# Exam 3 April 14, 2015

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 CSC Discrete Structures Exam 3 April 14, 2015 Name: KEY Question Value Score TOTAL 100 No calculators or any reference except your one note card is permitted. If an answer involves a computation that would be very time consuming, you may leave it in a form that just needs final calculation. Please answer questions in the spaces provided. If you make a mistake or for some other reason need more space, please use the back of pages and clearly indicate where the answer can be found. Show your work carefully. Just writing an answer will not do. Show any assumptions, show the steps you took, and show how you came to your answer. Good luck!

2 1. [ /10] Show, using induction that for any n N, A! A! A! = A! A! A!

3 2. [ /30] a. [ /5] There are 20 plants in your garden but only enough fertilizer spray to boost 8 of them. How many ways are there to fertilize the plants? Answer: C(20,8) = 125,970. b. [ /5] How many anagrams are there (including those that aren t dictionary words) of PIES? Answer: All four letters are different, so 4! = 24 anagrams. c. [ /5] At the ice cream store, you need to get 20 quarts of ice cream of assorted flavors for a big Fourth of July block party. There are 15 possible flavors to choose from and you can choose any number of quarts of each flavor (including zero). How many ways are there to choose the flavors? Place 20 slots in a line to indicate the 20 quarts, and place 14 dividers to indicate switches between flavors of ice cream. That gives C(20+14, 14) = C(34,14) possibilities for where the dividers would go. For the remaining questions, consider words made of the alphabet A, B, C, D, E, F. d. [ /5] How many four-letter words contain the subword ACE? Answer: A four-letter word containing ACE has only one other letter in it. That letter can occur at the beginning of the word or the end of the word, and there are six possibilities for that letter. Thus, there are 2 6 = 12 words containing ACE. e. [ /5] How many five-letter words contain the subword CAB? Answer: We can have words of three forms: CAB CAB CAB For each of these three possibilities, we have six choices for each of the two remaining letters. Thus, the total number is = 108. f. [ /5] How many four-letter words begin with C or end in two vowels? Answer: If a four-letter word begins with C, then there are six choices for each of the other three letters and so there are 6 3 = 216 such words. If a four-letter word ends in two vowels, there are six choices of letter for the first two letters and two choices of letter (A or E) for the last two letters, for a total of = 144 words. This double-counts those words that begin with C and end in two vowels. There are 6 4 = 24 such words because there are one, six, two, and two choices for the word s four letters, respectively. Thus, there are = 336 four-letter words that begin with C or end in two vowels.

5 4. [ /20] a) [ /5] Suppose a graph G has 365 vertices and 364 edges. Can it be a tree? Must it be a tree? Yes, it can be a tree as long as it is connected. If it is not connected, it might have cycles, so it is not necessarily a tree. b) [ /5] Draw all trees of five vertices. c) [ /5] Does every bipartite graph have a perfect matching? Answer: No. Consider a bipartite graph with one vertex in the first part and two vertices in the second part. d) [ /5] Make a binary search tree for this list of words. Place the first item shown at the root. Insert the other items in the order in which they appear. it, is, never, too, late, to, have, a, happy, childhood

6 5. [ /10] Find the minimum spanning tree. Show your individual steps, i.e., keep redrawing what you have done before, to show how the spanning tree evolves.

7 For your reference, as needed:

### Homework 13 Solutions. X(n) = 3X(n 1) + 5X(n 2) : n 2 X(0) = 1 X(1) = 2. Solution: First we find the characteristic equation

Homework 13 Solutions PROBLEM ONE 1 Solve the recurrence relation X(n) = 3X(n 1) + 5X(n ) : n X(0) = 1 X(1) = Solution: First we find the characteristic equation which has roots r = 3r + 5 r 3r 5 = 0,

### Solutions to Exercises 8

Discrete Mathematics Lent 2009 MA210 Solutions to Exercises 8 (1) Suppose that G is a graph in which every vertex has degree at least k, where k 1, and in which every cycle contains at least 4 vertices.

