Almost every lossy compression system contains a lossless compression system

Size: px
Start display at page:

Download "Almost every lossy compression system contains a lossless compression system"

Transcription

1 Lossless compression in lossy compression systems Almost every lossy compression system contains a lossless compression system Lossy compression system Transform Quantizer Lossless Encoder Lossless Decoder Lossless compression system Dequantizer Inverse Transform We discuss the basics of lossless compression first, then move on to lossy compression Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no.

2 Topics in lossless compression Binary decision trees and variable length coding Entropy and bit-rate Prefix codes, Huffman codes, Golomb codes Joint entropy, conditional entropy, sources with memory Fax compression standards Arithmetic coding Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no. 2

3 Example: 2 Questions Alice thinks of an outcome (from a finite set), but does not disclose her selection. Bob asks a series of yes/no questions to uniquely determine the outcome chosen. The goal of the game is to ask as few questions as possible on average. Our goal: Design the best strategy for Bob. Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no. 3

4 Example: 2 Questions (cont.) Which strategy is better? (=no) (=yes) A B C D E F A B C D E F Observation: The collection of questions and answers yield a binary code for each outcome. Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no. 4

5 Fixed length codes A B C D E F G H Average description length for K outcomes Optimum for equally likely outcomes Verify by modifying tree l av log 2 K Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no. 5

6 Variable length codes If outcomes are NOT equally probable: Use shorter descriptions for likely outcomes Use longer descriptions for less likely outcomes Intuition: Optimum balanced code trees, i.e., with equally likely outcomes, can be pruned to yield unbalanced trees with unequal probabilities. The unbalanced code trees such obtained are also optimum. Hence, an outcome of probability p should require about log 2 p bits Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no. 6

7 Consider a discrete, finite-alphabet random variable Information associated with the event =x Entropy of is the expected value of that information Unit: bits Entropy of a random variable Alphabet {,, 2,..., K } PMF f x P x for each x H E h f x log 2 f x x h x log 2 f x Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no. 7

8 Information and entropy: properties Information h x Information h (x) strictly increases with decreasing probability f (x) Boundedness of entropy Equality if only one outcome can occur H( ) log 2 Equality if all outcomes are equally likely Very likely and very unlikely events do not substantially change entropy plog p for p or p 2 Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no. 8

9 Example: Binary random variable H plog p ( p)log ( p) 2 2 H Equally likely deterministic p Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no. 9

10 Consider IID random process (or source ) where each sample (or symbol ) possesses identical entropy H() n H() is called entropy rate of the random process. Noiseless Source Coding Theorem [Shannon, 948] The entropy H() is a lower bound for the average word length R of a decodable variable-length code for the symbols. Conversely, the average word length R can approach H(), if sufficiently large blocks of symbols are encoded jointly. Redundancy of a code: Entropy and bit-rate n R H Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no.

11 Given IID random process with alphabet and PMF f x Task: assign a distinct code word, c x, to each element, x, where cx is a string of c bits, such that each x symbol x n can be determined, even if the codewords are directly concatenated in a bitstream Codes with the above property are said to be uniquely decodable. Prefix codes Variable length codes n No code word is a prefix of any other codeword Uniquely decodable, symbol by symbol, in natural order,, 2,..., n,... c xn Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no.

12 Example of non-decodable code Encode sequence of source symbols,,,, 2 3 Resulting bit-stream Encode sequence of source symbols,, 3,, Resulting bit-stream Same bit-stream for different sequences of source symbols: ambiguous, not uniquely decodable BTW: Not a prefix code. Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no. 2

13 Unique decodability: McMillan and Kraft conditions Necessary condition for unique decodability [McMillan] x c x 2 Given a set of code word lengths c x satisfying McMillan condition, a corresponding prefix code always exists [Kraft] Hence, McMillan inequality is both necessary and sufficient. Also known as Kraft inequality or Kraft-McMillan inequality. No loss by only considering prefix codes. Prefix code is not unique. Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no. 3

14 Prefix Decoder Shift register to hold longest code word Code word LUT... Input buffer Advance c x bits Code word length LUT... Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no. 4

15 Binary trees and prefix codes Any binary tree can be converted into a prefix code by traversing the tree from root to leaves. Any prefix code corresponding to a binary tree meets McMillan condition with equality x c x 2 Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no. 5

16 Binary trees and prefix codes (cont.) Augmenting binary tree by two new nodes does not change McMillan sum. Pruning binary tree does not change McMillan sum. 2 l l l l McMillan sum for simplest binary tree 2 2 Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no. 6

17 Instantaneous variable length encoding without redundancy A code without redundancy, i.e. R H( ) Example requires all individual code word lengths l log 2 k k f All probabilities would have to be binary fractions: f k l ( ) 2 k.75 bits H R.75 bits Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no. 7

18 Huffman Code Design algorithm for variable length codes proposed by Huffman (952) always finds a code with minimum redundancy. Obtain code tree as follows: Pick the two symbols with lowest probabilities and merge them into a new auxiliary symbol. 2 Calculate the probability of the auxiliary symbol. 3 If more than one symbol remains, repeat steps and 2 for the new auxiliary alphabet. 4 Convert the code tree into a prefix code. Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no. 8

