School of Biotechnology


 Debra Austin
 1 years ago
 Views:
Transcription
1 Physics reference slides Donatello Dolce Università di Camerino a.y. 2014/2015 mail: School of Biotechnology
2 Program and Aim Introduction to Physics Kinematics and Dynamics; Position and reference frame. Average and Instant velocity Acceleration. Motion in two and three dimensions. Uniform circular motion Netwon s laws: classic mechanics Work and Kinetic energy Integrals: geometrical and analytical definitions. Kinetic energy theorem Conservative forces Conservative forces and conservation of mechanical energy Equilibrium positions Introduction to Thermodynamics Equlibrium and Zeroth principle of thermodynamics. Heat. Specific heat and thermodynamical transformations Notions of Quantum Mechanics Notions of Atomic physics Cultural skills: Methodology skills: Experimental data analysis Build models to describe physical systems Fundamentals of modern physics Laboratory experiences (?) Lab 1: harmonic oscillator Lab 2: ideal gas law Lab 3: magnetic induction Knowledge of fundamental of physics necessary to understand natural phenomena, including biological dynamics of living organisms and the working principles of instrumentations in biology laboratories.
3 Detailed program (for your reference) Introduction to mechanics Kinematics and Dynamics; Relevant physical quantities for kinematics: position and distance; time; velocity; acceleration. Instruments and units of measure. Errors in measurement: precision and sensitivity of an instrument. Systematic errors and random errors with examples for the measure of length. Position and reference frame. Reference frame and position in one dimension. Reference frame and position in 2 and 3 dimensions. Algebraic and geometric definition of a vector. The position vector. Average and Instant velocity Concept of mass point or particle with examples in 2 and 3 dimensions. Dimensional analysis. Average velocity. Instant velocity. Incremental ratio and derivative and its geometrical meaning. The case of uniform motion. Acceleration. Motion in two and three dimensions. Average acceleration. Instant acceleration. Uniform acceleration along a line. Motion in 2 and 3 dimensions. From equation of motion to equation for trajectory. Uniform circular motion Circular motion. From Cartesian coordinates to Polar coordinates. Angular frequency and units. Equations of motion for position, velocity and acceleration for uniform circular motion. First principle of dynamics. Tangent and centripetal acceleration. Introduction to dynamics. First principle of dynamics. Inertia. Relativity principle. Non uniform circular motion: tangential and centripetal acceleration. Second principle of Dynamics Sum and differences of vectors: algebraic and geometrical methods. Second principle of dynamics: inertial mass and force. Units of force. Systems with variable mass. Third principle of dynamics Internal and external forces: action and reaction. Conservation of total momentum and motion of centre of mass. Elastic and inelastic collisions. Binary elastic collisions. Universal Law of Gravitation Newton's law of gravitation. The meaning of a physical law: universality and predicting power. From Newton's law to the law of the weight force. Acceleration due to gravity on planets in the Solar system. Relation between Kepler's laws and Newton's law. The Cavendish experiment to measure the Gravitational constant. Weight force and free fall The weight force. Acceleration due to gravity. Calculation of equation of motion for free fall. Parabolic motion Equation of motion for parabolic motion. Parabolic trajectory and range. Elastic force Ideal spring. Law of elastic force. Harmonic oscillator Ideal harmonic oscillator. Calculation of equation of motion of harmonic oscillator. Plots of position, velocity and acceleration. Angular frequency, frequency and period of oscillations. Work and Kinetic energy Operational definition of work. Unit of work. Example of uniform force for one dimensional motion. Operational definition of kinetic energy. Unit of kinetic energy. Integrals: geometrical and analytical definitions. Definition of the integral. Geometrical interpretation. Examples of calculation of indefinite and definite integrals of simple functions.. Kinetic energy theorem General definition of work. Definition of scalar product for two vectors. Kinetic energy Theorem and its demonstration in one dimension. Applications of kinetic energy theorem to inclined plane and free fall. Meaning of the sign of the work. Conservative forces Operational definition of a conservative field of forces. Work done by a conservative force along different trajectories. Conservative forces and conservation of mechanical energy Definition of conservative force in terms of potential energy. Work and potential energy. Definition of mechanical energy. Theorem of conservation of total mechanical energy. Examples for free fall and harmonic oscillator. Dissipation of energy due to friction. Equilibrium positions Definition of positions of equilibrium in a field of forces. Characterization of stable and unstable equilibrium positions. Introduction to Thermodynamics The states of matter: solid, liquid and gaseous. Phase transitions. Characterisation of an ideal gas. Kinetic energy and thermal energy. Temperature: operational definition and the thermometer. Linear thermal expansion of a metal. The Celsius and Kelvin temperature scales. Boiling points of elements. Equlibrium and Zeroth principle of thermodynamics. Heat. Definition of thermal equilibrium. The Zeroth principle of thermodynamics and temperature measurements. Transfer of thermal energy and heat. Mechanical equivalence of the calorie: the Joule experiment. Positive and negative heat: transfer of thermal energy between a system and its environment. Specific heat and thermodynamical transformations Heat Capacity, specific heat at constant volume and constant pressure.
