 33 These columns can be interpreted as the unit vectors of an orthogonal right handed coordinate system. Consequently, x = y z y = z x z = x y Performing the cross product and equating sides for x = y z, we get the relation: a 11 a a 33 a 3 a 3 cofactor(a 11 ) a 1 = a 13 a 3 a 1 a 33 = cofactor(a 1 ) a 31 a 1 a 3 a 13 a cofactor(a 31 ) Similar relationships can be derived for the other columns to show that a ij = cofactor(a ij ) for all elements of a special orthogonal matrix. Hence, Equation (7) reduces to Letting det(a λi) = (λ 1)[λ λ(a 11 + a + a 33 1) + 1] = 0. (8) cos φ = a 11 + a + a 33 1, (9) Equation (8) can be rewritten as det(a λi) = (λ 1)[λ cos φλ + 1] = 0. (10) The eigenvalues of A SO(3) are therefore: Note that λ and λ 3 are complex conjugates. a 13 λ 1 = 1 (11) λ,3 = cos φ ± j sin φ = e ±jφ (1) 3

4 3.1 Physical Interpretation of the Eigenvalues/Eigenvectors Let e 1, e, and e 3 denote the eigenvectors associated with eigenvalues λ 1, λ, and λ 3. Recall from the definition of an eigenvalue/eigenvector that A e j = λ j e j. The eigenvalues of rotation matrices can be physically interpreted as follows. The eigenvector e 1 is termed the axis of rotation, since A e 1 = λ 1 e 1 = e 1. That is, e 1 is an invariant of A. If A represents a rotational displacement of a body B, then the set of points in B that lie along the line passing through the fixed point of the rotation and in the direction of e 1 remain fixed by the displacement. The eigenvectors e and e 3 are generally complex, and will be complex conjugates (since λ and λ 3 are complex conjugates). To interpret these complex eigenvalues/eigenvectors, construct the real vectors: c = 1 ( e + e 3 ) (13) c 3 = i ( e e 3 ). (14) Note that c is orthogonal to c 3, and both c and c 3 are orthogonal to e 1. Thus c and c 3 span a plane that is orthogonal to the axis of rotation. Let s compute the action of A on c and c 3 : A c = 1 A( e + e 3 ) = 1 (λ e + λ 3 e 3 ) = 1 (cos φ + j sin φ) e + 1 (cos φ j sin φ) e 3 = c cos φ + c 3 sin φ (15) A c 3 = i A( e e 3 ) = c sin φ + c 3 cos φ (16) Thus, A acts to rotate vectors by angle φ about the axis e 1. We can summarize these findings in Euler s theorem. Theorem 1 (Euler s Theorem). Every rigid body rotational displacement is equivalent to a simple rotation about a fixed axis. Because there are a great many theorems associated with the name of Euler, this theorem is sometimes termed Euler s Displacement Theorem. 4 Formulas for the Rotation Matrix So far we have developed Cayley s formula, which shows that a 3 3 orthogonal matrix can be expressed as a function of a 3 3 skew symmetric matrix, which has only 3 independent 4

5 parameters. We have also characterized rotations in terms of Euler s theorem, which suggests a parametrization of rotations in terms of a fixed axis and an angle. We now wish to derive a formula for a rotation matrix in terms of this axis and angle. Our goal will be to find expressions for the entries of the skew symmetric matrix B in terms of the rotation axis and rotation angle. By relabeling the entries of B in Equation (3), we ca assume that B has the form: 0 b 3 b b 3 0 b 1. (17) b b 1 0 Note that if b = [b 1 b b 3 ] T, then B v = b v for any 3 1 vector v. Recall that if e j is an eigenvector of A with eigenvalue λ j, then (A λ j I) e j = 0. Let s apply this relationship to the axis of rotation, whose associated eigenvalue has unit value. Multiply both sides of Cayley s formula: (A I) e 1 = [(I B) 1 (I + B) I] e 1 = 0, (18) by the quantity (I B), and then simplify to obtain B e 1 = 0. This equation implies that b is parallel (or antiparallel) to e 1 : b = ±c e 1, where c is an as yet undetermined constant. The constant c is found as follows. Recall our derivation of Cayley s formula from Section. Let D denote a plane that is perpendicular to the axis of rotation, and passing through the fixed point of the rotation. From the discussion above, it should be clear that D is also perpendicular to b. Let v 1 and v 0 denote the projection of vectors v 1 and v 0 onto D. Recall from above that v 1 v 0 = b ( v1 v 0 ). This relationship will continue to hold for the projected vectors: Let φ denote the angle between v 0 and v 1. By observation, v 1 v 0 = b ( v 1 v 0). (19) tan( φ ) = v 1 v 0 / v 1 + v 0 / = v 1 v 0 v 1 + v 0 If we take the norm of both sides of Equation (19), and recall that b is perpendicular to ( v 1 + v 0), we get b = v 1 v 0 v 1 + v 0 = tan(φ ) Hence, b = tan ( φ ) e1. Hereafter, let ω denote a unit vector collinear with the axis of rotation. Then b = tan( φ ) ω. 5