19 Huffman Code - Example Fixed length coding: Huffman code: Entropy Redundancy of the Huffman code: R fixed 4 bits/symbol R Huffman 2.77 bits/symbol H( ) 2.69 bits/symbol.8 bits/symbol Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no. 9

20 Redundancy of prefix code for general distribution Huffman code redundancy Theorem: For any distribution f, a prefix code can be found, whose rate R satisfies Proof Left hand inequality: Shannon s noiseless coding theorem Right hand inequality: H R H Choose code word lengths bit/symbol Resulting rate cx log2 f x 2 R f x log2 f x x x H f x log f x Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no. 2

21 Vector Huffman coding Huffman coding very inefficient for H() << bit/symbol Remedy: Combine m successive symbols to a new block-symbol Huffman code for block-symbols Redundancy H R H Can also be used to exploit statistical dependencies between successive symbols Disadvantage: exponentially growing alphabet size m m Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no. 2

22 Truncated Huffman Coding Idea: reduce size of Huffman code table and maximum Huffman code word length by Huffman-coding only the most probable symbols. Combine J least probable symbols of an alphabet of size K into an auxillary symbol ESC Use Huffman code for alphabet consisting of remaining K-J most probable symbols and the symbol ESC log J If ESC symbol is encoded, append 2 bits to specify exact symbol from the full alphabet Results in increased average code word length trade off complexity and efficiency by choosing J Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no. 22

23 Adaptive Huffman Coding Use, if source statistics are not known ahead of time Forward adaptation Measure source statistics at encoder by analyzing entire data Transmit Huffman code table ahead of compressed bit-stream JPEG uses this concept (even though often default tables are transmitted) Backward adaptation Measure source statistics both at encoder and decoder, using the same previously decoded data Regularly generate identical Huffman code tables at transmitter and receiver Saves overhead of forward adaptation, but usually poorer code tables, since based on past observations Generally avoided due to computational burden at decoder Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no. 23

24 Unary coding Geometric source x Alphabet,,... PMF f x 2, x Optimal prefix code with redundancy is unary code ( comma code ) c "" c "" c "" c "" 2 3 Consider geometric source with faster decay x PMF f x, with ; x 2 Unary code is still optimum prefix code (i.e., Huffman code), but not redundancy-free Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no. 24

25 Golomb coding For geometric source with slower decay x PMF f x, with ; x 2 Idea: Express each x as x mx q x r with x q x and x m r x mod m Distribution of new random variables m m mxq f x f mx i f i q q q i i xr f x for r r x m r m q and r statistically independent. Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no. 25

26 Golomb coding (cont.) Golomb coding m Choose integer divisor 2 Encode x q optimally by unary code Encode x r by a modified binary code, using code word lengths k a log 2 m k b log 2 m Concatenate bits for x q and x r In practice, m=2 k is often used, so x r can be encoded by constant code word length log m 2 Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no. 26

27 Golomb code examples Unary Code... Unary Code... Constant length code m=2 Unary Code... Constant length code m=4 Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no. 27

28 Golomb parameter estimation Expected value for geometric distribution x E x E E x Approximation for E m E m m E E m m k 2 k E 2 2 max, log2 E 2 Rule for optimum performance of Golomb code Reasonable setting, even if E does not hold Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no. 28

29 Adaptive Golomb coder (JPEG-LS) Initialize A ˆ and N For each n,,2, A Set k max, log2 2N Code symbol x using Golomb code with parameter If N x N max n Initial estimate of mean Set A A/ 2 and N N / 2 Update A A x and N N n k Pick the best Golomb code Avoid overflow and slowly forget the past Bernd Girod: EE398A Image and Video Compression Entropy and Lossless Coding no. 29

Gambling and Data Compression

Gambling and Data Compression Gambling and Data Compression Gambling. Horse Race Definition The wealth relative S(X) = b(x)o(x) is the factor by which the gambler s wealth grows if horse X wins the race, where b(x) is the fraction

More information

Information, Entropy, and Coding

Information, Entropy, and Coding Chapter 8 Information, Entropy, and Coding 8. The Need for Data Compression To motivate the material in this chapter, we first consider various data sources and some estimates for the amount of data associated

More information

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding

More information

Probability Interval Partitioning Entropy Codes

Probability Interval Partitioning Entropy Codes SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 1 Probability Interval Partitioning Entropy Codes Detlev Marpe, Senior Member, IEEE, Heiko Schwarz, and Thomas Wiegand, Senior Member, IEEE Abstract

More information

Compression techniques

Compression techniques Compression techniques David Bařina February 22, 2013 David Bařina Compression techniques February 22, 2013 1 / 37 Contents 1 Terminology 2 Simple techniques 3 Entropy coding 4 Dictionary methods 5 Conclusion

More information

Image Compression through DCT and Huffman Coding Technique

Image Compression through DCT and Huffman Coding Technique International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Rahul

More information

Reading.. IMAGE COMPRESSION- I IMAGE COMPRESSION. Image compression. Data Redundancy. Lossy vs Lossless Compression. Chapter 8.

