Operating Systems. Memory Management. Memory management

Size: px
Start display at page:

Download "Operating Systems. Memory Management. Memory management"

Transcription

1 Oerating Systems Memory management Memory Management List of Toics 1. Memory Management 2. Memory In Systems Design 3. Binding Times 4. Introduction to Memory Management 5. Raw Memory Model 6. Single Contiguous Memory 7. Relocation - Why and How 8. Overlay Management Toics (continued) 9. Protection 10. Fixed Partitions 11. Nonuniform Sized Fixed Partitions 12. Uniformly Sized Fixed Partitions 13. Simle Paging 14. Benefits of Simle Paging 15. Page Tables 16. Translation Lookaside Buffers 17. Hierarchical Address Caching 1

2 Toics (continued) 18. Dynamic Partitions 19. Fragmentation 20. Internal Fragmentation 21. External Fragmentation 22. Coalescing Holes 23. Comaction 24. Dynamic Partition Placement 25. Simle Segmentation 26. Memory Layout of A C Program Toics (continued) 27. malloc 28. sbrk 29. Memory Hierarchy Memory In Systems design CPU memory I/O System Figure 1: memory Connects CPU and Periherals 2

3 Binding Times source rogram comiler or assembler comile time object model Other object modules linkage editor load module load time system library loader dynamically loaded system library in-memory binary memory image execution time (run time) 3

4 Introduction to Memory Management Memory management issues: 1. Relocation 2. Protection 3. Sharing 4. Logical Organization 5. Physical Organization Consider a series of solutions starting with the most rimitive first Raw Memory Model The raw memory rovides no services and gives the rogrammer comlete control. 0 Figure 3: Raw Machine Model 1 MB Single Contiguous Memory Primitive oerating systems (such as MS- DOS and CP/M) rovide some interfaces to the hardware but not much else in the way of services. 4

5 Single Contiguous Memory (continued) fence register 0 Monitor Figure 4: Single Contiguous Memory 32K Relocation - Why and How Relocation refers to the ability to store a rogram at an arbitrary base memory address. Actual memory locations have hysical or absolute addresses, user rogram's access these locations using logical addresses. Relocation - Why and How (continued) Base register CPU Logical address Physical address memory Figure 5: Address Translation 5

6 Overlay Management Overlays have gone out of fashion with cheaer memory, users (and comilers) determine which code to swa in and out. Figure 6: Overlay Management Examle [2] symbol table common routines 20K 30K 70K overlay driver 10K ass 1 ass 2 80K Protection It is undesirable to ermit user rograms (accidentally or intentionally) to accesses memory outside of their artition. 6

7 Protection (continued) 0 Monitor fence register Figure 7: Protection in Resident Monitor Model 32K Fixed Partitions Fixed artitioning refers to memory being slit into contiguous non overlaing regions of recomuted sizes. Fixed sized artitions make the selection of a artition for a job easy. Nonuniform Sized Fixed Partitions Fixed Partitions may have differing sizes. 7

8 Figure 8: Nonuniform fixed Partitions [3] Oerating system New Process Uniformly Sized Fixed Partitions Memory is frequently artitioned into uniformly sized regions. Figure 9: Uniform Fixed Partition Allocation [3] Oerating system 512 K 512 K 512 K 512 K 512 K 512 K 512 K 512 K 8

9 Simle Paging Paging rovides relocation, and slits memory into fixed length artitions called frames Page frame 0 Page frame 1 Page frame 2 Page frame 3 Figure 10: Simle Paging [1] Page frame 4 Page frame 5 Page frame 6 Page frame 7 Figure 10: Simle Paging (continued) [1] 9

10 Page frame number Page frame size Range of real storage addresses Benefits of Simle Paging Simle aging allowsdiscontiguous storage for memory objects exceeding the age frame size.. Contiguous virtual storage locations. Virtual memory Address maing mechanism Real storage 10

11 Page Tables One simle mechanism is to allocate some real memory sace for a table, and hash age addresses using the high order address bits as ointers into the age table. There are 2 real memory accesses er virtual memory access. Page Tables (continued) b b+ b b Page # Dislacement Page Ma Table d } Virtual address v=(,d) 1 1 d } Real address Translation Lookaside Buffers Translation lookaside buffers (TLB) eliminate one hysical memory reference using secial associative memory, which addressed by its contents in O(1) arallel search time. 11

12 Associative Memory Looku Associative ma Page # Dislacement d } Virtual address V=(,d) 1 1 d Real } Address r Frame # Dislacement Hierarchical Address Caching Rather than lacing all addresses in the TLB recently/frequently used addresses are stored in associative memory, with misses being serviced by the age table. Hierarchical Address Caching (continued) Page table origin register Address of Page table b + Performed only if no match in associative ma b+ 1 Try this first Only if no match in associative ma Virtual address Page # v=(,d) Dislacement d Partial associative Ma (most active ages 1 only Frame # 1 Only if match in associative ma Dislacement d Real address Direct ma (all ages) 12

13 Dynamic Partitions Dynamically artitioned memory allows lacement of relocatable code in variable size contigous memory regions. Dynamic Partitions (continued) user needs I H G F E D C B A 9K. 18K. 11K. 32K. 14K. 25K. 10K. 20K. 15K. Oerating system A 15K Free Oerating Oerating Oerating system system system A 15K A 15K A 15K B 20K B 20K B 20K C 10K C 10K Free Free D 25K Free Fragmentation Fragmentation makes available memory useless by breaking it into discontiguous ieces too small to use. 13