### Discrete Mathematics, Chapter 5: Induction and Recursion

Discrete Mathematics, Chapter 5: Induction and Recursion Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 5 1 / 20 Outline 1 Well-founded

### Math 316 Solutions To Sample Exam 2 Problems

Solutions to Sample Eam 2 Problems Math 6 Math 6 Solutions To Sample Eam 2 Problems. (a) By substituting appropriate values into the binomial theorem, find a formula for the sum ( ) ( ) ( ) ( ) ( ) n n

### 3-17 15-25 5 15-10 25 3-2 5 0. 1b) since the remainder is 0 I need to factor the numerator. Synthetic division tells me this is true

Section 5.2 solutions #1-10: a) Perform the division using synthetic division. b) if the remainder is 0 use the result to completely factor the dividend (this is the numerator or the polynomial to the

### Sample Problems in Discrete Mathematics

Sample Problems in Discrete Mathematics This handout lists some sample problems that you should be able to solve as a pre-requisite to Computer Algorithms Try to solve all of them You should also read

### Homework 15 Solutions

PROBLEM ONE (Trees) Homework 15 Solutions 1. Recall the definition of a tree: a tree is a connected, undirected graph which has no cycles. Which of the following definitions are equivalent to this definition

### 1. What s wrong with the following proofs by induction?

ArsDigita University Month : Discrete Mathematics - Professor Shai Simonson Problem Set 4 Induction and Recurrence Equations Thanks to Jeffrey Radcliffe and Joe Rizzo for many of the solutions. Pasted

### Connectivity and cuts

Math 104, Graph Theory February 19, 2013 Measure of connectivity How connected are each of these graphs? > increasing connectivity > I G 1 is a tree, so it is a connected graph w/minimum # of edges. Every

### Answer: (a) Since we cannot repeat men on the committee, and the order we select them in does not matter, ( )

1. (Chapter 1 supplementary, problem 7): There are 12 men at a dance. (a) In how many ways can eight of them be selected to form a cleanup crew? (b) How many ways are there to pair off eight women at the

### 3. Recurrence Recursive Definitions. To construct a recursively defined function:

3. RECURRENCE 10 3. Recurrence 3.1. Recursive Definitions. To construct a recursively defined function: 1. Initial Condition(s) (or basis): Prescribe initial value(s) of the function.. Recursion: Use a

### Basic Notions on Graphs. Planar Graphs and Vertex Colourings. Joe Ryan. Presented by

Basic Notions on Graphs Planar Graphs and Vertex Colourings Presented by Joe Ryan School of Electrical Engineering and Computer Science University of Newcastle, Australia Planar graphs Graphs may be drawn

### Introduction to Relations

CHAPTER 7 Introduction to Relations 1. Relations and Their Properties 1.1. Definition of a Relation. Definition: A binary relation from a set A to a set B is a subset R A B. If (a, b) R we say a is related

### Mathematical Induction. Lecture 10-11

Mathematical Induction Lecture 10-11 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach

### Question 1a of 14 ( 2 Identifying the roots of a polynomial and their importance 91008 )

Quiz: Factoring by Graphing Question 1a of 14 ( 2 Identifying the roots of a polynomial and their importance 91008 ) (x-3)(x-6), (x-6)(x-3), (1x-3)(1x-6), (1x-6)(1x-3), (x-3)*(x-6), (x-6)*(x-3), (1x- 3)*(1x-6),

### Jade Yu Cheng ICS 311 Homework 10 Oct 7, 2008

Jade Yu Cheng ICS 311 Homework 10 Oct 7, 2008 Question for lecture 13 Problem 23-3 on p. 577 Bottleneck spanning tree A bottleneck spanning tree of an undirected graph is a spanning tree of whose largest