Reading.. IMAGE COMPRESSION- I IMAGE COMPRESSION. Image compression. Data Redundancy. Lossy vs Lossless Compression. Chapter 8. Reading.. IMAGE COMPRESSION- I Week VIII Feb 25 Chapter 8 Sections 8.1, 8.2 8.3 (selected topics) 8.4 (Huffman, run-length, loss-less predictive) 8.5 (lossy predictive, transform coding basics) 8.6 Image

More information

Arithmetic Coding: Introduction

Arithmetic Coding: Introduction Data Compression Arithmetic coding Arithmetic Coding: Introduction Allows using fractional parts of bits!! Used in PPM, JPEG/MPEG (as option), Bzip More time costly than Huffman, but integer implementation

More information

FUNDAMENTALS of INFORMATION THEORY and CODING DESIGN

FUNDAMENTALS of INFORMATION THEORY and CODING DESIGN DISCRETE "ICS AND ITS APPLICATIONS Series Editor KENNETH H. ROSEN FUNDAMENTALS of INFORMATION THEORY and CODING DESIGN Roberto Togneri Christopher J.S. desilva CHAPMAN & HALL/CRC A CRC Press Company Boca

More information

On the Use of Compression Algorithms for Network Traffic Classification

On the Use of Compression Algorithms for Network Traffic Classification On the Use of for Network Traffic Classification Christian CALLEGARI Department of Information Ingeneering University of Pisa 23 September 2008 COST-TMA Meeting Samos, Greece Outline Outline 1 Introduction

More information

Entropy and Mutual Information

Entropy and Mutual Information ENCYCLOPEDIA OF COGNITIVE SCIENCE 2000 Macmillan Reference Ltd Information Theory information, entropy, communication, coding, bit, learning Ghahramani, Zoubin Zoubin Ghahramani University College London

More information

Class Notes CS 3137. 1 Creating and Using a Huffman Code. Ref: Weiss, page 433

Class Notes CS 3137. 1 Creating and Using a Huffman Code. Ref: Weiss, page 433 Class Notes CS 3137 1 Creating and Using a Huffman Code. Ref: Weiss, page 433 1. FIXED LENGTH CODES: Codes are used to transmit characters over data links. You are probably aware of the ASCII code, a fixed-length

More information

CHAPTER 2 LITERATURE REVIEW

CHAPTER 2 LITERATURE REVIEW 11 CHAPTER 2 LITERATURE REVIEW 2.1 INTRODUCTION Image compression is mainly used to reduce storage space, transmission time and bandwidth requirements. In the subsequent sections of this chapter, general

More information

encoding compression encryption

encoding compression encryption encoding compression encryption ASCII utf-8 utf-16 zip mpeg jpeg AES RSA diffie-hellman Expressing characters... ASCII and Unicode, conventions of how characters are expressed in bits. ASCII (7 bits) -

More information

Design of Efficient Algorithms for Image Compression with Application to Medical Images

Design of Efficient Algorithms for Image Compression with Application to Medical Images Design of Efficient Algorithms for Image Compression with Application to Medical Images Ph.D. dissertation Alexandre Krivoulets IT University of Copenhagen February 18, 2004 Abstract This thesis covers

More information

Review Horse Race Gambling and Side Information Dependent horse races and the entropy rate. Gambling. Besma Smida. ES250: Lecture 9.

Review Horse Race Gambling and Side Information Dependent horse races and the entropy rate. Gambling. Besma Smida. ES250: Lecture 9. Gambling Besma Smida ES250: Lecture 9 Fall 2008-09 B. Smida (ES250) Gambling Fall 2008-09 1 / 23 Today s outline Review of Huffman Code and Arithmetic Coding Horse Race Gambling and Side Information Dependent

More information

THE SECURITY AND PRIVACY ISSUES OF RFID SYSTEM

THE SECURITY AND PRIVACY ISSUES OF RFID SYSTEM THE SECURITY AND PRIVACY ISSUES OF RFID SYSTEM Iuon Chang Lin Department of Management Information Systems, National Chung Hsing University, Taiwan, Department of Photonics and Communication Engineering,

More information

How To Code With Cbcc (Cbcc) In Video Coding

How To Code With Cbcc (Cbcc) In Video Coding 620 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 7, JULY 2003 Context-Based Adaptive Binary Arithmetic Coding in the H.264/AVC Video Compression Standard Detlev Marpe, Member,

More information

Polarization codes and the rate of polarization

Polarization codes and the rate of polarization Polarization codes and the rate of polarization Erdal Arıkan, Emre Telatar Bilkent U., EPFL Sept 10, 2008 Channel Polarization Given a binary input DMC W, i.i.d. uniformly distributed inputs (X 1,...,