14 Fragmentation (continued) There are two categories of memory fragmentation: 1. Internal Fragmentation --- A fixed artition contains more memory than required by the user, and some is wasted. 2. External Fragmentation --- Results from the holes left by dynamic artitions. Internal Fragmentation Internal fragmentation occurs when fixed size artitions are too large. Page 2 Logical Address Page#=1,Offset= Page 1 Page Internal fragmentation Figure 16: Internal Fragmentation [3] 14

15 External Fragmentation External fragmentation haens when dynamic artitions are released. The fragments are frequently called holes. oerating system A B C D E B finishes and frees its storage. oerating system A Hole C D E D finishes and frees its storage. oerating system A Hole C Hole E Hole Hole Hole Coalescing Holes Adjacent holes in dynamic artitions should be coalesced into a single larger hole. 15

16 oerating system oerating system oerating system other users 2K Hole 5K user A other users A finishes and frees its storage other users 2K Hole 5K Hole other users Oerating system combines adjacent holes to form a single larger hole. other users 7K Hole other users Comaction If the amount of memory available in the holes is large enough to service a request, the holes may made contiguous by comacting storage. oerating systems Free Free oerating systems Free Oerating system laces all in use blocks together leaving free storage as a single, large hole. Free 16

17 Dynamic Partition Placement (a) First-Fit Strategy Place job in first storage hole on free storage lace list in which it will fit (ket in storage address order, or something in random order.) Free Storage List Start Address Length a c e g 16K 14K 5K 30K Request for 13K. 0 a b c d e f g h Oerating systems 16K hole 14K hole 5K hole 30K hole (b) Best-Fit Strategy Place job in the smallest ossible hole in which it will fit. 17

18 e c a g (Ket in ascending order by hole size.) Free Storage List Start Address Length 5K 14K 16K 30K Request for 13K. 0 a b c d e f g h Oerating systems 16K hole 14K hole 5K hole 30K hole (c) Worst-Fit Strategy Place job in the largest ossible hole in which it will fit. g a c e (Ket in descending order by hole size.) Free Storage List Start Address Length 30K 16K 14K 5K Request for 13K. 0 a b c d e f g h Oerating systems 16K hole 14K hole 5K hole 30K hole 18

19 Simle Segmentation Segmentation rovides relocation, and suorts contiguous variable length artitions. Segmentation often rovides rotection (counterexamle Intel 8086). limit base Logical CPU address < yes + memory no Tra; address error Memory Layout of A C Programs Traditional Unix/C memory images of rograms use segments. 19

20 high address stack Command-line arguments and environment variables low address hea uninitialized data (bss) Initialized data text initialized to zero by exec read from rogram file by exec malloc Programmers often want to allocate data objects which ersist beyond the function call creating them (e.g. constructors in OOP). In C and C++ the malloc oerator maintains a linked list of data objects, in the user rogram's Data segment (on the Hea). user data In Use List user data user data Key Free List Memory management Information user data user data user data 20

21 sbrk A user rogram can exhaust its default hea sace allocation. The Unix sbrk system call increases data segment allocation at run time. alication code Memory allocation function malloc user rocess sbrk system call kernel Memory Hierarchy s want to: 1. Increase their address sace, using slow cheaer memory to extend their more exensive faster memory. 2. Increase the seed at which they can the extended memory by using small amounts of exensive fast memory. 21

22 Memory Hierarchy Registers Cache Main Memory Magnetic Disk (Cache) Backus Otical Juke Box Remote Access 22

Memory management. Chapter 4: Memory Management. Memory hierarchy. In an ideal world. Basic memory management. Fixed partitions: multiple programs

Memory management. Chapter 4: Memory Management. Memory hierarchy. In an ideal world. Basic memory management. Fixed partitions: multiple programs Memory management Chater : Memory Management Part : Mechanisms for Managing Memory asic management Swaing Virtual Page relacement algorithms Modeling age relacement algorithms Design issues for aging systems

More information

Memory management basics (1) Requirements (1) Objectives. Operating Systems Part of E1.9 - Principles of Computers and Software Engineering

Memory management basics (1) Requirements (1) Objectives. Operating Systems Part of E1.9 - Principles of Computers and Software Engineering Memory management basics (1) Requirements (1) Operating Systems Part of E1.9 - Principles of Computers and Software Engineering Lecture 7: Memory Management I Memory management intends to satisfy the following

More information

Memory Management Outline. Background Swapping Contiguous Memory Allocation Paging Segmentation Segmented Paging

Memory Management Outline. Background Swapping Contiguous Memory Allocation Paging Segmentation Segmented Paging Memory Management Outline Background Swapping Contiguous Memory Allocation Paging Segmentation Segmented Paging 1 Background Memory is a large array of bytes memory and registers are only storage CPU can

More information

Chapter 7 Memory Management

Chapter 7 Memory Management Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 7 Memory Management Patricia Roy Manatee Community College, Venice, FL 2008, Prentice Hall Memory Management Subdividing