4 Some founding fathers a Science Pythagoras b.c. Study of harmonics systems (physics, mathematics, music, harmony in architecture and art) Archimedes b.c. Nature and its phenomena can be represented by numbers and mathematical laws Galileo Indeed it moves! Defined the scientific method to certify objective truths.
5 Physics Units (Internat. System [SI] [MKS]) Science concerns aspects of nature that can be measured The measurement act consists in the comparisons of a physical quantity w.r.t. a standard. The measure is how many times the standard quantity stays in the measured quantity The Meter and Kilogram historical standards are preserved in Paris. They are composed of very stable material and in an isolated environment second corresponds to the duration of periods of the characteristic radiation of Cesium 133 atom (about 1 / of a solar day) To define time it is necessary to count the number of period of a phenomenon which is supposed to be periodic (we suppose that the unit of time doesn t change, we can not travel in time)
6 Physics Units (Internat. System [SI] [MKS]) Science concerns aspects of nature that can be measured The measurement act consists in the comparisons of a physical quantity w.r.t. a standard. The measure is how many times the standard quantity stays in the measured quantity
7 Derived Units A physical quantity A can be always expressed as combination of fundamental IS unit [MKS] [A] =[m α Kg β s γ ] with α, β, γ integer numbers..., 3, 2, 1, 0, 1, 2, 3,...
8 Derived Units A physical quantity A can be always expressed as combination of fundamental IS unit [MKS] [A] =[m α Kg β s γ ] with α, β, γ integer numbers..., 3, 2, 1, 0, 1, 2, 3,... The Dimensional Analysis is very important to check your problems and to remember physics laws [N] = Kg m s 2 = Kg m s 2 F = Ma where the mass M =[Kg] and the acceleration a = m s 2
9 Conversion factors and scale factors These are dimensionless factors and they allows for the conversion of physical units among different dimensional systems
10 Conversion factors and scale factors These are dimensionless factors and they allows for the conversion of physical units among different dimensional systems Time scales
11 Elementi di Statistica Statistic error: consequence of aleatoric causes (ability of the operator, variations of physical conditions, etc) Systematic error: consequence of a non accurate offset of the experimental equipment Given a set of N measures {x 1,x 2,...x N } of a given physical quantity X, we define mean value x e stadard devation σ x (quadratic deviation), respectively, x = x 1 + x x N N 2 1 σ x = N N 1 The magnitude of the standard deviation determines the number of significative figures of the results. = = N i=1 x i N N i=1 2 i N 1 where the deviations are defined as i = x i x. The outcome of a measure is expressed by the mean value and by the standard deviation denoting the error in the measure itself x ± σ x
12 Gaussian distribution For a large set of measurements the probability of an outcome is typically given by the Gaussian distribution (normalised to 1). The probability f(x) to measure x is f(x) = 1 e (x x) 2σ x 2 2πσ 2 x 2
13 Propagation of the errors if x = x ± x: relative error x x, where the absolute error is x. We want to test the generic physical law F = f(x, y) for two (non independent) physical quantities x = x ± x and y =ȳ ± y. TheresultisF = f( x, ȳ) ± F where F is given by (α is a known coefficient): if f(x, y) =α(x + y) or f(x, y) =α(x y): sum of absolute errors F = α( x + y) 1 if f(x, y) =α(x y) or f(x, y) =α x y : sum of relative errors F F x = α( x + y y ) 1 1 Notice: if the errors are independent f = α x 2 + y 2.