More information

A NEW LOSSLESS METHOD OF IMAGE COMPRESSION AND DECOMPRESSION USING HUFFMAN CODING TECHNIQUES

A NEW LOSSLESS METHOD OF IMAGE COMPRESSION AND DECOMPRESSION USING HUFFMAN CODING TECHNIQUES A NEW LOSSLESS METHOD OF IMAGE COMPRESSION AND DECOMPRESSION USING HUFFMAN CODING TECHNIQUES 1 JAGADISH H. PUJAR, 2 LOHIT M. KADLASKAR 1 Faculty, Department of EEE, B V B College of Engg. & Tech., Hubli,

More information

Fast Arithmetic Coding (FastAC) Implementations

Fast Arithmetic Coding (FastAC) Implementations Fast Arithmetic Coding (FastAC) Implementations Amir Said 1 Introduction This document describes our fast implementations of arithmetic coding, which achieve optimal compression and higher throughput by

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering Volume 3, Issue 7, July 23 ISSN: 2277 28X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Greedy Algorithm:

More information

Modified Golomb-Rice Codes for Lossless Compression of Medical Images

Modified Golomb-Rice Codes for Lossless Compression of Medical Images Modified Golomb-Rice Codes for Lossless Compression of Medical Images Roman Starosolski (1), Władysław Skarbek (2) (1) Silesian University of Technology (2) Warsaw University of Technology Abstract Lossless

More information

Physical Data Organization

Physical Data Organization Physical Data Organization Database design using logical model of the database - appropriate level for users to focus on - user independence from implementation details Performance - other major factor

More information

Ex. 2.1 (Davide Basilio Bartolini)

Ex. 2.1 (Davide Basilio Bartolini) ECE 54: Elements of Information Theory, Fall 00 Homework Solutions Ex.. (Davide Basilio Bartolini) Text Coin Flips. A fair coin is flipped until the first head occurs. Let X denote the number of flips

More information

Introduction to Medical Image Compression Using Wavelet Transform

Introduction to Medical Image Compression Using Wavelet Transform National Taiwan University Graduate Institute of Communication Engineering Time Frequency Analysis and Wavelet Transform Term Paper Introduction to Medical Image Compression Using Wavelet Transform 李 自

More information

Introduction to image coding

Introduction to image coding Introduction to image coding Image coding aims at reducing amount of data required for image representation, storage or transmission. This is achieved by removing redundant data from an image, i.e. by

More information

LZ77. Example 2.10: Let T = badadadabaab and assume d max and l max are large. phrase b a d adadab aa b

LZ77. Example 2.10: Let T = badadadabaab and assume d max and l max are large. phrase b a d adadab aa b LZ77 The original LZ77 algorithm works as follows: A phrase T j starting at a position i is encoded as a triple of the form distance, length, symbol. A triple d, l, s means that: T j = T [i...i + l] =

More information

CHAPTER 6. Shannon entropy

CHAPTER 6. Shannon entropy CHAPTER 6 Shannon entropy This chapter is a digression in information theory. This is a fascinating subject, which arose once the notion of information got precise and quantifyable. From a physical point

More information

ELEC3028 Digital Transmission Overview & Information Theory. Example 1

ELEC3028 Digital Transmission Overview & Information Theory. Example 1 Example. A source emits symbols i, i 6, in the BCD format with probabilities P( i ) as given in Table, at a rate R s = 9.6 kbaud (baud=symbol/second). State (i) the information rate and (ii) the data rate

More information

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)! Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

More information

Notes 11: List Decoding Folded Reed-Solomon Codes

Notes 11: List Decoding Folded Reed-Solomon Codes Introduction to Coding Theory CMU: Spring 2010 Notes 11: List Decoding Folded Reed-Solomon Codes April 2010 Lecturer: Venkatesan Guruswami Scribe: Venkatesan Guruswami At the end of the previous notes,

More information

COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012

COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012 Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about

More information

Indexing and Compression of Text

Indexing and Compression of Text Compressing the Digital Library Timothy C. Bell 1, Alistair Moffat 2, and Ian H. Witten 3 1 Department of Computer Science, University of Canterbury, New Zealand, tim@cosc.canterbury.ac.nz 2 Department

More information

8.1 Min Degree Spanning Tree

8.1 Min Degree Spanning Tree CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree

More information

Today s topics. Digital Computers. More on binary. Binary Digits (Bits)

Today s topics. Digital Computers. More on binary. Binary Digits (Bits) Today s topics! Binary Numbers! Brookshear.-.! Slides from Prof. Marti Hearst of UC Berkeley SIMS! Upcoming! Networks Interactive Introduction to Graph Theory http://www.utm.edu/cgi-bin/caldwell/tutor/departments/math/graph/intro

More information

Lempel-Ziv Coding Adaptive Dictionary Compression Algorithm

Lempel-Ziv Coding Adaptive Dictionary Compression Algorithm Lempel-Ziv Coding Adaptive Dictionary Compression Algorithm 1. LZ77:Sliding Window Lempel-Ziv Algorithm [gzip, pkzip] Encode a string by finding the longest match anywhere within a window of past symbols

More information

MACM 101 Discrete Mathematics I

MACM 101 Discrete Mathematics I MACM 101 Discrete Mathematics I Exercises on Combinatorics, Probability, Languages and Integers. Due: Tuesday, November 2th (at the beginning of the class) Reminder: the work you submit must be your own.