More information

The Deadlock Problem. Deadlocks. Deadlocks. Bridge Crossing Example

The Deadlock Problem. Deadlocks. Deadlocks. Bridge Crossing Example The Deadlock Problem Deadlocks A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the set. Example System has 2 tape drives. P 1 and P 2 each

More information

OPERATING SYSTEMS MEMORY MANAGEMENT

OPERATING SYSTEMS MEMORY MANAGEMENT OPERATING SYSTEMS MEMORY MANAGEMENT Jerry Breecher 8: Memory Management 1 OPERATING SYSTEM Memory Management What Is In This Chapter? Just as processes share the CPU, they also share physical memory. This

More information

Chapter 7 Memory Management

Chapter 7 Memory Management Operating Systems: Internals and Design Principles Chapter 7 Memory Management Eighth Edition William Stallings Frame Page Segment A fixed-length block of main memory. A fixed-length block of data that

More information

OPERATING SYSTEM - MEMORY MANAGEMENT

OPERATING SYSTEM - MEMORY MANAGEMENT OPERATING SYSTEM - MEMORY MANAGEMENT http://www.tutorialspoint.com/operating_system/os_memory_management.htm Copyright tutorialspoint.com Memory management is the functionality of an operating system which

More information

Virtual vs Physical Addresses

Virtual vs Physical Addresses Virtual vs Physical Addresses Physical addresses refer to hardware addresses of physical memory. Virtual addresses refer to the virtual store viewed by the process. virtual addresses might be the same

More information

COS 318: Operating Systems. Virtual Memory and Address Translation

COS 318: Operating Systems. Virtual Memory and Address Translation COS 318: Operating Systems Virtual Memory and Address Translation Today s Topics Midterm Results Virtual Memory Virtualization Protection Address Translation Base and bound Segmentation Paging Translation

More information

Chapter 12 File Management

Chapter 12 File Management Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 12 File Management Dave Bremer Otago Polytechnic, N.Z. 2008, Prentice Hall Roadmap Overview File organisation and Access

More information

Operating Systems, 6 th ed. Test Bank Chapter 7

Operating Systems, 6 th ed. Test Bank Chapter 7 True / False Questions: Chapter 7 Memory Management 1. T / F In a multiprogramming system, main memory is divided into multiple sections: one for the operating system (resident monitor, kernel) and one

More information

Chapter 12 File Management. Roadmap

Chapter 12 File Management. Roadmap Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 12 File Management Dave Bremer Otago Polytechnic, N.Z. 2008, Prentice Hall Overview Roadmap File organisation and Access

More information

CS 3530 Operating Systems. L02 OS Intro Part 1 Dr. Ken Hoganson

CS 3530 Operating Systems. L02 OS Intro Part 1 Dr. Ken Hoganson CS 3530 Operating Systems L02 OS Intro Part 1 Dr. Ken Hoganson Chapter 1 Basic Concepts of Operating Systems Computer Systems A computer system consists of two basic types of components: Hardware components,

More information

Memory unit sees only the addresses, and not how they are generated (instruction counter, indexing, direct)

Memory unit sees only the addresses, and not how they are generated (instruction counter, indexing, direct) Memory Management 55 Memory Management Multitasking without memory management is like having a party in a closet. Charles Petzold. Programming Windows 3.1 Programs expand to fill the memory that holds

More information

Memory Management 1. Memory Management. Multitasking without memory management is like having a party in a closet.

Memory Management 1. Memory Management. Multitasking without memory management is like having a party in a closet. Memory Management 1 Memory Management Multitasking without memory management is like having a party in a closet. Charles Petzold. Programming Windows 3.1 Programs expand to fill the memory that holds them.

More information

Operating Systems. Virtual Memory

Operating Systems. Virtual Memory Operating Systems Virtual Memory Virtual Memory Topics. Memory Hierarchy. Why Virtual Memory. Virtual Memory Issues. Virtual Memory Solutions. Locality of Reference. Virtual Memory with Segmentation. Page

More information

Chapter 3: Operating-System Structures. System Components Operating System Services System Calls System Programs System Structure Virtual Machines

Chapter 3: Operating-System Structures. System Components Operating System Services System Calls System Programs System Structure Virtual Machines Chapter 3: Operating-System Structures System Components Operating System Services System Calls System Programs System Structure Virtual Machines Operating System Concepts 3.1 Common System Components

More information

CS5460: Operating Systems

CS5460: Operating Systems CS5460: Operating Systems Lecture 13: Memory Management (Chapter 8) Where are we? Basic OS structure, HW/SW interface, interrupts, scheduling Concurrency Memory management Storage management Other topics

More information

Operating Systems CSE 410, Spring 2004. File Management. Stephen Wagner Michigan State University

Operating Systems CSE 410, Spring 2004. File Management. Stephen Wagner Michigan State University Operating Systems CSE 410, Spring 2004 File Management Stephen Wagner Michigan State University File Management File management system has traditionally been considered part of the operating system. Applications

More information

SAP HANA - Main Memory Technology: A Challenge for Development of Business Applications. Jürgen Primsch, SAP AG July 2011

SAP HANA - Main Memory Technology: A Challenge for Development of Business Applications. Jürgen Primsch, SAP AG July 2011 SAP HANA - Main Memory Technology: A Challenge for Development of Business Applications Jürgen Primsch, SAP AG July 2011 Why In-Memory? Information at the Speed of Thought Imagine access to business data,