3.6 Solving Problems Involving Projectile Motion
INTRODUCTION 12 Physics and its relation to other fields introduction of physics, its importance and scope 15 Units, standards, and the SI System description of the SI System description of base and
More informationOnline Courses for High School Students 18889726237
Online Courses for High School Students 18889726237 PHYSICS Course Description: This course provides a comprehensive survey of all key areas: physical systems, measurement, kinematics, dynamics, momentum,
More informationReavis High School Physics Honors Curriculum Snapshot
Reavis High School Physics Honors Curriculum Snapshot Unit 1: Mathematical Toolkit Students will be able to: state definition for physics; measure length using a meter stick; measure the time with a stopwatch
More informationUtilize the scientific method to solve physics related problems. Use mathematical reasoning to correctly interpret physics related problems.
AP Physics Course Syllabus: Advanced Placement Physics is a year long course that prepares students to take the AP Physics B exam in May of the school year. Students are expected to be excellent math students
More informationA2 Physics Notes OCR Unit 4: The Newtonian World
A2 Physics Notes OCR Unit 4: The Newtonian World Momentum:  An object s linear momentum is defined as the product of its mass and its velocity. Linear momentum is a vector quantity, measured in kgms 1
More informationPhysics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
More informationUnit G484: The Newtonian World
Define linear momentum (and appreciate the vector nature of momentum) net force on a body impulse of a force a perfectly elastic collision an inelastic collision the radian gravitational field strength
More informationSalem Community College Course Syllabus. Course Title: Physics I. Course Code: PHY 101. Lecture Hours: 2 Laboratory Hours: 4 Credits: 4
Salem Community College Course Syllabus Course Title: Physics I Course Code: PHY 101 Lecture Hours: 2 Laboratory Hours: 4 Credits: 4 Course Description: The basic principles of classical physics are explored
More informationMorgan Hill Unified School District Course Outline Advanced Placement Physics (AP) Grades: Recommended: Completion of Algebra 2.
Course Title: Course Length: Morgan Hill Unified School District Course Outline Advanced Placement Physics (AP) One year Grades: 1012 Recommended: Completion of Algebra 2. Course Goals Students will demonstrate
More informationKinetic Energy, Work, and Power
Kinetic Energy, Work, and Power Forms of Energy kinetic energy gravitational energy elastic energy thermal energy electrical energy chemical energy electromagnetic energy nuclear energy mass energy Energy
More informationKERN COMMUNITY COLLEGE DISTRICT CERRO COSO COLLEGE PHYS C111 COURSE OUTLINE OF RECORD
KERN COMMUNITY COLLEGE DISTRICT CERRO COSO COLLEGE PHYS C111 COURSE OUTLINE OF RECORD 1. DISCIPLINE AND COURSE NUMBER: PHYS C111 2. COURSE TITLE: Mechanics 3. SHORT BANWEB TITLE: Mechanics 4. COURSE AUTHOR:
More informationFirst Semester Learning Targets
First Semester Learning Targets 1.1.Can define major components of the scientific method 1.2.Can accurately carry out conversions using dimensional analysis 1.3.Can utilize and convert metric prefixes
More informationConservation of Momentum and Energy
Conservation of Momentum and Energy OBJECTIVES to investigate simple elastic and inelastic collisions in one dimension to study the conservation of momentum and energy phenomena EQUIPMENT horizontal dynamics
More informationApplied Physics CSC 101
Course Title: Course Code: Applied Physics CSC 101 Credit Hours Theory: 3 Credit Hours Lab (If Applicable): Instructor Name with Qualification: Course Objectives: 1 Sadia Ashraf MS (Software Engineering)
More informationPhysics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER
1 P a g e Work Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER When a force acts on an object and the object actually moves in the direction of force, then the work is said to be done by the force.