More information

Introduction to Data Compression

Introduction to Data Compression Introduction to Data Compression Guy E. Blelloch Computer Science Department Carnegie Mellon University blellochcs.cmu.edu January 31, 2013 Contents 1 Introduction 3 2 Information Theory 5 2.1 Entropy........................................

More information

How To Solve The \"Problems Of The Power Of The Universe\" Problem In A Computer Program

How To Solve The \Problems Of The Power Of The Universe\ Problem In A Computer Program Theory in Programming Practice Jayadev Misra The University of Texas at Austin Austin, Texas 78712, USA email: misra@cs.utexas.edu copyright 2006 by Jayadev Misra Revised December 2012 2 Preface He who

More information

Outline. Computer Science 418. Digital Signatures: Observations. Digital Signatures: Definition. Definition 1 (Digital signature) Digital Signatures

Outline. Computer Science 418. Digital Signatures: Observations. Digital Signatures: Definition. Definition 1 (Digital signature) Digital Signatures Outline Computer Science 418 Digital Signatures Mike Jacobson Department of Computer Science University of Calgary Week 12 1 Digital Signatures 2 Signatures via Public Key Cryptosystems 3 Provable 4 Mike

More information

CIS 6930 Emerging Topics in Network Security. Topic 2. Network Security Primitives

CIS 6930 Emerging Topics in Network Security. Topic 2. Network Security Primitives CIS 6930 Emerging Topics in Network Security Topic 2. Network Security Primitives 1 Outline Absolute basics Encryption/Decryption; Digital signatures; D-H key exchange; Hash functions; Application of hash

More information

Lossless Medical Image Compression using Predictive Coding and Integer Wavelet Transform based on Minimum Entropy Criteria

Lossless Medical Image Compression using Predictive Coding and Integer Wavelet Transform based on Minimum Entropy Criteria Lossless Medical Image Compression using Predictive Coding and Integer Wavelet Transform based on Minimum Entropy Criteria 1 Komal Gupta, Ram Lautan Verma, 3 Md. Sanawer Alam 1 M.Tech Scholar, Deptt. Of

More information

Lossless Grey-scale Image Compression using Source Symbols Reduction and Huffman Coding

Lossless Grey-scale Image Compression using Source Symbols Reduction and Huffman Coding Lossless Grey-scale Image Compression using Source Symbols Reduction and Huffman Coding C. SARAVANAN cs@cc.nitdgp.ac.in Assistant Professor, Computer Centre, National Institute of Technology, Durgapur,WestBengal,

More information

Analysis of Compression Algorithms for Program Data

Analysis of Compression Algorithms for Program Data Analysis of Compression Algorithms for Program Data Matthew Simpson, Clemson University with Dr. Rajeev Barua and Surupa Biswas, University of Maryland 12 August 3 Abstract Insufficient available memory

More information

Khalid Sayood and Martin C. Rost Department of Electrical Engineering University of Nebraska

Khalid Sayood and Martin C. Rost Department of Electrical Engineering University of Nebraska PROBLEM STATEMENT A ROBUST COMPRESSION SYSTEM FOR LOW BIT RATE TELEMETRY - TEST RESULTS WITH LUNAR DATA Khalid Sayood and Martin C. Rost Department of Electrical Engineering University of Nebraska The

More information

The WebGraph Framework:Compression Techniques

The WebGraph Framework:Compression Techniques The WebGraph Framework: Compression Techniques Paolo Boldi Sebastiano Vigna DSI, Università di Milano, Italy The Web graph Given a set U of URLs, the graph induced by U is the directed graph having U as

More information

Catch Me If You Can: A Practical Framework to Evade Censorship in Information-Centric Networks

Catch Me If You Can: A Practical Framework to Evade Censorship in Information-Centric Networks Catch Me If You Can: A Practical Framework to Evade Censorship in Information-Centric Networks Reza Tourani, Satyajayant (Jay) Misra, Joerg Kliewer, Scott Ortegel, Travis Mick Computer Science Department

More information

Sheet 7 (Chapter 10)

Sheet 7 (Chapter 10) King Saud University College of Computer and Information Sciences Department of Information Technology CAP240 First semester 1430/1431 Multiple-choice Questions Sheet 7 (Chapter 10) 1. Which error detection

More information

A Study of Variable Length Error Correcting Codes and Reversible Variable Length Codes: Analysis and Applications

A Study of Variable Length Error Correcting Codes and Reversible Variable Length Codes: Analysis and Applications A Study of Variable Length Error Correcting Codes and Reversible Variable Length Codes: Analysis and Applications Synopsis of the Thesis submitted in fulfillment of the requirements for the Degree of DOCTOR

More information

Transform-domain Wyner-Ziv Codec for Video

Transform-domain Wyner-Ziv Codec for Video Transform-domain Wyner-Ziv Codec for Video Anne Aaron, Shantanu Rane, Eric Setton, and Bernd Girod Information Systems Laboratory, Department of Electrical Engineering Stanford University 350 Serra Mall,