### Chapter There are non-isomorphic rooted trees with four vertices. Ans: 4.

Use the following to answer questions 1-26: In the questions below fill in the blanks. Chapter 10 1. If T is a tree with 999 vertices, then T has edges. 998. 2. There are non-isomorphic trees with four

### Math 55: Discrete Mathematics

Math 55: Discrete Mathematics UC Berkeley, Spring 2012 Homework # 9, due Wednesday, April 11 8.1.5 How many ways are there to pay a bill of 17 pesos using a currency with coins of values of 1 peso, 2 pesos,

### Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding

### 4. A rocket is shot off ground the ground at time t, the height the rocket is off the ground is

NAME: HOUR: Page 1 1. What is a quadratic equation(look up on ipad)? 2. What does the graph look like? 3. Circle the functions that are quadratic? a) f (x) = 2x + 5 b) g(x) = x 2 c) y = 3x 1 d) y = 3x

### Math 443/543 Graph Theory Notes 4: Connector Problems

Math 443/543 Graph Theory Notes 4: Connector Problems David Glickenstein September 19, 2012 1 Trees and the Minimal Connector Problem Here is the problem: Suppose we have a collection of cities which we

### 6.3 Conditional Probability and Independence

222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

### Everything goes, everything comes back; eternally rolls the wheel of being. (Friedrich Nietzsche)

Chapter 6 Linear Recurrences Everything goes, everything comes back; eternally rolls the wheel of being. (Friedrich Nietzsche) This chapter is dedicated to linear recurrences, a special type of equations

### Discrete Mathematics Problems

Discrete Mathematics Problems William F. Klostermeyer School of Computing University of North Florida Jacksonville, FL 32224 E-mail: wkloster@unf.edu Contents 0 Preface 3 1 Logic 5 1.1 Basics...............................

### Module 6: Basic Counting

Module 6: Basic Counting Theme 1: Basic Counting Principle We start with two basic counting principles, namely, the sum rule and the multiplication rule. The Sum Rule: If there are n 1 different objects

### Lecture 16 : Relations and Functions DRAFT

CS/Math 240: Introduction to Discrete Mathematics 3/29/2011 Lecture 16 : Relations and Functions Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT In Lecture 3, we described a correspondence

### CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92.

Name: Email ID: CSE 326, Data Structures Section: Sample Final Exam Instructions: The exam is closed book, closed notes. Unless otherwise stated, N denotes the number of elements in the data structure

### Reading 13 : Finite State Automata and Regular Expressions

CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model

### MATH 551 - APPLIED MATRIX THEORY

MATH 55 - APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points

### Discrete Mathematics (2009 Spring) Induction and Recursion (Chapter 4, 3 hours)

Discrete Mathematics (2009 Spring) Induction and Recursion (Chapter 4, 3 hours) Chih-Wei Yi Dept. of Computer Science National Chiao Tung University April 17, 2009 4.1 Mathematical Induction 4.1 Mathematical

### 10. Graph Matrices Incidence Matrix

10 Graph Matrices Since a graph is completely determined by specifying either its adjacency structure or its incidence structure, these specifications provide far more efficient ways of representing a

### Minimum Spanning Trees

Minimum Spanning Trees Algorithms and 18.304 Presentation Outline 1 Graph Terminology Minimum Spanning Trees 2 3 Outline Graph Terminology Minimum Spanning Trees 1 Graph Terminology Minimum Spanning Trees

### Relations Graphical View

Relations Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Introduction Recall that a relation between elements of two sets is a subset of their Cartesian product (of ordered pairs). A binary

### (Refer Slide Time 1.50)

Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Module -2 Lecture #11 Induction Today we shall consider proof

### Definition. A graph is a collection of vertices, and edges between them. They are often represented by a drawing:

1. GRAPHS AND COLORINGS Definition. A graph is a collection of vertices, and edges between them. They are often represented by a drawing: 3 vertices 3 edges 4 vertices 4 edges 4 vertices 6 edges A graph

### Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs

MCS-236: Graph Theory Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010 Chapter 7: Digraphs Strong Digraphs Definitions. A digraph is an ordered pair (V, E), where V is the set

### 1 Introduction to Counting

1 Introduction to Counting 1.1 Introduction In this chapter you will learn the fundamentals of enumerative combinatorics, the branch of mathematics concerned with counting. While enumeration problems can

### Geometric Series. On the other hand, if 0 <r<1, then the exponential function of base r, the function g(x) =r x, has a graph that looks like this:

Geometric Series In the previous chapter we saw that if a>, then the exponential function with base a, the function f(x) =a x, has a graph that looks like this: On the other hand, if 0

### Notes on Linear Recurrence Sequences

Notes on Linear Recurrence Sequences April 8, 005 As far as preparing for the final exam, I only hold you responsible for knowing sections,,, 6 and 7 Definitions and Basic Examples An example of a linear

### Lecture 3: Linear Programming Relaxations and Rounding

Lecture 3: Linear Programming Relaxations and Rounding 1 Approximation Algorithms and Linear Relaxations For the time being, suppose we have a minimization problem. Many times, the problem at hand can

### Rational Numbers CHAPTER Introduction

RATIONAL NUMBERS Rational Numbers CHAPTER. Introduction In Mathematics, we frequently come across simple equations to be solved. For example, the equation x + = () is solved when x =, because this value

### Math 113 HW #9 Solutions

Math 3 HW #9 Solutions 4. 50. Find the absolute maximum and absolute minimum values of on the interval [, 4]. f(x) = x 3 6x 2 + 9x + 2 Answer: First, we find the critical points of f. To do so, take the

### COLORED GRAPHS AND THEIR PROPERTIES

COLORED GRAPHS AND THEIR PROPERTIES BEN STEVENS 1. Introduction This paper is concerned with the upper bound on the chromatic number for graphs of maximum vertex degree under three different sets of coloring

### 3. Polynomials. 3.1 Parabola primer

3. Polynomials 3.1 Parabola primer A parabola is the graph of a quadratic (degree 2) polynomial, that is, a parabola is polynomial of the form: standard form: y = ax 2 + bx + c. When we are given a polynomial

### SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH

31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,

### MINI LESSON. Lesson 5b Solving Quadratic Equations

MINI LESSON Lesson 5b Solving Quadratic Equations Lesson Objectives By the end of this lesson, you should be able to: 1. Determine the number and type of solutions to a QUADRATIC EQUATION by graphing 2.

### Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902

Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902 http://www.ms.uky.edu/~mschreffler Different Graphs, Similar Properties

### Lecture Notes on Spanning Trees

Lecture Notes on Spanning Trees 15-122: Principles of Imperative Computation Frank Pfenning Lecture 26 April 26, 2011 1 Introduction In this lecture we introduce graphs. Graphs provide a uniform model

### Notes on Matrix Multiplication and the Transitive Closure

ICS 6D Due: Wednesday, February 25, 2015 Instructor: Sandy Irani Notes on Matrix Multiplication and the Transitive Closure An n m matrix over a set S is an array of elements from S with n rows and m columns.

### CSL851: Algorithmic Graph Theory Semester I Lecture 1: July 24

CSL851: Algorithmic Graph Theory Semester I 2013-2014 Lecture 1: July 24 Lecturer: Naveen Garg Scribes: Suyash Roongta Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have

### COT5405 Analysis of Algorithms Homework 3 Solutions

COT0 Analysis of Algorithms Homework 3 Solutions. Prove or give a counter example: (a) In the textbook, we have two routines for graph traversal - DFS(G) and BFS(G,s) - where G is a graph and s is any

### COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH ZACHARY ABEL 1. Introduction In this survey we discuss properties of the Higman-Sims graph, which has 100 vertices, 1100 edges, and is 22 regular. In fact

