Chapter 55: Ecosystems and Restoration Ecology

Size: px
Start display at page:

Download "Chapter 55: Ecosystems and Restoration Ecology"

Transcription

1 Chapter 55: Ecosystems and Restoration Ecology Overview: 1. What is an ecosystem? Name Period An ecosystem is the sum of all the organisms living in a given area and the abiotic factors with which they interact. 2. Where does energy enter most ecosystems? How is it converted to chemical energy and then passed through the ecosystem? How is it lost? Remember this: Energy cannot be recycled. Energy enters most ecosystems as sunlight. It is converted to chemical energy by autotrophs, passed to heterotrophs in the organic compounds of food, and dissipated as heat. 3. Besides the energy flow that you described in question 2, chemicals such as carbon and nitrogen cycle through ecosystems. So energy flows through an ecosystem and matter cycles within and through them. Concept 55.1 Physical laws govern energy flow and chemical cycling in ecosystems 4. Both energy and matter can be neither created nor destroyed. 5. We can measure the efficiency of energy conversion in an ecosystem, as well as whether a given nutrient is being gained or lost from an ecosystem. Let us take a second look at trophic levels. What trophic level supports all others? Autotrophs or primary producers 6. List three groups of organisms that are photosynthetic autotrophs. Plants, algae, and photosynthetic prokaryotes 7. What are the primary producers of the deep-sea vents? Chemosynthetic prokaryotes 8. This concept reviews trophic relationships. Know all terms in your textbook that are bolded. What are trophic levels? What is always at the first trophic level? Trophic levels are feeding levels. Autotrophs are always at the first tropic level. Copyright 2011 Pearson Education, Inc

2 9. What are detritivores? What is their importance in chemical cycling? Give some examples of detritivores. Detritivores are decomposers that eat nonliving organic material. Detritivores play a critical role in recycling chemical elements back to primary producers. Detritivores convert organic material from all trophic levels to inorganic compounds usable by primary producers, closing the loop of an ecosystem s chemical cycling. Two important groups of detritivores are prokaryotes and fungi. 10. State the trophic level of each of the following: cow: primary consumer grass: primary producer man: secondary consumer mushroom: detritivore Concept 55.2 Energy and other limiting factors control primary production in ecosystems 11. What is primary production? Distinguish between gross primary production and net primary production. Primary production is the amount of light energy converted into chemical energy in the form of organic compounds by autotrophs during a given time period. Gross primary production (GPP) is the total primary production in an ecosystem the amount of energy from light (or chemicals, in chemoautotrophic systems) converted to the chemical energy of organic molecules per unit of time. Not all of this production is stored as organic material in the primary producers because they use some of the molecules as fuel in their own cellular respiration. Net primary production (NPP) is equal to gross primary production minus the energy used by the primary producers for their autotrophic respiration. 12. Write an equation here that shows the relationship between gross and net primary production. NPP = GPP R a 13. You may recall from Chapter 54 that biomass is the total mass of all individuals in a trophic level. Another way of defining net primary production is as the amount of new biomass added in a given period of time. Why is net primary production, or the amount of new biomass/unit of time, the key measurement to ecologists? To ecologists, net primary production is the key measurement because it represents the storage of chemical energy that will be available to consumers in the ecosystem. 14. Which ecosystem would tend to have a greater biomass/unit area, a prairie or a tropical rain forest? Explain. The tropical rain forest will have the greater biomass/unit area. The rate of photosynthesis will be higher due to more light and available water. Copyright 2011 Pearson Education, Inc