6 Let ˆω be the 3 3 skew symmetric matrix such that ˆω v = ω v for any vector v: 0 ω 3 ω ω 3 0 ω 1. (0) ω ω 1 0 Hence, B = tan( φ ) ˆω. Substituting this result into Equation (4) gives us an explicit formula for a rotation matrix in terms of the axis of rotation, ω and angle of rotation, φ. A = (I B) 1 (I + B) = (I tan( φ )ˆω) 1 (I + tan( φ )ˆω) Some algebraic rearrangement of this formula yields Rodriguez Formula for a rotation: A = I + sin φ ˆω + (1 cos φ) ˆω. Thus, Rodriguez Formula gives us the explicit parametrization of a rotation matrix in terms of the Axis of Rotation and the Angle of Rotation (Euler s displacement theorem). 6

### Recall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n.

ORTHOGONAL MATRICES Informally, an orthogonal n n matrix is the n-dimensional analogue of the rotation matrices R θ in R 2. When does a linear transformation of R 3 (or R n ) deserve to be called a rotation?

### Chapter 6. Orthogonality

6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

### Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.

Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(

### Summary of week 8 (Lectures 22, 23 and 24)

WEEK 8 Summary of week 8 (Lectures 22, 23 and 24) This week we completed our discussion of Chapter 5 of [VST] Recall that if V and W are inner product spaces then a linear map T : V W is called an isometry

### Solutions to Linear Algebra Practice Problems

Solutions to Linear Algebra Practice Problems. Find all solutions to the following systems of linear equations. (a) x x + x 5 x x x + x + x 5 (b) x + x + x x + x + x x + x + 8x Answer: (a) We create the

### Similarity and Diagonalization. Similar Matrices

MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

### Rotation in the Space

Rotation in the Space (Com S 477/577 Notes) Yan-Bin Jia Sep 6, 2016 The position of a point after some rotation about the origin can simply be obtained by multiplying its coordinates with a matrix One

### MATH 240 Fall, Chapter 1: Linear Equations and Matrices

MATH 240 Fall, 2007 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 9th Ed. written by Prof. J. Beachy Sections 1.1 1.5, 2.1 2.3, 4.2 4.9, 3.1 3.5, 5.3 5.5, 6.1 6.3, 6.5, 7.1 7.3 DEFINITIONS

### 1 Eigenvalues and Eigenvectors

Math 20 Chapter 5 Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors. Definition: A scalar λ is called an eigenvalue of the n n matrix A is there is a nontrivial solution x of Ax = λx. Such an x

### Recall that two vectors in are perpendicular or orthogonal provided that their dot

Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

### The Characteristic Polynomial

Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem

### Chapter 17. Orthogonal Matrices and Symmetries of Space

Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length

### MATH36001 Background Material 2015

MATH3600 Background Material 205 Matrix Algebra Matrices and Vectors An ordered array of mn elements a ij (i =,, m; j =,, n) written in the form a a 2 a n A = a 2 a 22 a 2n a m a m2 a mn is said to be

### Lecture L3 - Vectors, Matrices and Coordinate Transformations

S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

### LINEAR ALGEBRA. September 23, 2010

LINEAR ALGEBRA September 3, 00 Contents 0. LU-decomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................