More information

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya (LKaya@ieee.org) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper

More information

Mathematics of Internet Security. Keeping Eve The Eavesdropper Away From Your Credit Card Information

Mathematics of Internet Security. Keeping Eve The Eavesdropper Away From Your Credit Card Information The : Keeping Eve The Eavesdropper Away From Your Credit Card Information Department of Mathematics North Dakota State University 16 September 2010 Science Cafe Introduction Disclaimer: is not an internet

More information

Michael W. Marcellin and Ala Bilgin

Michael W. Marcellin and Ala Bilgin JPEG2000: HIGHLY SCALABLE IMAGE COMPRESSION Michael W. Marcellin and Ala Bilgin Department of Electrical and Computer Engineering, The University of Arizona, Tucson, AZ 85721. {mwm,bilgin}@ece.arizona.edu

More information

Chapter 3. if 2 a i then location: = i. Page 40

Chapter 3. if 2 a i then location: = i. Page 40 Chapter 3 1. Describe an algorithm that takes a list of n integers a 1,a 2,,a n and finds the number of integers each greater than five in the list. Ans: procedure greaterthanfive(a 1,,a n : integers)

More information

Coding and decoding with convolutional codes. The Viterbi Algor

Coding and decoding with convolutional codes. The Viterbi Algor Coding and decoding with convolutional codes. The Viterbi Algorithm. 8 Block codes: main ideas Principles st point of view: infinite length block code nd point of view: convolutions Some examples Repetition

More information

2.1 Complexity Classes

2.1 Complexity Classes 15-859(M): Randomized Algorithms Lecturer: Shuchi Chawla Topic: Complexity classes, Identity checking Date: September 15, 2004 Scribe: Andrew Gilpin 2.1 Complexity Classes In this lecture we will look

More information

JPEG2000 - A Short Tutorial

JPEG2000 - A Short Tutorial JPEG2000 - A Short Tutorial Gaetano Impoco April 1, 2004 Disclaimer This document is intended for people who want to be aware of some of the mechanisms underlying the JPEG2000 image compression standard

More information

Adaptive Linear Programming Decoding

Adaptive Linear Programming Decoding Adaptive Linear Programming Decoding Mohammad H. Taghavi and Paul H. Siegel ECE Department, University of California, San Diego Email: (mtaghavi, psiegel)@ucsd.edu ISIT 2006, Seattle, USA, July 9 14, 2006

More information

Tape Drive Data Compression Q & A

Tape Drive Data Compression Q & A Tape Drive Data Compression Q & A Question What is data compression and how does compression work? Data compression permits increased storage capacities by using a mathematical algorithm that reduces redundant

More information

Broadband Networks. Prof. Dr. Abhay Karandikar. Electrical Engineering Department. Indian Institute of Technology, Bombay. Lecture - 29.

Broadband Networks. Prof. Dr. Abhay Karandikar. Electrical Engineering Department. Indian Institute of Technology, Bombay. Lecture - 29. Broadband Networks Prof. Dr. Abhay Karandikar Electrical Engineering Department Indian Institute of Technology, Bombay Lecture - 29 Voice over IP So, today we will discuss about voice over IP and internet

More information

Full and Complete Binary Trees

Full and Complete Binary Trees Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full

More information

http://www.springer.com/0-387-23402-0

http://www.springer.com/0-387-23402-0 http://www.springer.com/0-387-23402-0 Chapter 2 VISUAL DATA FORMATS 1. Image and Video Data Digital visual data is usually organised in rectangular arrays denoted as frames, the elements of these arrays

More information

How To Trace

How To Trace CS510 Software Engineering Dynamic Program Analysis Asst. Prof. Mathias Payer Department of Computer Science Purdue University TA: Scott A. Carr Slides inspired by Xiangyu Zhang http://nebelwelt.net/teaching/15-cs510-se

More information

Symbol Tables. Introduction

Symbol Tables. Introduction Symbol Tables Introduction A compiler needs to collect and use information about the names appearing in the source program. This information is entered into a data structure called a symbol table. The

More information

Basics of information theory and information complexity

Basics of information theory and information complexity Basics of information theory and information complexity a tutorial Mark Braverman Princeton University June 1, 2013 1 Part I: Information theory Information theory, in its modern format was introduced

More information

Storage Optimization in Cloud Environment using Compression Algorithm

Storage Optimization in Cloud Environment using Compression Algorithm Storage Optimization in Cloud Environment using Compression Algorithm K.Govinda 1, Yuvaraj Kumar 2 1 School of Computing Science and Engineering, VIT University, Vellore, India kgovinda@vit.ac.in 2 School

More information

Searching BWT compressed text with the Boyer-Moore algorithm and binary search

Searching BWT compressed text with the Boyer-Moore algorithm and binary search Searching BWT compressed text with the Boyer-Moore algorithm and binary search Tim Bell 1 Matt Powell 1 Amar Mukherjee 2 Don Adjeroh 3 November 2001 Abstract: This paper explores two techniques for on-line