3 15. Describe a technique for measuring net primary production in an aquatic environment. (We will use this technique for AP Lab 12, Dissolved Oxygen and Aquatic Primary Productivity.) Primary productivity in an aquatic environment is often measured using dissolved oxygen tests. If samples are taken and placed in the light, and others are taken and placed in the dark for 24 hours, the difference in the amount of oxygen in the two sample groups would represent the amount of respiration in the system. If this is subtracted from the amount of oxygen produced in the light bottle, inferences can be made about net productivity. 16. What are some factors that limit primary productivity in aquatic ecosystems? Light limitation and nutrient limitation are factors that limit primary productivity in aquatic ecosystems. 17. What is a limiting nutrient? What is the limiting nutrient off the shore of Long Island, New York? In the Sargasso Sea? A limiting nutrient is an element that must be added for production to increase. The limiting nutrient off the shore of Long Island, New York, is nitrogen. The limiting unit in the Sargasso Sea is the micronutrient iron. 18. Phytoplankton growth can be increased by additional nitrates and phosphates. What are common sources of each of these? Sewage and fertilizer runoff from farms and lawns are a common source of additional nutrients. 19. What is eutrophication? What are factors that contribute to eutrophication? Eutrophication is where a body of water receives excess nutrients that enhance algal and bacterial growth. Although the algae, for example, are photosynthesizing and putting oxygen into the water, they are also respiring, and as they die, the process of decomposition also results in reduced oxygen. This ultimately reduces the oxygen content and clarity of the water. Sewage and fertilizer runoff from farms and laws contribute to eutrophication. Concept 55.3 Energy transfer between trophic levels is typically only 10% efficient 20. What is trophic efficiency? Trophic efficiency is the percentage of production transferred from one trophic level to the next. 21. Generally, what percentage of energy available at one trophic level is available at the next? 10% This is important! Remember it

4 22. Consider a food chain with 1,000 joules (an energy unit) available at the producer level. If this food chain is grass grasshopper lizard crow, how much energy is found at the level of the crow? (See answer at the end of this Reading Guide chapter.) Show your work here. Grass (1,000 J) grasshopper (100 J) lizard (10 J) crow (1 J) 23. Notice that most biomass pyramids have greatest biomass on the bottom of the pyramid. Label the trophic levels on both figures below. Explain why the second pyramid of biomass is inverted. See page 1226 of your text for the labeled figure. The second pyramid of biomass is inverted because certain aquatic ecosystems have inverted biomass pyramids: Primary consumers outweigh the producers. Such inverted biomass pyramids occur because the producers phytoplankton grow, reproduce, and are consumed so quickly by the zooplankton that they never develop a large population size, or standing crop. In other words, the phytoplankton have a short turnover time, which means they have a small standing crop compared to their production. Because the phytoplankton continually replace their biomass at such a rapid rate, they can support a biomass of zooplankton bigger than their own biomass. Nevertheless, because phytoplankton have much higher production than zooplankton, the pyramid of production for this ecosystem is still bottomheavy. 24. Why do people who have limited diets in overpopulated parts of the world eat low on the food chain? When humans consume rice and beans, for example, they are primary consumers, and about 10% of available energy is transferred to them. When humans consume meat, they are secondary consumers, and only about 1% of available energy is transferred to them. Consider the production of 100 hectares if people eat the plant material rather than meat, there will be 10 times more energy (calories) available. Concept 55.4 Biological and geochemical processes cycle nutrients and water in ecosystems Pay particular attention to the nutrient cycles in Figure Note the key processes in each cycle. 25. Use the following figure to describe the water cycle. Specify the roles of evaporation, transpiration, and rainfall. See page 1228 of your text for the labeled figure. The main processes driving the water cycle are evaporation of liquid water by solar energy, condensation of water vapor into clouds, and precipitation. Transpiration by terrestrial plants also moves large volumes of water into the atmosphere. Surface and groundwater flow can return water to the oceans, completing the water cycle