V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer

### Week 5 Integral Polyhedra

Week 5 Integral Polyhedra We have seen some examples 1 of linear programming formulation that are integral, meaning that every basic feasible solution is an integral vector. This week we develop a theory

### Mathematical induction & Recursion

CS 441 Discrete Mathematics for CS Lecture 15 Mathematical induction & Recursion Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Proofs Basic proof methods: Direct, Indirect, Contradiction, By Cases,

### Mathematical Induction

Mathematical Induction MAT30 Discrete Mathematics Fall 016 MAT30 (Discrete Math) Mathematical Induction Fall 016 1 / 19 Outline 1 Mathematical Induction Strong Mathematical Induction MAT30 (Discrete Math)

### Determining If Two Graphs Are Isomorphic 1

Determining If Two Graphs Are Isomorphic 1 Given two graphs, it is often really hard to tell if they ARE isomorphic, but usually easier to see if they ARE NOT isomorphic. Here is our first idea to help

### Student Outcomes. Classwork. Opening Exercise (4 minutes) Discussion (4 minutes)

Student Outcomes Students are introduced to the formal process of solving an equation: starting from the assumption that the original equation has a solution. Students explain each step as following from

### Constructing Zero Divisor Graphs

Constructing Zero Divisor Graphs Alaina Wickboldt, Louisiana State University Alonza Terry, Xavier University of Louisiana Carlos Lopez, Mississippi State University SMILE 2011 Outline Introduction/Background

### Two General Methods to Reduce Delay and Change of Enumeration Algorithms

ISSN 1346-5597 NII Technical Report Two General Methods to Reduce Delay and Change of Enumeration Algorithms Takeaki Uno NII-2003-004E Apr.2003 Two General Methods to Reduce Delay and Change of Enumeration

### Graphs without proper subgraphs of minimum degree 3 and short cycles

Graphs without proper subgraphs of minimum degree 3 and short cycles Lothar Narins, Alexey Pokrovskiy, Tibor Szabó Department of Mathematics, Freie Universität, Berlin, Germany. August 22, 2014 Abstract

### MLR Institute of Technology

MLR Institute of Technology DUNDIGAL 500 043, HYDERABAD COMPUTER SCIENCE AND ENGINEERING Computer Programming Lab List of Experiments S.No. Program Category List of Programs 1 Operators a) Write a C program

### Fall 2015 Midterm 1 24/09/15 Time Limit: 80 Minutes

Math 340 Fall 2015 Midterm 1 24/09/15 Time Limit: 80 Minutes Name (Print): This exam contains 6 pages (including this cover page) and 5 problems. Enter all requested information on the top of this page,

### Chapter 6 Planarity. Section 6.1 Euler s Formula

Chapter 6 Planarity Section 6.1 Euler s Formula In Chapter 1 we introduced the puzzle of the three houses and the three utilities. The problem was to determine if we could connect each of the three utilities

### Recursion and Induction

Recursion and Induction Themes Recursion Recurrence Definitions Recursive Relations Induction (prove properties of recursive programs and objects defined recursively) Examples Tower of Hanoi Gray Codes

### the lemma. Keep in mind the following facts about regular languages:

CPS 2: Discrete Mathematics Instructor: Bruce Maggs Assignment Due: Wednesday September 2, 27 A Tool for Proving Irregularity (25 points) When proving that a language isn t regular, a tool that is often

### Why is the number of 123- and 132-avoiding permutations equal to the number of binary trees?

Why is the number of - and -avoiding permutations equal to the number of binary trees? What are restricted permutations? We shall deal with permutations avoiding some specific patterns. For us, a permutation

### CHAPTER 2 GRAPHS F G C D

page 1 of Section 2.1 HPTR 2 GRPHS STION 1 INTROUTION basic terminology graph is a set of finitely many points called vertices which may be connected by edges. igs 1 3 show three assorted graphs. v1 v2