### x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.

Cross product 1 Chapter 7 Cross product We are getting ready to study integration in several variables. Until now we have been doing only differential calculus. One outcome of this study will be our ability

### Sergei Silvestrov, Christopher Engström, Karl Lundengård, Johan Richter, Jonas Österberg. November 13, 2014

Sergei Silvestrov,, Karl Lundengård, Johan Richter, Jonas Österberg November 13, 2014 Analysis Todays lecture: Course overview. Repetition of matrices elementary operations. Repetition of solvability of

### Matrix Algebra LECTURE 1. Simultaneous Equations Consider a system of m linear equations in n unknowns: y 1 = a 11 x 1 + a 12 x 2 + +a 1n x n,

LECTURE 1 Matrix Algebra Simultaneous Equations Consider a system of m linear equations in n unknowns: y 1 a 11 x 1 + a 12 x 2 + +a 1n x n, (1) y 2 a 21 x 1 + a 22 x 2 + +a 2n x n, y m a m1 x 1 +a m2 x

### 2.5 Complex Eigenvalues

1 25 Complex Eigenvalues Real Canonical Form A semisimple matrix with complex conjugate eigenvalues can be diagonalized using the procedure previously described However, the eigenvectors corresponding

### 13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms

### Introduction to Matrix Algebra

Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary

### Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry

### 1 2 3 1 1 2 x = + x 2 + x 4 1 0 1

(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which

### 1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each)

Math 33 AH : Solution to the Final Exam Honors Linear Algebra and Applications 1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each) (1) If A is an invertible

### Topic 1: Matrices and Systems of Linear Equations.

Topic 1: Matrices and Systems of Linear Equations Let us start with a review of some linear algebra concepts we have already learned, such as matrices, determinants, etc Also, we shall review the method

### Matrices in Statics and Mechanics

Matrices in Statics and Mechanics Casey Pearson 3/19/2012 Abstract The goal of this project is to show how linear algebra can be used to solve complex, multi-variable statics problems as well as illustrate

### Using determinants, it is possible to express the solution to a system of equations whose coefficient matrix is invertible:

Cramer s Rule and the Adjugate Using determinants, it is possible to express the solution to a system of equations whose coefficient matrix is invertible: Theorem [Cramer s Rule] If A is an invertible

### Algebra and Linear Algebra

Vectors Coordinate frames 2D implicit curves 2D parametric curves 3D surfaces Algebra and Linear Algebra Algebra: numbers and operations on numbers 2 + 3 = 5 3 7 = 21 Linear algebra: tuples, triples,...

### A matrix over a field F is a rectangular array of elements from F. The symbol

Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F) denotes the collection of all m n matrices over F Matrices will usually be denoted

### Chapter 8. Matrices II: inverses. 8.1 What is an inverse?

Chapter 8 Matrices II: inverses We have learnt how to add subtract and multiply matrices but we have not defined division. The reason is that in general it cannot always be defined. In this chapter, we

### Dr. Marques Sophie Linear algebra II SpringSemester 2016 Problem Set # 11

Dr. Marques Sophie Linear algebra II SpringSemester 2016 Office 519 marques@cims.nyu.edu Problem Set # 11 Justify all your answers completely (Or with a proof or with a counter example) unless mentioned

### by the matrix A results in a vector which is a reflection of the given

Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

### The Matrix Elements of a 3 3 Orthogonal Matrix Revisited

Physics 116A Winter 2011 The Matrix Elements of a 3 3 Orthogonal Matrix Revisited 1. Introduction In a class handout entitled, Three-Dimensional Proper and Improper Rotation Matrices, I provided a derivation

### Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis

Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis 2. Polar coordinates A point P in a polar coordinate system is represented by an ordered pair of numbers (r, θ). If r >

### Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013

Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,

### Section 9.5: Equations of Lines and Planes

Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that

### Preliminaries of linear algebra

Preliminaries of linear algebra (for the Automatic Control course) Matteo Rubagotti March 3, 2011 This note sums up the preliminary definitions and concepts of linear algebra needed for the resolution

### Inner Product Spaces and Orthogonality

Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,

### INTRODUCTORY LINEAR ALGEBRA WITH APPLICATIONS B. KOLMAN, D. R. HILL

SOLUTIONS OF THEORETICAL EXERCISES selected from INTRODUCTORY LINEAR ALGEBRA WITH APPLICATIONS B. KOLMAN, D. R. HILL Eighth Edition, Prentice Hall, 2005. Dr. Grigore CĂLUGĂREANU Department of Mathematics

### Solution. Area(OABC) = Area(OAB) + Area(OBC) = 1 2 det( [ 5 2 1 2. Question 2. Let A = (a) Calculate the nullspace of the matrix A.