More informationChapter 07: Kinetic Energy and Work
Chapter 07: Kinetic Energy and Work Conservation of Energy is one of Nature s fundamental laws that is not violated. Energy can take on different forms in a given system. This chapter we will discuss work
More informationChapter 6 Work and Energy
Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system
More informationLecture L1  Introduction
S. Widnall 16.07 Dynamics Fall 2009 Version 2.0 Lecture L1  Introduction Introduction In this course we will study Classical Mechanics and its application to aerospace systems. Particle motion in Classical
More informationPHYSICAL QUANTITIES AND UNITS
1 PHYSICAL QUANTITIES AND UNITS Introduction Physics is the study of matter, its motion and the interaction between matter. Physics involves analysis of physical quantities, the interaction between them
More informationHere is a guide if you are looking for practice questions in the old Physics 111 tests. SUMMARY
31 May 11 1 phys115_in_phys111_examsnew.docx PHYSICS 115 MATERIAL IN OLD PHYSICS 111 EXAMS Here is a guide if you are looking for practice questions in the old Physics 111 tests. SUMMARY Giambattista
More informationPHYSICS 2 Grade 12. Unit of Credit: 1 Year (Elective) Prerequisite: Physics 1 and Algebra 2
PHYSICS 2 Grade 12 Unit of Credit: 1 Year (Elective) Prerequisite: Physics 1 and Algebra 2 Course Overview: Physics 2 is an attempt to further understand the universe, and is therefore, a study of matter,
More information2.2 NEWTON S LAWS OF MOTION
2.2 NEWTON S LAWS OF MOTION Sir Isaac Newton (16421727) made a systematic study of motion and extended the ideas of Galileo (15641642). He summed up Galileo s observation in his three laws of motion
More informationThe rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time.
H2 PHYSICS DEFINITIONS LIST Scalar Vector Term Displacement, s Speed Velocity, v Acceleration, a Average speed/velocity Instantaneous Velocity Newton s First Law Newton s Second Law Newton s Third Law
More informationPhys 111 Fall P111 Syllabus
Phys 111 Fall 2012 Course structure Five sections lecture time 150 minutes per week Textbook Physics by James S. Walker fourth edition (Pearson) Clickers recommended Coursework Complete assignments from
More informationGrade/Course: PreAP Physics Unit 2
Grade/Course: PreAP Physics Unit 2 Unit Concepts: Newton s Law of Motion, Forces, Equilibrium, Work, Power, & Energy, Simple Machines, Kinetic Energy & Potential Energy, Conservation of Energy, Momentum
More informationPeople s Physics book 3e Ch 251
The Big Idea: In most realistic situations forces and accelerations are not fixed quantities but vary with time or displacement. In these situations algebraic formulas cannot do better than approximate
More informationAssignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE State law of parallelogram of vector addition and derive expression for resultant of two vectors
More informationCircular Motion. We will deal with this in more detail in the Chapter on rotation!
Circular Motion I. Circular Motion and Polar Coordinates A. Consider the motion of ball on a circle from point A to point B as shown below. We could describe the path of the ball in Cartesian coordinates
More informationHow can one explain and predict interactions between objects and within systems of objects?
Core Idea PS2 Motion and Stability: Forces and Interactions How can one explain and predict interactions between objects and within systems of objects? interaction (between any two objects) o gravity o
More informationCOMPETENCY GOAL 1: The learner will develop abilities necessary to do and understand scientific inquiry.