More information

Lecture 10: Dynamic Memory Allocation 1: Into the jaws of malloc()

Lecture 10: Dynamic Memory Allocation 1: Into the jaws of malloc() CS61: Systems Programming and Machine Organization Harvard University, Fall 2009 Lecture 10: Dynamic Memory Allocation 1: Into the jaws of malloc() Prof. Matt Welsh October 6, 2009 Topics for today Dynamic

More information

Chapter 11: File System Implementation. Operating System Concepts with Java 8 th Edition

Chapter 11: File System Implementation. Operating System Concepts with Java 8 th Edition Chapter 11: File System Implementation 11.1 Silberschatz, Galvin and Gagne 2009 Chapter 11: File System Implementation File-System Structure File-System Implementation Directory Implementation Allocation

More information

Example of Standard API

Example of Standard API 16 Example of Standard API System Call Implementation Typically, a number associated with each system call System call interface maintains a table indexed according to these numbers The system call interface

More information

File Systems Management and Examples

File Systems Management and Examples File Systems Management and Examples Today! Efficiency, performance, recovery! Examples Next! Distributed systems Disk space management! Once decided to store a file as sequence of blocks What s the size

More information

Operating System Overview. Otto J. Anshus

Operating System Overview. Otto J. Anshus Operating System Overview Otto J. Anshus A Typical Computer CPU... CPU Memory Chipset I/O bus ROM Keyboard Network A Typical Computer System CPU. CPU Memory Application(s) Operating System ROM OS Apps

More information

& Data Processing 2. Exercise 3: Memory Management. Dipl.-Ing. Bogdan Marin. Universität Duisburg-Essen

& Data Processing 2. Exercise 3: Memory Management. Dipl.-Ing. Bogdan Marin. Universität Duisburg-Essen Folie a: Name & Data Processing 2 3: Memory Management Dipl.-Ing. Bogdan Marin Fakultät für Ingenieurwissenschaften Abteilung Elektro-und Informationstechnik -Technische Informatik- Objectives Memory Management

More information

Virtual Machines. COMP 3361: Operating Systems I Winter 2015 http://www.cs.du.edu/3361

Virtual Machines. COMP 3361: Operating Systems I Winter 2015 http://www.cs.du.edu/3361 s COMP 3361: Operating Systems I Winter 2015 http://www.cs.du.edu/3361 1 Virtualization! Create illusion of multiple machines on the same physical hardware! Single computer hosts multiple virtual machines

More information

CHAPTER 17: File Management

CHAPTER 17: File Management CHAPTER 17: File Management The Architecture of Computer Hardware, Systems Software & Networking: An Information Technology Approach 4th Edition, Irv Englander John Wiley and Sons 2010 PowerPoint slides

More information

Introduction Disks RAID Tertiary storage. Mass Storage. CMSC 412, University of Maryland. Guest lecturer: David Hovemeyer.

Introduction Disks RAID Tertiary storage. Mass Storage. CMSC 412, University of Maryland. Guest lecturer: David Hovemeyer. Guest lecturer: David Hovemeyer November 15, 2004 The memory hierarchy Red = Level Access time Capacity Features Registers nanoseconds 100s of bytes fixed Cache nanoseconds 1-2 MB fixed RAM nanoseconds

More information

Computer-System Architecture

Computer-System Architecture Chapter 2: Computer-System Structures Computer System Operation I/O Structure Storage Structure Storage Hierarchy Hardware Protection General System Architecture 2.1 Computer-System Architecture 2.2 Computer-System

More information

ELEC 377. Operating Systems. Week 1 Class 3

ELEC 377. Operating Systems. Week 1 Class 3 Operating Systems Week 1 Class 3 Last Class! Computer System Structure, Controllers! Interrupts & Traps! I/O structure and device queues.! Storage Structure & Caching! Hardware Protection! Dual Mode Operation

More information

Chapter 12 File Management

Chapter 12 File Management Operating Systems: Internals and Design Principles Chapter 12 File Management Eighth Edition By William Stallings Files Data collections created by users The File System is one of the most important parts

More information

Embedded Software development Process and Tools: Lesson-4 Linking and Locating Software

Embedded Software development Process and Tools: Lesson-4 Linking and Locating Software Embedded Software development Process and Tools: Lesson-4 Linking and Locating Software 1 1. Linker 2 Linker Links the compiled codes of application software, object codes from library and OS kernel functions.

More information

Chapter 2: Computer-System Structures. Computer System Operation Storage Structure Storage Hierarchy Hardware Protection General System Architecture

Chapter 2: Computer-System Structures. Computer System Operation Storage Structure Storage Hierarchy Hardware Protection General System Architecture Chapter 2: Computer-System Structures Computer System Operation Storage Structure Storage Hierarchy Hardware Protection General System Architecture Operating System Concepts 2.1 Computer-System Architecture

More information

Lecture 17: Virtual Memory II. Goals of virtual memory

Lecture 17: Virtual Memory II. Goals of virtual memory Lecture 17: Virtual Memory II Last Lecture: Introduction to virtual memory Today Review and continue virtual memory discussion Lecture 17 1 Goals of virtual memory Make it appear as if each process has:

More information

Chapter 11: File System Implementation. Operating System Concepts 8 th Edition

Chapter 11: File System Implementation. Operating System Concepts 8 th Edition Chapter 11: File System Implementation Operating System Concepts 8 th Edition Silberschatz, Galvin and Gagne 2009 Chapter 11: File System Implementation File-System Structure File-System Implementation

More information

CS 61C: Great Ideas in Computer Architecture Virtual Memory Cont.