Solutions to Math 30 Take-home prelim Question. Find the area of the quadrilateral OABC on the figure below, coordinates given in brackets. [See pp. 60 63 of the book.] y C(, 4) B(, ) A(5, ) O x Area(OABC)

### Linear Algebra Concepts

University of Central Florida School of Electrical Engineering Computer Science EGN-3420 - Engineering Analysis. Fall 2009 - dcm Linear Algebra Concepts Vector Spaces To define the concept of a vector

### Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n real-valued matrix A is said to be an orthogonal

### Unit 18 Determinants

Unit 18 Determinants Every square matrix has a number associated with it, called its determinant. In this section, we determine how to calculate this number, and also look at some of the properties of

### State of Stress at Point

State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

### Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

### Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two

### Special Orthogonal Groups and Rotations

Special Orthogonal Groups and Rotations Christopher Triola Submitted in partial fulfillment of the requirements for Honors in Mathematics at the University of Mary Washington Fredericksburg, Virginia April

### (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular.

Theorem.7.: (Properties of Triangular Matrices) (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. (b) The product

### Determinants. Dr. Doreen De Leon Math 152, Fall 2015

Determinants Dr. Doreen De Leon Math 52, Fall 205 Determinant of a Matrix Elementary Matrices We will first discuss matrices that can be used to produce an elementary row operation on a given matrix A.

### Figure 1.1 Vector A and Vector F

CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

### 1 Orthogonal projections and the approximation

Math 1512 Fall 2010 Notes on least squares approximation Given n data points (x 1, y 1 ),..., (x n, y n ), we would like to find the line L, with an equation of the form y = mx + b, which is the best fit

### CHARACTERISTIC ROOTS AND VECTORS

CHARACTERISTIC ROOTS AND VECTORS 1 DEFINITION OF CHARACTERISTIC ROOTS AND VECTORS 11 Statement of the characteristic root problem Find values of a scalar λ for which there exist vectors x 0 satisfying

### On the general equation of the second degree

On the general equation of the second degree S Kesavan The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai - 600 113 e-mail:kesh@imscresin Abstract We give a unified treatment of the

### 5.3 Determinants and Cramer s Rule

290 5.3 Determinants and Cramer s Rule Unique Solution of a 2 2 System The 2 2 system (1) ax + by = e, cx + dy = f, has a unique solution provided = ad bc is nonzero, in which case the solution is given

### MATH 551 - APPLIED MATRIX THEORY

MATH 55 - APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points

### 2D Geometric Transformations. COMP 770 Fall 2011

2D Geometric Transformations COMP 770 Fall 2011 1 A little quick math background Notation for sets, functions, mappings Linear transformations Matrices Matrix-vector multiplication Matrix-matrix multiplication

### Quick Reference Guide to Linear Algebra in Quantum Mechanics

Quick Reference Guide to Linear Algebra in Quantum Mechanics Scott N. Walck September 2, 2014 Contents 1 Complex Numbers 2 1.1 Introduction............................ 2 1.2 Real Numbers...........................

### Math 54. Selected Solutions for Week Is u in the plane in R 3 spanned by the columns

Math 5. Selected Solutions for Week 2 Section. (Page 2). Let u = and A = 5 2 6. Is u in the plane in R spanned by the columns of A? (See the figure omitted].) Why or why not? First of all, the plane in

### 1 Determinants. Definition 1

Determinants The determinant of a square matrix is a value in R assigned to the matrix, it characterizes matrices which are invertible (det 0) and is related to the volume of a parallelpiped described

### 2.1: Determinants by Cofactor Expansion. Math 214 Chapter 2 Notes and Homework. Evaluate a Determinant by Expanding by Cofactors

2.1: Determinants by Cofactor Expansion Math 214 Chapter 2 Notes and Homework Determinants The minor M ij of the entry a ij is the determinant of the submatrix obtained from deleting the i th row and the

### Matrix Algebra, Class Notes (part 1) by Hrishikesh D. Vinod Copyright 1998 by Prof. H. D. Vinod, Fordham University, New York. All rights reserved.