North Carolina Standard Course of Study and Grade Level Competencies, Physics I Revised 2004 139 Physics PHYSICS  Grades 912 Strands: The strands are: Nature of Science, Science as Inquiry, Science and
More informationGround Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. Dr Tay Seng Chuan
PC1221 Fundamentals of Physics I Lectures 9 and 10 he Laws of Motion Dr ay Seng Chuan 1 Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while lecture
More informationPrinciples and Laws of Motion
2009 19 minutes Teacher Notes: Ian Walter DipAppChem; TTTC; GDipEdAdmin; MEdAdmin (part) Program Synopsis This program begins by looking at the different types of motion all around us. Forces that cause
More informationA B = AB sin(θ) = A B = AB (2) For two vectors A and B the cross product A B is a vector. The magnitude of the cross product
1 Dot Product and Cross Products For two vectors, the dot product is a number A B = AB cos(θ) = A B = AB (1) For two vectors A and B the cross product A B is a vector. The magnitude of the cross product
More informationPhysics 111: Lecture 4: Chapter 4  Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.
Physics 111: Lecture 4: Chapter 4  Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and noncontact forces. Whats a
More informationAPPLIED MATHEMATICS ADVANCED LEVEL
APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications
More informationAST 101 Lecture 7. Newton s Laws and the Nature of Matter
AST 101 Lecture 7 Newton s Laws and the Nature of Matter The Nature of Matter Democritus (c. 470380 BCE) posited that matter was composed of atoms Atoms: particles that can not be further subdivided 4
More informationPhysics Honors Page 1
1. An ideal standard of measurement should be. variable, but not accessible variable and accessible accessible, but not variable neither variable nor accessible 2. The approximate height of a 12ounce
More informationGeneral Physics I Can Statements
General Physics I Can Statements Motion (Kinematics) 1. I can describe motion in terms of position (x), displacement (Δx), distance (d), speed (s), velocity (v), acceleration (a), and time (t). A. I can
More informationSample Questions for the AP Physics 1 Exam
Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiplechoice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each
More informationBasic Concepts of Thermodynamics
Basic Concepts of Thermodynamics Every science has its own unique vocabulary associated with it. recise definition of basic concepts forms a sound foundation for development of a science and prevents possible
More informationLesson 5 Rotational and Projectile Motion
Lesson 5 Rotational and Projectile Motion Introduction: Connecting Your Learning The previous lesson discussed momentum and energy. This lesson explores rotational and circular motion as well as the particular
More informationThermodynamics AP Physics B. Multiple Choice Questions
Thermodynamics AP Physics B Name Multiple Choice Questions 1. What is the name of the following statement: When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium
More informationQUESTIONS : CHAPTER5: LAWS OF MOTION
QUESTIONS : CHAPTER5: LAWS OF MOTION 1. What is Aristotle s fallacy? 2. State Aristotlean law of motion 3. Why uniformly moving body comes to rest? 4. What is uniform motion? 5. Who discovered Aristotlean
More informationPhysics 53. Oscillations. You've got to be very careful if you don't know where you're going, because you might not get there.
Physics 53 Oscillations You've got to be very careful if you don't know where you're going, because you might not get there. Yogi Berra Overview Many natural phenomena exhibit motion in which particles
More informationGlossary of Physics Formulas
Glossary of Physics Formulas 1. Kinematic relations in 1D at constant velocity Mechanics, velocity, position x  x o = v (t t o ) or x  x o = v t x o is the position at time = t o (this is the beginning
More information2Elastic collisions in
After completing this chapter you should be able to: solve problems about the impact of a smooth sphere with a fixed surface solve problems about the impact of smooth elastic spheres. In this chapter you
More informationPhysics 211 Week 12. Simple Harmonic Motion: Equation of Motion
Physics 11 Week 1 Simple Harmonic Motion: Equation of Motion A mass M rests on a frictionless table and is connected to a spring of spring constant k. The other end of the spring is fixed to a vertical
More informationExemplar Problems Physics
Chapter Eight GRAVITATION MCQ I 8.1 The earth is an approximate sphere. If the interior contained matter which is not of the same density everywhere, then on the surface of the earth, the acceleration
More informationp = F net t (2) But, what is the net force acting on the object? Here s a little help in identifying the net force on an object:
Harmonic Oscillator Objective: Describe the position as a function of time of a harmonic oscillator. Apply the momentum principle to a harmonic oscillator. Sketch (and interpret) a graph of position as
More informationNEWTON S LAWS OF MOTION
NEWTON S LAWS OF MOTION Background: Aristotle believed that the natural state of motion for objects on the earth was one of rest. In other words, objects needed a force to be kept in motion. Galileo studied
More informationPHYS 1624 University Physics I. PHYS 2644 University Physics II
PHYS 1624 Physics I An introduction to mechanics, heat, and wave motion. This is a calculus based course for Scientists and Engineers. 4 hours (3 lecture/3 lab) Prerequisites: Credit for MATH 2413 (Calculus
More informationIntroduction to Chemistry and Physics
Introduction to Chemistry and Physics UNIT I: Introduction to the Physical Sciences The student will demonstrate the ability to explore and apply the processes of science. a. Describe and apply the steps
More informationChapter 3: Force and Motion
Force and Motion Cause and Effect Chapter 3 Chapter 3: Force and Motion Homework: All questions on the Multiple Choice and the oddnumbered questions on Exercises sections at the end of the chapter. In
More informationPhysics Notes Class 11 CHAPTER 5 LAWS OF MOTION
1 P a g e Inertia Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION The property of an object by virtue of which it cannot change its state of rest or of uniform motion along a straight line its own, is
More informationLecture Outline Chapter 1. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.