5 26. Use this figure to describe the carbon cycle. In doing so, explain how carbon enters the living system and how it leaves, indicate the role of microorganisms in the cycle, and identify the reservoir for carbon. See page 1228 of your text for the labeled figure. Photosynthesis by plants and phytoplankton removes substantial amounts of atmospheric CO 2 each year. This quantity is approximately equaled by CO 2 added to the atmosphere through cellular respiration by producers and consumers. The burning of fossil fuels and wood is adding significant amounts of additional CO 2 to the atmosphere. Over geologic time, volcanoes are also a substantial source of CO 2. Write the equation for photosynthesis here: 6 CO H 2 O C 6 H 12 O O 2 Write the equation for cellular respiration here: C 6 H 12 O O 2 6 CO H 2 O + ATP 27. Use the following diagram to describe the nitrogen cycle. In doing so, indicate the role of microorganisms in nitrogen fixation, nitrification, and denitrification See page 1229 of your text for the labeled figure. The major pathway for nitrogen to enter an ecosystem is via nitrogen fixation, the conversion of N 2 to forms that can be used to synthesize organic nitrogen compounds. Certain bacteria, as well as lightning, fix nitrogen naturally. Nitrogen inputs from human activities now outpace natural inputs on land. Two major contributors are industrially produced fertilizers and legume crops that fix nitrogen via bacteria in their root nodules. Other bacteria in soil convert nitrogen to different forms (see also Figure 37.9). Some bacteria carry out denitrification, the reduction of nitrate to nitrogen gases. Human activities also release large quantities of reactive nitrogen gases, such as nitrogen oxides, to the atmosphere. 28. Review the Case Study: Nutrient Cycling in the Hubbard Brook Experimental Forest. What effect has deforestation been shown to have on chemical cycling? Experimental deforestation of a watershed dramatically increased the flow of water and minerals leaving the watershed. The Hubbard Brook deforestation study showed that the amount of nutrients leaving an intact forest ecosystem is controlled mainly by the plants. Large amounts of calcium, nitrates, and potassium were washed into the creeks below the deforested areas. Retaining nutrients in ecosystems helps to maintain the productivity of the systems and, in some cases, to avoid problems cause by excess nutrient runoff. Concept 55.5 Restoration ecologists help return degraded ecosystems to a more natural state 29. What is the goal of restoration ecology? Restoration ecologists seek to initiate or speed up the recovery of degraded ecosystems. 30. Restoration ecology uses two key strategies. Explain how each strategy works: bioremediation: Using organisms usually prokaryotes, fungi, or plant to detoxify polluted ecosystems is known as bioremediation (see Chapter 27). Some plants and lichens adapted to soils containing heavy metals can accumulate high concentrations of potentially toxic metals such as - 5 -

6 zinc, nickel, lead, and cadmium in their tissues. Restoration ecologists can introduce such species to sites polluted by mining and other human activities and then harvest these organisms to remove the metals from the ecosystem. biological augmentation: In contrast to bioremediation, which is a strategy for removing harmful substances from an ecosystem, biological augmentation uses organisms to add essential materials to a degraded ecosystem. To augment ecosystem processes, restoration ecologists need to determine which factors, such as chemical nutrients, have been lost from a system and are limiting its recovery. Test Your Understanding Answers Now you should be ready to test your knowledge. Place your answers here: 1. c 2. b 3. d 4. d 5. c 6. e 7. a 8. e Solution to Question 22: Grass (1,000 J) grasshopper (100 J) lizard (10 J) crow (1 J) - 6 -

Chapter 55: Ecosystems

Chapter 55: Ecosystems Name Period Overview: 1. What is an ecosystem? 2. Where does energy enter most ecosystems? How is it converted to chemical energy and then passed through the ecosystem? How is it lost? Remember this: energy

More information

Physical laws govern energy flow and chemical cycling in ecosystems [2].