Matrix Algebra, Class Notes (part 1) by Hrishikesh D. Vinod Copyright 1998 by Prof. H. D. Vinod, Fordham University, New York. All rights reserved. 1 Sum, Product and Transpose of Matrices. If a ij with

### = [a ij ] 2 3. Square matrix A square matrix is one that has equal number of rows and columns, that is n = m. Some examples of square matrices are

This document deals with the fundamentals of matrix algebra and is adapted from B.C. Kuo, Linear Networks and Systems, McGraw Hill, 1967. It is presented here for educational purposes. 1 Introduction In

### UNIT 2 MATRICES - I 2.0 INTRODUCTION. Structure

UNIT 2 MATRICES - I Matrices - I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress

### 2.5 Elementary Row Operations and the Determinant

2.5 Elementary Row Operations and the Determinant Recall: Let A be a 2 2 matrtix : A = a b. The determinant of A, denoted by det(a) c d or A, is the number ad bc. So for example if A = 2 4, det(a) = 2(5)

### Calculus and linear algebra for biomedical engineering Week 4: Inverse matrices and determinants

Calculus and linear algebra for biomedical engineering Week 4: Inverse matrices and determinants Hartmut Führ fuehr@matha.rwth-aachen.de Lehrstuhl A für Mathematik, RWTH Aachen October 30, 2008 Overview

### Elasticity Theory Basics

G22.3033-002: Topics in Computer Graphics: Lecture #7 Geometric Modeling New York University Elasticity Theory Basics Lecture #7: 20 October 2003 Lecturer: Denis Zorin Scribe: Adrian Secord, Yotam Gingold

### Notes on Determinant

ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

### Harvard College. Math 21b: Linear Algebra and Differential Equations Formula and Theorem Review

Harvard College Math 21b: Linear Algebra and Differential Equations Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu May 5, 2010 1 Contents Table of Contents 4 1 Linear Equations

### Orthogonal Projections

Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors

### WHICH LINEAR-FRACTIONAL TRANSFORMATIONS INDUCE ROTATIONS OF THE SPHERE?

WHICH LINEAR-FRACTIONAL TRANSFORMATIONS INDUCE ROTATIONS OF THE SPHERE? JOEL H. SHAPIRO Abstract. These notes supplement the discussion of linear fractional mappings presented in a beginning graduate course

### Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

### We have just introduced a first kind of specifying change of orientation. Let s call it Axis-Angle.

2.1.5 Rotations in 3-D around the origin; Axis of rotation In three-dimensional space, it will not be sufficient just to indicate a center of rotation, as we did for plane kinematics. Any change of orientation

### 1 Sets and Set Notation.

LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

### Quaternions and isometries

6 Quaternions and isometries 6.1 Isometries of Euclidean space Our first objective is to understand isometries of R 3. Definition 6.1.1 A map f : R 3 R 3 is an isometry if it preserves distances; that

### Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number

### Lecture 34: Principal Axes of Inertia

Lecture 34: Principal Axes of Inertia We ve spent the last few lectures deriving the general expressions for L and T rot in terms of the inertia tensor Both expressions would be a great deal simpler if

### 3. Let A and B be two n n orthogonal matrices. Then prove that AB and BA are both orthogonal matrices. Prove a similar result for unitary matrices.

Exercise 1 1. Let A be an n n orthogonal matrix. Then prove that (a) the rows of A form an orthonormal basis of R n. (b) the columns of A form an orthonormal basis of R n. (c) for any two vectors x,y R

### DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

Facts About Eigenvalues By Dr David Butler Definitions Suppose A is an n n matrix An eigenvalue of A is a number λ such that Av = λv for some nonzero vector v An eigenvector of A is a nonzero vector v

### How is a vector rotated?

How is a vector rotated? V. Balakrishnan Department of Physics, Indian Institute of Technology, Madras 600 036 Appeared in Resonance, Vol. 4, No. 10, pp. 61-68 (1999) Introduction In an earlier series

### Rigid Body Displacements

Chapter 2 Rigid Body Displacements 2.1 The Isometry Group A rigid body displacement can be described geometrically as an Isometry: A bijective linear mapping of E 3 onto itself which leaves the distance