Lecture Outline Chapter 1 Physics, 4 th Edition James S. Walker Chapter 1 Introduction to Physics Units of Chapter 1 Physics and the Laws of Nature Units of Length, Mass, and Time Dimensional Analysis
More informationAP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.
1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach
More informationPrerequisites: Successful completion of Earth Science, Living Environment, & Chemistry.
Physics Honors Course Honors Physics Overview of Course Physics H 4410 Full Year 1 credit Grades 11, 12 Prerequisites: Successful completion of Earth Science, Living Environment, & Chemistry. Honors policy
More informationFORCES AND MOTION UNIT TEST. Multiple Choice: Draw a Circle Completely around the ONE BEST answer.
FORCES AND MOTION UNIT TEST Multiple Choice: Draw a Circle Completely around the ONE BEST answer. 1. A force acting on an object does no work if a. a machine is used to move the object. b. the force is
More informationTHEORETICAL MECHANICS
PROF. DR. ING. VASILE SZOLGA THEORETICAL MECHANICS LECTURE NOTES AND SAMPLE PROBLEMS PART ONE STATICS OF THE PARTICLE, OF THE RIGID BODY AND OF THE SYSTEMS OF BODIES KINEMATICS OF THE PARTICLE 2010 0 Contents
More informationDynamics Why do objects move as they do? What makes an object at rest, begin to move? What makes a body accelerate or decelerate?
Dynamics Why do objects move as they do? What makes an object at rest, begin to move? What makes a body accelerate or decelerate? What makes an object move in a circle? Force A Force is simply a push
More information1 of 9 10/27/2009 7:46 PM
1 of 9 10/27/2009 7:46 PM Chapter 11 Homework Due: 9:00am on Tuesday, October 27, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy [Return to Standard Assignment View]
More informationChapter 6 MOMENTUM ANALYSIS OF FLOW SYSTEMS
Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGrawHill, 2010 Chapter 6 MOMENTUM ANALYSIS OF FLOW SYSTEMS Lecture slides by Hasan Hacışevki Copyright The
More informationLaws of Motion, Velocity, Displacement, and Acceleration
Physical Science, Quarter 1, Unit 1.1 Laws of Motion, Velocity, Displacement, and Acceleration Overview Number of instructional days: 13 (1 day = 53 minutes) Content to be learned Add distance and displacement
More informationVELOCITY, ACCELERATION, FORCE
VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how
More informationPhysics Midterm Review Packet January 2010
Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:1510:15 Room:
More informationPhysics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS
1 P a g e Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS The comparison of any physical quantity with its standard unit is called measurement. Physical Quantities All the quantities in terms of
More informationAP Physics C: Syllabus
AP Physics C: Syllabus Personal Philosophy Physics is the oldest and most fundamental branch of science. I feel that physics connects to all aspects of our daily lives through the explanations of motion,
More informationPhysics. Essential Question How can one explain and predict interactions between objects and within systems of objects?