### A Partition Formula for Fibonacci Numbers

A Partition Formula for Fibonacci Numbers Philipp Fahr and Claus Michael Ringel Fakultät für Mathematik Universität Bielefeld POBox 00 3 D-330 Bielefeld, Germany philfahr@mathuni-bielefeldde ringel@mathuni-bielefeldde

### The relationship of a trees to a graph is very important in solving many problems in Maths and Computer Science

Trees Mathematically speaking trees are a special class of a graph. The relationship of a trees to a graph is very important in solving many problems in Maths and Computer Science However, in computer

### Data Structures and Algorithms Written Examination

Data Structures and Algorithms Written Examination 22 February 2013 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students: Write First Name, Last Name, Student Number and Signature where

### Variable Dilemma G + G + G = D J + E = J G 2 = D B + G = D F - B = C I / H = A (H > A) A x C = A

Each letter in the equations below stand for a different number (0-9). Look at each equation carefully. Think about the knowledge you have of how numbers work. Find the values of each letter (A - J). You

### CSC 310: Information Theory

CSC 310: Information Theory University of Toronto, Fall 2011 Instructor: Radford M. Neal Week 2 What s Needed for a Theory of (Lossless) Data Compression? A context for the problem. What are we trying

### Analysis of Algorithms, I

Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, February 26, 2015 Outline 1 Recap 2 Representing graphs 3 Breadth-first search (BFS) 4 Applications

### Solutions to Final Exam Sample Questions

Solutions to Final Exam Sample Questions CSE 31 1. Show that the proposition p ((q (r s)) t) is a contingency WITHOUT constructing its full truth table. If p is false, then the proposition is true, because

### Lecture 17 : Equivalence and Order Relations DRAFT

CS/Math 240: Introduction to Discrete Mathematics 3/31/2011 Lecture 17 : Equivalence and Order Relations Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last lecture we introduced the notion

### STRAND A: NUMBER. UNIT A6 Number Systems: Text. Contents. Section. A6.1 Roman Numerals. A6.2 Number Classification* A6.

STRAND A: NUMBER A6 Number Systems Text Contents Section A6.1 Roman Numerals A6. Number Classification* A6.3 Binary Numbers* A6.4 Adding and Subtracting Binary Numbers* A6 Number Systems A6.1 Roman Numerals

### A. V. Gerbessiotis CS Spring 2014 PS 3 Mar 24, 2014 No points

A. V. Gerbessiotis CS 610-102 Spring 2014 PS 3 Mar 24, 2014 No points Problem 1. Suppose that we insert n keys into a hash table of size m using open addressing and uniform hashing. Let p(n, m) be the

### CSE 373 Analysis of Algorithms Date: Nov. 1, Solution to HW3. Total Points: 100

CSE 373 Analysis of Algorithms Date: Nov. 1, 2016 Steven Skiena Problem 1 5-4 [5] Solution to HW3 Total Points: 100 Let T be the BFS-tree of the graph G. For any e in G and e T, we have to show that e

### Memoization/Dynamic Programming. The String reconstruction problem. CS125 Lecture 5 Fall 2016

CS125 Lecture 5 Fall 2016 Memoization/Dynamic Programming Today s lecture discusses memoization, which is a method for speeding up algorithms based on recursion, by using additional memory to remember

### Principle of (Weak) Mathematical Induction. P(1) ( n 1)(P(n) P(n + 1)) ( n 1)(P(n))

Outline We will cover (over the next few weeks) Mathematical Induction (or Weak Induction) Strong (Mathematical) Induction Constructive Induction Structural Induction Principle of (Weak) Mathematical Induction

### Introduction to Algorithms Review information for Prelim 1 CS 4820, Spring 2010 Distributed Wednesday, February 24

Introduction to Algorithms Review information for Prelim 1 CS 4820, Spring 2010 Distributed Wednesday, February 24 The final exam will cover seven topics. 1. greedy algorithms 2. divide-and-conquer algorithms