More information

Factoring Algorithms

Factoring Algorithms Factoring Algorithms The p 1 Method and Quadratic Sieve November 17, 2008 () Factoring Algorithms November 17, 2008 1 / 12 Fermat s factoring method Fermat made the observation that if n has two factors

More information

ALGEBRA 2/TRIGONOMETRY

ALGEBRA 2/TRIGONOMETRY ALGEBRA /TRIGONOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA /TRIGONOMETRY Thursday, January 9, 015 9:15 a.m to 1:15 p.m., only Student Name: School Name: The possession

More information

Optimal Design of Sequential Real-Time Communication Systems Aditya Mahajan, Member, IEEE, and Demosthenis Teneketzis, Fellow, IEEE

Optimal Design of Sequential Real-Time Communication Systems Aditya Mahajan, Member, IEEE, and Demosthenis Teneketzis, Fellow, IEEE IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 11, NOVEMBER 2009 5317 Optimal Design of Sequential Real-Time Communication Systems Aditya Mahajan, Member, IEEE, Demosthenis Teneketzis, Fellow, IEEE

More information

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without

More information

Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Module No. # 01 Lecture No. # 05 Classic Cryptosystems (Refer Slide Time: 00:42)

More information

Data Storage. Chapter 3. Objectives. 3-1 Data Types. Data Inside the Computer. After studying this chapter, students should be able to:

Data Storage. Chapter 3. Objectives. 3-1 Data Types. Data Inside the Computer. After studying this chapter, students should be able to: Chapter 3 Data Storage Objectives After studying this chapter, students should be able to: List five different data types used in a computer. Describe how integers are stored in a computer. Describe how

More information

Data Storage 3.1. Foundations of Computer Science Cengage Learning

Data Storage 3.1. Foundations of Computer Science Cengage Learning 3 Data Storage 3.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List five different data types used in a computer. Describe how

More information

Name: Class: Date: 9. The compiler ignores all comments they are there strictly for the convenience of anyone reading the program.

Name: Class: Date: 9. The compiler ignores all comments they are there strictly for the convenience of anyone reading the program. Name: Class: Date: Exam #1 - Prep True/False Indicate whether the statement is true or false. 1. Programming is the process of writing a computer program in a language that the computer can respond to

More information

Hybrid Compression of Medical Images Based on Huffman and LPC For Telemedicine Application

Hybrid Compression of Medical Images Based on Huffman and LPC For Telemedicine Application IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 6 November 2014 ISSN (online): 2349-6010 Hybrid Compression of Medical Images Based on Huffman and LPC For Telemedicine

More information

H 261. Video Compression 1: H 261 Multimedia Systems (Module 4 Lesson 2) H 261 Coding Basics. Sources: Summary:

H 261. Video Compression 1: H 261 Multimedia Systems (Module 4 Lesson 2) H 261 Coding Basics. Sources: Summary: Video Compression : 6 Multimedia Systems (Module Lesson ) Summary: 6 Coding Compress color motion video into a low-rate bit stream at following resolutions: QCIF (76 x ) CIF ( x 88) Inter and Intra Frame

More information

Figure 1: Relation between codec, data containers and compression algorithms.

Figure 1: Relation between codec, data containers and compression algorithms. Video Compression Djordje Mitrovic University of Edinburgh This document deals with the issues of video compression. The algorithm, which is used by the MPEG standards, will be elucidated upon in order

More information

Development and Evaluation of Point Cloud Compression for the Point Cloud Library

Development and Evaluation of Point Cloud Compression for the Point Cloud Library Development and Evaluation of Point Cloud Compression for the Institute for Media Technology, TUM, Germany May 12, 2011 Motivation Point Cloud Stream Compression Network Point Cloud Stream Decompression

More information

Linear Codes. Chapter 3. 3.1 Basics

Linear Codes. Chapter 3. 3.1 Basics Chapter 3 Linear Codes In order to define codes that we can encode and decode efficiently, we add more structure to the codespace. We shall be mainly interested in linear codes. A linear code of length

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction 1. Shannon s Information Theory 2. Source Coding theorem 3. Channel Coding Theory 4. Information Capacity Theorem 5. Introduction to Error Control Coding Appendix A : Historical

More information

Cost Model: Work, Span and Parallelism. 1 The RAM model for sequential computation:

Cost Model: Work, Span and Parallelism. 1 The RAM model for sequential computation: CSE341T 08/31/2015 Lecture 3 Cost Model: Work, Span and Parallelism In this lecture, we will look at how one analyze a parallel program written using Cilk Plus. When we analyze the cost of an algorithm

More information

Compressing Forwarding Tables for Datacenter Scalability

Compressing Forwarding Tables for Datacenter Scalability TECHNICAL REPORT TR12-03, TECHNION, ISRAEL 1 Compressing Forwarding Tables for Datacenter Scalability Ori Rottenstreich, Marat Radan, Yuval Cassuto, Isaac Keslassy, Carmi Arad, Tal Mizrahi, Yoram Revah