CS 61C: Great Ideas in Computer Architecture Virtual Memory Cont. CS 61C: Great Ideas in Computer Architecture Virtual Memory Cont. Instructors: Vladimir Stojanovic & Nicholas Weaver http://inst.eecs.berkeley.edu/~cs61c/ 1 Bare 5-Stage Pipeline Physical Address PC Inst.

More information

Two Parts. Filesystem Interface. Filesystem design. Interface the user sees. Implementing the interface

Two Parts. Filesystem Interface. Filesystem design. Interface the user sees. Implementing the interface File Management Two Parts Filesystem Interface Interface the user sees Organization of the files as seen by the user Operations defined on files Properties that can be read/modified Filesystem design Implementing

More information

W4118: segmentation and paging. Instructor: Junfeng Yang

W4118: segmentation and paging. Instructor: Junfeng Yang W4118: segmentation and paging Instructor: Junfeng Yang Outline Memory management goals Segmentation Paging TLB 1 Uni- v.s. multi-programming Simple uniprogramming with a single segment per process Uniprogramming

More information

C-Bus Voltage Calculation

C-Bus Voltage Calculation D E S I G N E R N O T E S C-Bus Voltage Calculation Designer note number: 3-12-1256 Designer: Darren Snodgrass Contact Person: Darren Snodgrass Aroved: Date: Synosis: The guidelines used by installers

More information

Point Location. Preprocess a planar, polygonal subdivision for point location queries. p = (18, 11)

Point Location. Preprocess a planar, polygonal subdivision for point location queries. p = (18, 11) Point Location Prerocess a lanar, olygonal subdivision for oint location ueries. = (18, 11) Inut is a subdivision S of comlexity n, say, number of edges. uild a data structure on S so that for a uery oint

More information

Chapter 3 Operating-System Structures

Chapter 3 Operating-System Structures Contents 1. Introduction 2. Computer-System Structures 3. Operating-System Structures 4. Processes 5. Threads 6. CPU Scheduling 7. Process Synchronization 8. Deadlocks 9. Memory Management 10. Virtual

More information

Board Notes on Virtual Memory

Board Notes on Virtual Memory Board Notes on Virtual Memory Part A: Why Virtual Memory? - Letʼs user program size exceed the size of the physical address space - Supports protection o Donʼt know which program might share memory at

More information

Security Overview of the Integrity Virtual Machines Architecture

Security Overview of the Integrity Virtual Machines Architecture Security Overview of the Integrity Virtual Machines Architecture Introduction... 2 Integrity Virtual Machines Architecture... 2 Virtual Machine Host System... 2 Virtual Machine Control... 2 Scheduling

More information

Client/Server Computing Distributed Processing, Client/Server, and Clusters

Client/Server Computing Distributed Processing, Client/Server, and Clusters Client/Server Computing Distributed Processing, Client/Server, and Clusters Chapter 13 Client machines are generally single-user PCs or workstations that provide a highly userfriendly interface to the

More information

Chapter 11 I/O Management and Disk Scheduling

Chapter 11 I/O Management and Disk Scheduling Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 11 I/O Management and Disk Scheduling Dave Bremer Otago Polytechnic, NZ 2008, Prentice Hall I/O Devices Roadmap Organization

More information

Virtual Memory and Address Translation

Virtual Memory and Address Translation Memry and Address Translatin Review Prgram addresses are virtual addresses. Relative set rgram regins can nt change during rgram executin. E.g., hea can nt mve urther rm cde. addresses == hysical address

More information

How do Users and Processes interact with the Operating System? Services for Processes. OS Structure with Services. Services for the OS Itself

How do Users and Processes interact with the Operating System? Services for Processes. OS Structure with Services. Services for the OS Itself How do Users and Processes interact with the Operating System? Users interact indirectly through a collection of system programs that make up the operating system interface. The interface could be: A GUI,

More information

Lesson Objectives. To provide a grand tour of the major operating systems components To provide coverage of basic computer system organization

Lesson Objectives. To provide a grand tour of the major operating systems components To provide coverage of basic computer system organization Lesson Objectives To provide a grand tour of the major operating systems components To provide coverage of basic computer system organization AE3B33OSD Lesson 1 / Page 2 What is an Operating System? A

More information

Secondary Storage. Any modern computer system will incorporate (at least) two levels of storage: magnetic disk/optical devices/tape systems

Secondary Storage. Any modern computer system will incorporate (at least) two levels of storage: magnetic disk/optical devices/tape systems 1 Any modern computer system will incorporate (at least) two levels of storage: primary storage: typical capacity cost per MB $3. typical access time burst transfer rate?? secondary storage: typical capacity

More information

Segmentation and Fragmentation

Segmentation and Fragmentation Segmentation and Fragmentation Operating System Design MOSIG 1 Instructor: Arnaud Legrand Class Assistants: Benjamin Negrevergne, Sascha Hunold September 16, 2010 A. Legrand Segmentation and Fragmentation