### Math 30530: Introduction to Probability, Spring 2012

Name: Math 30530: Introduction to Probability, Spring 01 Midterm Exam I Monday, February 0, 01 This exam contains problems on 7 pages (including the front cover). Calculators may be used. Show all your

### Planar Graph and Trees

Dr. Nahid Sultana December 16, 2012 Tree Spanning Trees Minimum Spanning Trees Maps and Regions Eulers Formula Nonplanar graph Dual Maps and the Four Color Theorem Tree Spanning Trees Minimum Spanning

### Chapter 17: Aggregation

Chapter 17: Aggregation 17.1: Introduction This is a technical chapter in the sense that we need the results contained in it for future work. It contains very little new economics and perhaps contains

### Assignment 5 - Due Friday March 6

Assignment 5 - Due Friday March 6 (1) Discovering Fibonacci Relationships By experimenting with numerous examples in search of a pattern, determine a simple formula for (F n+1 ) 2 + (F n ) 2 that is, a

### (a) (b) (c) Figure 1 : Graphs, multigraphs and digraphs. If the vertices of the leftmost figure are labelled {1, 2, 3, 4} in clockwise order from

4 Graph Theory Throughout these notes, a graph G is a pair (V, E) where V is a set and E is a set of unordered pairs of elements of V. The elements of V are called vertices and the elements of E are called

### 1. Robin goes birdwatching one day. He sees three types of birds: penguins, pigeons, and robins. 2 3 of the birds he sees are robins.

SMT 01 General Test Solutions February, 01 1. Robin goes birdwatching one day. He sees three types of birds: penguins, pigeons, and robins. of the birds he sees are robins. 1 8 of the birds he sees are

### Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs

Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph

### CS268: Geometric Algorithms Handout #5 Design and Analysis Original Handout #15 Stanford University Tuesday, 25 February 1992

CS268: Geometric Algorithms Handout #5 Design and Analysis Original Handout #15 Stanford University Tuesday, 25 February 1992 Original Lecture #6: 28 January 1991 Topics: Triangulating Simple Polygons

### Euler Paths and Euler Circuits

Euler Paths and Euler Circuits An Euler path is a path that uses every edge of a graph exactly once. An Euler circuit is a circuit that uses every edge of a graph exactly once. An Euler path starts and

### Applications of Methods of Proof

CHAPTER 4 Applications of Methods of Proof 1. Set Operations 1.1. Set Operations. The set-theoretic operations, intersection, union, and complementation, defined in Chapter 1.1 Introduction to Sets are

### Graph Theory for Articulated Bodies

Graph Theory for Articulated Bodies Alba Perez-Gracia Department of Mechanical Engineering, Idaho State University Articulated Bodies A set of rigid bodies (links) joined by joints that allow relative

### SAT Math Facts & Formulas Review Quiz

Test your knowledge of SAT math facts, formulas, and vocabulary with the following quiz. Some questions are more challenging, just like a few of the questions that you ll encounter on the SAT; these questions

### TU e. Advanced Algorithms: experimentation project. The problem: load balancing with bounded look-ahead. Input: integer m 2: number of machines

The problem: load balancing with bounded look-ahead Input: integer m 2: number of machines integer k 0: the look-ahead numbers t 1,..., t n : the job sizes Problem: assign jobs to machines machine to which

### 1. By how much does 1 3 of 5 2 exceed 1 2 of 1 3? 2. What fraction of the area of a circle of radius 5 lies between radius 3 and radius 4? 3.

1 By how much does 1 3 of 5 exceed 1 of 1 3? What fraction of the area of a circle of radius 5 lies between radius 3 and radius 4? 3 A ticket fee was \$10, but then it was reduced The number of customers

### CSC 373: Algorithm Design and Analysis Lecture 16

CSC 373: Algorithm Design and Analysis Lecture 16 Allan Borodin February 25, 2013 Some materials are from Stephen Cook s IIT talk and Keven Wayne s slides. 1 / 17 Announcements and Outline Announcements