More information

Lecture 2: Universality

Lecture 2: Universality CS 710: Complexity Theory 1/21/2010 Lecture 2: Universality Instructor: Dieter van Melkebeek Scribe: Tyson Williams In this lecture, we introduce the notion of a universal machine, develop efficient universal

More information

Cryptography and Network Security Chapter 10

Cryptography and Network Security Chapter 10 Cryptography and Network Security Chapter 10 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 10 Other Public Key Cryptosystems Amongst the tribes of Central

More information

CAs and Turing Machines. The Basis for Universal Computation

CAs and Turing Machines. The Basis for Universal Computation CAs and Turing Machines The Basis for Universal Computation What We Mean By Universal When we claim universal computation we mean that the CA is capable of calculating anything that could possibly be calculated*.

More information

LECTURE 4. Last time: Lecture outline

LECTURE 4. Last time: Lecture outline LECTURE 4 Last time: Types of convergence Weak Law of Large Numbers Strong Law of Large Numbers Asymptotic Equipartition Property Lecture outline Stochastic processes Markov chains Entropy rate Random

More information

Genetic Algorithms commonly used selection, replacement, and variation operators Fernando Lobo University of Algarve

Genetic Algorithms commonly used selection, replacement, and variation operators Fernando Lobo University of Algarve Genetic Algorithms commonly used selection, replacement, and variation operators Fernando Lobo University of Algarve Outline Selection methods Replacement methods Variation operators Selection Methods

More information

So, how do you pronounce. Jilles Vreeken. Okay, now we can talk. So, what kind of data? binary. * multi-relational

So, how do you pronounce. Jilles Vreeken. Okay, now we can talk. So, what kind of data? binary. * multi-relational Simply Mining Data Jilles Vreeken So, how do you pronounce Exploratory Data Analysis Jilles Vreeken Jilles Yill less Vreeken Fray can 17 August 2015 Okay, now we can talk. 17 August 2015 The goal So, what

More information

Analysis of Algorithms I: Binary Search Trees

Analysis of Algorithms I: Binary Search Trees Analysis of Algorithms I: Binary Search Trees Xi Chen Columbia University Hash table: A data structure that maintains a subset of keys from a universe set U = {0, 1,..., p 1} and supports all three dictionary

More information

Conceptual Framework Strategies for Image Compression: A Review

Conceptual Framework Strategies for Image Compression: A Review International Journal of Computer Sciences and Engineering Open Access Review Paper Volume-4, Special Issue-1 E-ISSN: 2347-2693 Conceptual Framework Strategies for Image Compression: A Review Sumanta Lal

More information

Short Programs for functions on Curves

Short Programs for functions on Curves Short Programs for functions on Curves Victor S. Miller Exploratory Computer Science IBM, Thomas J. Watson Research Center Yorktown Heights, NY 10598 May 6, 1986 Abstract The problem of deducing a function

More information

Sachin Dhawan Deptt. of ECE, UIET, Kurukshetra University, Kurukshetra, Haryana, India

Sachin Dhawan Deptt. of ECE, UIET, Kurukshetra University, Kurukshetra, Haryana, India Abstract Image compression is now essential for applications such as transmission and storage in data bases. In this paper we review and discuss about the image compression, need of compression, its principles,

More information

On Directed Information and Gambling

On Directed Information and Gambling On Directed Information and Gambling Haim H. Permuter Stanford University Stanford, CA, USA haim@stanford.edu Young-Han Kim University of California, San Diego La Jolla, CA, USA yhk@ucsd.edu Tsachy Weissman

More information

The following themes form the major topics of this chapter: The terms and concepts related to trees (Section 5.2).

The following themes form the major topics of this chapter: The terms and concepts related to trees (Section 5.2). CHAPTER 5 The Tree Data Model There are many situations in which information has a hierarchical or nested structure like that found in family trees or organization charts. The abstraction that models hierarchical

More information

Principles of Public Key Cryptography. Applications of Public Key Cryptography. Security in Public Key Algorithms

Principles of Public Key Cryptography. Applications of Public Key Cryptography. Security in Public Key Algorithms Principles of Public Key Cryptography Chapter : Security Techniques Background Secret Key Cryptography Public Key Cryptography Hash Functions Authentication Chapter : Security on Network and Transport

More information

Binary Trees and Huffman Encoding Binary Search Trees

Binary Trees and Huffman Encoding Binary Search Trees Binary Trees and Huffman Encoding Binary Search Trees Computer Science E119 Harvard Extension School Fall 2012 David G. Sullivan, Ph.D. Motivation: Maintaining a Sorted Collection of Data A data dictionary

More information

The string of digits 101101 in the binary number system represents the quantity

The string of digits 101101 in the binary number system represents the quantity Data Representation Section 3.1 Data Types Registers contain either data or control information Control information is a bit or group of bits used to specify the sequence of command signals needed for

More information

Digital Signature. Raj Jain. Washington University in St. Louis

Digital Signature. Raj Jain. Washington University in St. Louis Digital Signature Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse571-11/

More information