Physics Special Note for the 201415 School Year: In 2013, the Maryland State Board of Education adopted the Next Generation Science Standards (NGSS) that set forth a vision for science education where
More informationSYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595. l. Course #: PHYSC 111 2. NAME OF ORIGINATOR /REVISOR: Dr.
SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595 l. Course #: PHYSC 111 2. NAME OF ORIGINATOR /REVISOR: Dr. Neil Basescu NAME OF COURSE: College Physics 1 with Lab 3. CURRENT DATE: 4/24/13
More informationDifferential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
More informationConcept Review. Physics 1
Concept Review Physics 1 Speed and Velocity Speed is a measure of how much distance is covered divided by the time it takes. Sometimes it is referred to as the rate of motion. Common units for speed or
More informationPhysics 101 Exam 1 NAME 2/7
Physics 101 Exam 1 NAME 2/7 1 In the situation below, a person pulls a string attached to block A, which is in turn attached to another, heavier block B via a second string (a) Which block has the larger
More informationChapter 9. Center of Mass & Linear Momentum
Chapter 9 Center of Mass & Linear Momentum 9.2 The Center of Mass The center of mass of a system of particles is the point that moves as though: (1) all of the system s mass were concentrated there; (2)
More informationMechanics Isaac Newton 25 December March 1727, Julian calendar 4 January March 1727, Gregorian calendar Books 1687: Philosophae
Mechanics Isaac Newton 25 December 164220 March 1727, Julian calendar 4 January 164331 March 1727, Gregorian calendar Books 1687: Philosophae Naturalis Principia Mathematica, or Mathematical Principles
More informationGrade 8 Science Vocabulary
Grade 8 Science Vocabulary The Florida Comprehensive Assessment Test Specifications for Science provides a glossary of vocabulary words identified by Florida educators as essential to assessing the Science
More information1 of 10 11/23/2009 6:37 PM
hapter 14 Homework Due: 9:00am on Thursday November 19 2009 Note: To understand how points are awarded read your instructor's Grading Policy. [Return to Standard Assignment View] Good Vibes: Introduction
More informationBHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science.
BHS Freshman Physics Review Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. Galileo (15641642): 1 st true scientist and 1 st person to use
More informationMomentum and Energy. Ron Robertson
Momentum and Energy Ron Robertson Momentum Momentum is inertia in motion. Momentum = mass x velocity Unit kg meters/second Momentum is changed by force. The amount of momentum change is also affected by
More informationPrerequisites 20122013
Prerequisites 20122013 Engineering Computation The student should be familiar with basic tools in Mathematics and Physics as learned at the High School level and in the first year of Engineering Schools.
More informationAP1 Oscillations. 1. Which of the following statements about a springblock oscillator in simple harmonic motion about its equilibrium point is false?
1. Which of the following statements about a springblock oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The
More informationHW 7 Q 14,20,20,23 P 3,4,8,6,8. Chapter 7. Rotational Motion of the Object. Dr. Armen Kocharian
HW 7 Q 14,20,20,23 P 3,4,8,6,8 Chapter 7 Rotational Motion of the Object Dr. Armen Kocharian Axis of Rotation The radian is a unit of angular measure The radian can be defined as the arc length s along
More informationPhysics 2AB Notes  2012. Heating and Cooling. The kinetic energy of a substance defines its temperature.
Physics 2AB Notes  2012 Heating and Cooling Kinetic Theory All matter is made up of tiny, minute particles. These particles are in constant motion. The kinetic energy of a substance defines its temperature.
More informationCHAPTER REVIEWS ARE GIVEN AS HOMEWORK AT THE END OF EACH CHAPTER AND QUIZZES EVERY OTHER FRIDAY WITH AP STYLE QUESTIONS ON WORK SO FAR.
CONCEPTUAL PHYSICS TEXTBOOK CONCEPTUAL PHYSICS BY PAUL HEWITT. CHAPTER REVIEWS ARE GIVEN AS HOMEWORK AT THE END OF EACH CHAPTER AND QUIZZES EVERY OTHER FRIDAY WITH AP STYLE QUESTIONS ON WORK SO FAR. LAB
More informationUnification of the laws of the Earth and the Universe Why do planets appear to wander slowly across the sky?