More information

1 File Management. 1.1 Naming. COMP 242 Class Notes Section 6: File Management

1 File Management. 1.1 Naming. COMP 242 Class Notes Section 6: File Management COMP 242 Class Notes Section 6: File Management 1 File Management We shall now examine how an operating system provides file management. We shall define a file to be a collection of permanent data with

More information

Chapter 1 Computer System Overview

Chapter 1 Computer System Overview Operating Systems: Internals and Design Principles Chapter 1 Computer System Overview Eighth Edition By William Stallings Operating System Exploits the hardware resources of one or more processors Provides

More information

Memory Allocation. Static Allocation. Dynamic Allocation. Memory Management. Dynamic Allocation. Dynamic Storage Allocation

Memory Allocation. Static Allocation. Dynamic Allocation. Memory Management. Dynamic Allocation. Dynamic Storage Allocation Dynamic Storage Allocation CS 44 Operating Systems Fall 5 Presented By Vibha Prasad Memory Allocation Static Allocation (fixed in size) Sometimes we create data structures that are fixed and don t need

More information

Virtual Memory. How is it possible for each process to have contiguous addresses and so many of them? A System Using Virtual Addressing

Virtual Memory. How is it possible for each process to have contiguous addresses and so many of them? A System Using Virtual Addressing How is it possible for each process to have contiguous addresses and so many of them? Computer Systems Organization (Spring ) CSCI-UA, Section Instructor: Joanna Klukowska Teaching Assistants: Paige Connelly

More information

CS3600 SYSTEMS AND NETWORKS

CS3600 SYSTEMS AND NETWORKS CS3600 SYSTEMS AND NETWORKS NORTHEASTERN UNIVERSITY Lecture 2: Operating System Structures Prof. Alan Mislove (amislove@ccs.neu.edu) Operating System Services Operating systems provide an environment for

More information

Operating Systems. Design and Implementation. Andrew S. Tanenbaum Melanie Rieback Arno Bakker. Vrije Universiteit Amsterdam

Operating Systems. Design and Implementation. Andrew S. Tanenbaum Melanie Rieback Arno Bakker. Vrije Universiteit Amsterdam Operating Systems Design and Implementation Andrew S. Tanenbaum Melanie Rieback Arno Bakker Vrije Universiteit Amsterdam Operating Systems - Winter 2012 Outline Introduction What is an OS? Concepts Processes

More information

Outline. Operating Systems Design and Implementation. Chap 1 - Overview. What is an OS? 28/10/2014. Introduction

Outline. Operating Systems Design and Implementation. Chap 1 - Overview. What is an OS? 28/10/2014. Introduction Operating Systems Design and Implementation Andrew S. Tanenbaum Melanie Rieback Arno Bakker Outline Introduction What is an OS? Concepts Processes and Threads Memory Management File Systems Vrije Universiteit

More information

Uses for Virtual Machines. Virtual Machines. There are several uses for virtual machines:

Uses for Virtual Machines. Virtual Machines. There are several uses for virtual machines: Virtual Machines Uses for Virtual Machines Virtual machine technology, often just called virtualization, makes one computer behave as several computers by sharing the resources of a single computer between

More information

File Management. Chapter 12

File Management. Chapter 12 File Management Chapter 12 File Management File management system is considered part of the operating system Input to applications is by means of a file Output is saved in a file for long-term storage

More information

Chapter 2 Basic Structure of Computers. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 2 Basic Structure of Computers. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Chapter 2 Basic Structure of Computers Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Functional Units Basic Operational Concepts Bus Structures Software

More information

Timing of a Disk I/O Transfer

Timing of a Disk I/O Transfer Disk Performance Parameters To read or write, the disk head must be positioned at the desired track and at the beginning of the desired sector Seek time Time it takes to position the head at the desired

More information

361 Computer Architecture Lecture 14: Cache Memory

361 Computer Architecture Lecture 14: Cache Memory 1 361 Computer Architecture Lecture 14 Memory cache.1 The Motivation for s Memory System Processor DRAM Motivation Large memories (DRAM) are slow Small memories (SRAM) are fast Make the average access

More information

Recommended hardware system configurations for ANSYS users

Recommended hardware system configurations for ANSYS users Recommended hardware system configurations for ANSYS users The purpose of this document is to recommend system configurations that will deliver high performance for ANSYS users across the entire range

More information

Memory Management CS 217. Two programs can t control all of memory simultaneously

Memory Management CS 217. Two programs can t control all of memory simultaneously Memory Management CS 217 Memory Management Problem 1: Two programs can t control all of memory simultaneously Problem 2: One program shouldn t be allowed to access/change the memory of another program

More information

Traditional IBM Mainframe Operating Principles

Traditional IBM Mainframe Operating Principles C H A P T E R 1 7 Traditional IBM Mainframe Operating Principles WHEN YOU FINISH READING THIS CHAPTER YOU SHOULD BE ABLE TO: Distinguish between an absolute address and a relative address. Briefly explain

More information

a storage location directly on the CPU, used for temporary storage of small amounts of data during processing.

a storage location directly on the CPU, used for temporary storage of small amounts of data during processing. CS143 Handout 18 Summer 2008 30 July, 2008 Processor Architectures Handout written by Maggie Johnson and revised by Julie Zelenski. Architecture Vocabulary Let s review a few relevant hardware definitions:

More information

In-Memory Databases Algorithms and Data Structures on Modern Hardware. Martin Faust David Schwalb Jens Krüger Jürgen Müller

In-Memory Databases Algorithms and Data Structures on Modern Hardware. Martin Faust David Schwalb Jens Krüger Jürgen Müller In-Memory Databases Algorithms and Data Structures on Modern Hardware Martin Faust David Schwalb Jens Krüger Jürgen Müller The Free Lunch Is Over 2 Number of transistors per CPU increases Clock frequency

More information

1. Computer System Structure and Components

1. Computer System Structure and Components 1 Computer System Structure and Components Computer System Layers Various Computer Programs OS System Calls (eg, fork, execv, write, etc) KERNEL/Behavior or CPU Device Drivers Device Controllers Devices

More information

File System & Device Drive. Overview of Mass Storage Structure. Moving head Disk Mechanism. HDD Pictures 11/13/2014. CS341: Operating System

File System & Device Drive. Overview of Mass Storage Structure. Moving head Disk Mechanism. HDD Pictures 11/13/2014. CS341: Operating System CS341: Operating System Lect 36: 1 st Nov 2014 Dr. A. Sahu Dept of Comp. Sc. & Engg. Indian Institute of Technology Guwahati File System & Device Drive Mass Storage Disk Structure Disk Arm Scheduling RAID

More information

Platter. Track. Index Mark. Disk Storage. PHY 406F - Microprocessor Interfacing Techniques

Platter. Track. Index Mark. Disk Storage. PHY 406F - Microprocessor Interfacing Techniques Platter PHY 406F - icroprocessor Interfacing Techniques Disk Storage The major "permanent" storage medium for computers is, at present, generally magnetic media in the form of either magnetic tape or disks.

More information

Presentation of Diagnosing performance overheads in the Xen virtual machine environment

Presentation of Diagnosing performance overheads in the Xen virtual machine environment Presentation of Diagnosing performance overheads in the Xen virtual machine environment September 26, 2005 Framework Using to fix the Network Anomaly Xen Network Performance Test Using Outline 1 Introduction

More information

Chapter 11 I/O Management and Disk Scheduling

Chapter 11 I/O Management and Disk Scheduling Operatin g Systems: Internals and Design Principle s Chapter 11 I/O Management and Disk Scheduling Seventh Edition By William Stallings Operating Systems: Internals and Design Principles An artifact can

More information

Record Storage and Primary File Organization

Record Storage and Primary File Organization Record Storage and Primary File Organization 1 C H A P T E R 4 Contents Introduction Secondary Storage Devices Buffering of Blocks Placing File Records on Disk Operations on Files Files of Unordered Records

More information

An Implementation Of Multiprocessor Linux

An Implementation Of Multiprocessor Linux An Implementation Of Multiprocessor Linux This document describes the implementation of a simple SMP Linux kernel extension and how to use this to develop SMP Linux kernels for architectures other than

More information

Sage Timberline Office

Sage Timberline Office Sage Timberline Office Get Started Document Management 9.8 NOTICE This document and the Sage Timberline Office software may be used only in accordance with the accomanying Sage Timberline Office End User

More information

Operating Systems Design 16. Networking: Sockets

Operating Systems Design 16. Networking: Sockets Operating Systems Design 16. Networking: Sockets Paul Krzyzanowski pxk@cs.rutgers.edu 1 Sockets IP lets us send data between machines TCP & UDP are transport layer protocols Contain port number to identify

More information

Operating system Dr. Shroouq J.

Operating system Dr. Shroouq J. 3 OPERATING SYSTEM STRUCTURES An operating system provides the environment within which programs are executed. The design of a new operating system is a major task. The goals of the system must be well

More information

Virtualization for Cloud Computing

Virtualization for Cloud Computing Virtualization for Cloud Computing Dr. Sanjay P. Ahuja, Ph.D. 2010-14 FIS Distinguished Professor of Computer Science School of Computing, UNF CLOUD COMPUTING On demand provision of computational resources

More information

COS 318: Operating Systems. File Layout and Directories. Topics. File System Components. Steps to Open A File

COS 318: Operating Systems. File Layout and Directories. Topics. File System Components. Steps to Open A File Topics COS 318: Operating Systems File Layout and Directories File system structure Disk allocation and i-nodes Directory and link implementations Physical layout for performance 2 File System Components

More information

Outline: Operating Systems

Outline: Operating Systems Outline: Operating Systems What is an OS OS Functions Multitasking Virtual Memory File Systems Window systems PC Operating System Wars: Windows vs. Linux 1 Operating System provides a way to boot (start)

More information

CS 377: Operating Systems. Outline. A review of what you ve learned, and how it applies to a real operating system. Lecture 25 - Linux Case Study

CS 377: Operating Systems. Outline. A review of what you ve learned, and how it applies to a real operating system. Lecture 25 - Linux Case Study CS 377: Operating Systems Lecture 25 - Linux Case Study Guest Lecturer: Tim Wood Outline Linux History Design Principles System Overview Process Scheduling Memory Management File Systems A review of what

More information

Sage Document Management. User's Guide Version 12.1

Sage Document Management. User's Guide Version 12.1 Sage Document Management User's Guide Version 12.1 NOTICE This is a ublication of Sage Software, Inc. Version 12.1. November, 2012 Coyright 2012. Sage Software, Inc. All rights reserved. Sage, the Sage

More information

Jun (Jim) Xu jun.xu@huawei.com Principal Engineer, Futurewei Technologies, Inc.