### 6. ISOMETRIES isometry central isometry translation Theorem 1: Proof:

6. ISOMETRIES 6.1. Isometries Fundamental to the theory of symmetry are the concepts of distance and angle. So we work within R n, considered as an inner-product space. This is the usual n- dimensional

### Another new approach to the small Ree groups

Another new approach to the small Ree groups Robert A. Wilson Abstract. A new elementary construction of the small Ree groups is described. Mathematics Subject Classification (2000). 20D06. Keywords. Groups

### Problems for Advanced Linear Algebra Fall 2012

Problems for Advanced Linear Algebra Fall 2012 Class will be structured around students presenting complete solutions to the problems in this handout. Please only agree to come to the board when you are

### Physics 53. Rotational Motion 1. We're going to turn this team around 360 degrees. Jason Kidd

Physics 53 Rotational Motion 1 We're going to turn this team around 360 degrees. Jason Kidd Rigid bodies To a good approximation, a solid object behaves like a perfectly rigid body, in which each particle

### Lecture 11. Shuanglin Shao. October 2nd and 7th, 2013

Lecture 11 Shuanglin Shao October 2nd and 7th, 2013 Matrix determinants: addition. Determinants: multiplication. Adjoint of a matrix. Cramer s rule to solve a linear system. Recall that from the previous

### 1 Scalars, Vectors and Tensors

DEPARTMENT OF PHYSICS INDIAN INSTITUTE OF TECHNOLOGY, MADRAS PH350 Classical Physics Handout 1 8.8.2009 1 Scalars, Vectors and Tensors In physics, we are interested in obtaining laws (in the form of mathematical

### Geometric Transformations

Geometric Transformations Definitions Def: f is a mapping (function) of a set A into a set B if for every element a of A there exists a unique element b of B that is paired with a; this pairing is denoted

### [1] Diagonal factorization

8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:

### is in plane V. However, it may be more convenient to introduce a plane coordinate system in V.

.4 COORDINATES EXAMPLE Let V be the plane in R with equation x +2x 2 +x 0, a two-dimensional subspace of R. We can describe a vector in this plane by its spatial (D)coordinates; for example, vector x 5

### Mechanics Physics 151

Mechanics Physics 151 Lecture 10 Rigid Body Motion (Chapter 5) What We Did Last Time! Found the velocity due to rotation! Used it to find Coriolis effect! Connected ω with the Euler angles! Lagrangian

### Eigenvalues and Eigenvectors

Chapter 6 Eigenvalues and Eigenvectors 6. Introduction to Eigenvalues Linear equations Ax D b come from steady state problems. Eigenvalues have their greatest importance in dynamic problems. The solution

### Geometric description of the cross product of the vectors u and v. The cross product of two vectors is a vector! u x v is perpendicular to u and v

12.4 Cross Product Geometric description of the cross product of the vectors u and v The cross product of two vectors is a vector! u x v is perpendicular to u and v The length of u x v is uv u v sin The

### Lecture 4: Partitioned Matrices and Determinants

Lecture 4: Partitioned Matrices and Determinants 1 Elementary row operations Recall the elementary operations on the rows of a matrix, equivalent to premultiplying by an elementary matrix E: (1) multiplying

### Robot Manipulators. Position, Orientation and Coordinate Transformations. Fig. 1: Programmable Universal Manipulator Arm (PUMA)

Robot Manipulators Position, Orientation and Coordinate Transformations Fig. 1: Programmable Universal Manipulator Arm (PUMA) A robot manipulator is an electronically controlled mechanism, consisting of

### Three-Dimensional Proper and Improper Rotation Matrices

Physics 116A Winter 011 Three-Dimensional Proper and Improper Rotation Matrices 1. Proper and improper rotation matrices ArealorthogonalmatrixRisamatrixwhoseelementsarerealnumbersandsatisfies R 1 = R T

### MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

### Orthogonal Matrices. u v = u v cos(θ) T (u) + T (v) = T (u + v). It s even easier to. If u and v are nonzero vectors then

Part 2. 1 Part 2. Orthogonal Matrices If u and v are nonzero vectors then u v = u v cos(θ) is 0 if and only if cos(θ) = 0, i.e., θ = 90. Hence, we say that two vectors u and v are perpendicular or orthogonal