October 19, 2015 Unification of the laws of the Earth and the Universe Why do planets appear to wander slowly across the sky? Key Words Newton s Laws of motion, and Newton s law of universal gravitation:
More informationPSS 17.1: The Bermuda Triangle
Assignment 6 Consider 6.0 g of helium at 40_C in the form of a cube 40 cm. on each side. Suppose 2000 J of energy are transferred to this gas. (i) Determine the final pressure if the process is at constant
More informationChapter 12  Forces and Motion
Chapter 12  Forces and Motion A. What is a force? 1. It is a push or pull. 2. Force can cause resting objects to move. 3. Force can cause acceleration by changing the object s speed or direction. 4. Newtons
More informationChapter 1 Introduction to Physics. Copyright 2010 Pearson Education, Inc.
Chapter 1 Introduction to Physics Physics and the Laws of Nature Units of Length, Mass, and Time Dimensional Analysis Significant Figures Converting Units OrderofMagnitude Calculations Scalars and Vectors
More informationTemperature and Heat Welcome to Thermodynamics
Temperature and Heat Welcome to Thermodynamics (or welcome to heat transfer) Up to now: mass, length, time, current The fourth quantity in physics: Temperature and related another form of energy, HEAT
More informationWork and Energy. Work = Force Distance. Work increases the energy of an object. Energy can be converted back to work.
Work and Energy Ch. 6 Work = Force Distance Work increases the energy of an object. Energy can be converted back to work. Therefore, energy and work have the same unit: Newton meter = Nm Energy per gram,
More informationFinal Exam Review Questions PHY Final Chapters
Final Exam Review Questions PHY 2425  Final Chapters Section: 17 1 Topic: Thermal Equilibrium and Temperature Type: Numerical 12 A temperature of 14ºF is equivalent to A) 10ºC B) 7.77ºC C) 25.5ºC D) 26.7ºC
More informationPhysics 53. Rotational Motion 1. We're going to turn this team around 360 degrees. Jason Kidd
Physics 53 Rotational Motion 1 We're going to turn this team around 360 degrees. Jason Kidd Rigid bodies To a good approximation, a solid object behaves like a perfectly rigid body, in which each particle
More informationNorwich City Schools PHYSICAL SETTING/PHYSICS 4/25/05
PHYSICAL SETTING/ Overarching Physics is the study of how the world operates with matter and energy and without it there would b no study of anything Topic: Introduction 1 Measuring and Graphing Significant
More informationHomework 4. problems: 5.61, 5.67, 6.63, 13.21
Homework 4 problems: 5.6, 5.67, 6.6,. Problem 5.6 An object of mass M is held in place by an applied force F. and a pulley system as shown in the figure. he pulleys are massless and frictionless. Find
More information(b) Explain how the principle of conservation of momentum is a natural consequence of Newton s laws of motion. [3]
Physics A Unit: G484: The Newtonian World 1(a) State Newton s second law of motion. The resultant force on an object is proportional to the rate of change of momentum of the object In part (a) the candidate
More informationSTATICS. Introduction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.
Eighth E CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Introduction Lecture Notes: J. Walt Oler Texas Tech University Contents What is Mechanics? Fundamental
More informationUnit 4: Science and Materials in Construction and the Built Environment. Chapter 14. Understand how Forces act on Structures
Chapter 14 Understand how Forces act on Structures 14.1 Introduction The analysis of structures considered here will be based on a number of fundamental concepts which follow from simple Newtonian mechanics;
More informationLecture L222D Rigid Body Dynamics: Work and Energy
J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L  D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L3 for
More informationPS6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.
PS6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,
More information8.012 Physics I: Classical Mechanics Fall 2008
MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE
More informationChapter 4. Forces and Newton s Laws of Motion
Chapter 4 Forces and Newton s Laws of Motion 4.1 The Concepts of Force and Mass A force is a push or a pull. Contact forces arise from physical contact. Actionatadistance forces do not require contact
More information