Jun (Jim) Xu jun.xu@huawei.com Principal Engineer, Futurewei Technologies, Inc. Jun (Jim) Xu jun.xu@huawei.com Princial Engineer, Futurewei Technologies, Inc. Linux K/QEMU Switch/Router NFV Linux IP stack in Kernel ll lications will communicate via socket Limited raw socket alications

More information

Sage Document Management. User's Guide Version 13.1

Sage Document Management. User's Guide Version 13.1 Sage Document Management User's Guide Version 13.1 This is a ublication of Sage Software, Inc. Version 13.1 Last udated: June 19, 2013 Coyright 2013. Sage Software, Inc. All rights reserved. Sage, the

More information

3 SOFTWARE AND PROGRAMMING LANGUAGES

3 SOFTWARE AND PROGRAMMING LANGUAGES 3 SOFTWARE AND PROGRAMMING LANGUAGES 3.1 INTRODUCTION In the previous lesson we discussed about the different parts and configurations of computer. It has been mentioned that programs or instructions have

More information

An Introduction to Computer Science and Computer Organization Comp 150 Fall 2008

An Introduction to Computer Science and Computer Organization Comp 150 Fall 2008 An Introduction to Computer Science and Computer Organization Comp 150 Fall 2008 Computer Science the study of algorithms, including Their formal and mathematical properties Their hardware realizations

More information

Technical Properties. Mobile Operating Systems. Overview Concepts of Mobile. Functions Processes. Lecture 11. Memory Management.

Technical Properties. Mobile Operating Systems. Overview Concepts of Mobile. Functions Processes. Lecture 11. Memory Management. Overview Concepts of Mobile Operating Systems Lecture 11 Concepts of Mobile Operating Systems Mobile Business I (WS 2007/08) Prof Dr Kai Rannenberg Chair of Mobile Business and Multilateral Security Johann

More information

Operating System Software

Operating System Software Operating System Software Lecture 7 The operating system Defines our computing experience. First software we see when we turn on the computer, and the last software we see when the computer is turned off.

More information

Storage Basics Architecting the Storage Supplemental Handout

Storage Basics Architecting the Storage Supplemental Handout Storage Basics Architecting the Storage Sulemental Handout INTRODUCTION With digital data growing at an exonential rate it has become a requirement for the modern business to store data and analyze it

More information

Computer Engineering and Systems Group Electrical and Computer Engineering SCMFS: A File System for Storage Class Memory

Computer Engineering and Systems Group Electrical and Computer Engineering SCMFS: A File System for Storage Class Memory SCMFS: A File System for Storage Class Memory Xiaojian Wu, Narasimha Reddy Texas A&M University What is SCM? Storage Class Memory Byte-addressable, like DRAM Non-volatile, persistent storage Example: Phase

More information

Linux flash file systems JFFS2 vs UBIFS

Linux flash file systems JFFS2 vs UBIFS Linux flash file systems JFFS2 vs UBIFS Chris Simmonds 2net Limited Embedded Systems Conference UK. 2009 Copyright 2009, 2net Limited Overview Many embedded systems use raw flash chips JFFS2 has been the

More information

OPERATING SYSTEM SERVICES

OPERATING SYSTEM SERVICES OPERATING SYSTEM SERVICES USER INTERFACE Command line interface(cli):uses text commands and a method for entering them Batch interface(bi):commands and directives to control those commands are entered

More information

Operating System Components and Services

Operating System Components and Services Operating System Components and Services Tom Kelliher, CS 311 Feb. 6, 2012 Announcements: From last time: 1. System architecture issues. 2. I/O programming. 3. Memory hierarchy. 4. Hardware protection.

More information

Computer Systems Structure Input/Output

Computer Systems Structure Input/Output Computer Systems Structure Input/Output Peripherals Computer Central Processing Unit Main Memory Computer Systems Interconnection Communication lines Input Output Ward 1 Ward 2 Examples of I/O Devices

More information

Virtualization is set to become a key requirement

Virtualization is set to become a key requirement Xen, the virtual machine monitor The art of virtualization Moshe Bar Virtualization is set to become a key requirement for every server in the data center. This trend is a direct consequence of an industrywide

More information

University of Dublin Trinity College. Storage Hardware. Owen.Conlan@cs.tcd.ie

University of Dublin Trinity College. Storage Hardware. Owen.Conlan@cs.tcd.ie University of Dublin Trinity College Storage Hardware Owen.Conlan@cs.tcd.ie Hardware Issues Hard Disk/SSD CPU Cache Main Memory CD ROM/RW DVD ROM/RW Tapes Primary Storage Floppy Disk/ Memory Stick Secondary

More information

Chapter 1 Fundamentals of Java Programming

Chapter 1 Fundamentals of Java Programming Chapter 1 Fundamentals of Java Programming Computers and Computer Programming Writing and Executing a Java Program Elements of a Java Program Features of Java Accessing the Classes and Class Members The

More information