Physical laws govern energy flow and chemical cycling in ecosystems [2]. GUIDED READING - Ch. 55 - ECOSYSTEMS NAME: Please print out these pages and HANDWRITE the answers directly on the printouts. Typed work or answers on separate sheets of paper will not be accepted. Importantly,

More information

Ch. 55 Ecosystems And Restoration Ecology. AP Biology

Ch. 55 Ecosystems And Restoration Ecology. AP Biology Ch. 55 Ecosystems And Restoration Ecology Studying organisms in their environment organism population community ecosystem biosphere Essential questions What limits the production in ecosystems? How do

More information

Ecosystem ecology emphasizes energy flow and chemical recycling

Ecosystem ecology emphasizes energy flow and chemical recycling AP Biology Chapter 54 notes Ecosystems Ecosystem ecology emphasizes energy flow and chemical recycling An ecosystem consists of all the organisms in a community and all the abiotic factors with which they

More information

Life on Earth. Page 1. Energy (sunlight) Energy (heat) Nutrients. Nutrients. Chapter 28: How Do Ecosystems Work?

Life on Earth. Page 1. Energy (sunlight) Energy (heat) Nutrients. Nutrients. Chapter 28: How Do Ecosystems Work? Chapter 28: How Do Ecosystems Work? Introduction to Ecology Ecology - Increasing Levels of Complexity: Population: All members of a particular species living within a defined area Organism Community: All

More information

a. a population. c. an ecosystem. b. a community. d. a species.

a. a population. c. an ecosystem. b. a community. d. a species. Name: practice test Score: 0 / 35 (0%) [12 subjective questions not graded] The Biosphere Practice Test Multiple Choice Identify the letter of the choice that best completes the statement or answers the

More information

Which of the following can be determined based on this model? The atmosphere is the only reservoir on Earth that can store carbon in any form. A.

Which of the following can be determined based on this model? The atmosphere is the only reservoir on Earth that can store carbon in any form. A. Earth s Cycles 1. Models are often used to explain scientific knowledge or experimental results. A model of the carbon cycle is shown below. Which of the following can be determined based on this model?

More information

Section 13.1 Ecologists Study Relationships. KEY CONCEPT Ecology is the study of the relationships among organisms and their environment.

Section 13.1 Ecologists Study Relationships. KEY CONCEPT Ecology is the study of the relationships among organisms and their environment. Section 13.1 Ecologists Study Relationships KEY CONCEPT Ecology is the study of the relationships among organisms and their environment. Ecologists study environments at different levels of organization.

More information

Ecosystem Ecology. Trophic levels energy flow through ecosystems. Productivity and energy. Autotrophs: primary producers Heterotrophs: consumers

Ecosystem Ecology. Trophic levels energy flow through ecosystems. Productivity and energy. Autotrophs: primary producers Heterotrophs: consumers Ecosystem Ecology 1. Overview of material and energy flows in ecosystems 2. Primary production 3. Secondary production and trophic efficiency 4. Ecological Pyramids Trophic levels energy flow through ecosystems

More information

Unit 2 Lesson 3 Energy and Matter in Ecosystems. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 2 Lesson 3 Energy and Matter in Ecosystems. Copyright Houghton Mifflin Harcourt Publishing Company Soak Up the Sun How do organisms get energy and matter? Energy is the ability to do work. Matter is anything that has mass and takes up space. All organisms need energy and matter to live, grow, and reproduce.

More information

7. Use the dead tree in Fig 3-10 to describe the processes of detritus feeders and decomposers.

7. Use the dead tree in Fig 3-10 to describe the processes of detritus feeders and decomposers. APES Miller 17th ed. Chapter 3 Questions 5. Describe the 2 chemical equations used by autotrophs and heterotrophs to gain energy for chemical functions. Compare/contrast respiration to fossil fuel combustion

More information

Ecosystems and Restoration Ecology

Ecosystems and Restoration Ecology Chapter 55 Ecosystems and Restoration Ecology Lecture Outline Overview: Cool Ecosystem An ecosystem is the sum of all the organisms that live in a community as well as all the abiotic factors with which

More information

How Ecosystems Work: Energy Flow and Nutrient Cycles. Multiple Choice Test

How Ecosystems Work: Energy Flow and Nutrient Cycles. Multiple Choice Test How Ecosystems Work: Energy Flow and Nutrient Cycles Multiple Choice Test 1. The flow of solar energy through an ecosystem is marked by a) plants converting light energy to chemical energy via photosynthesis

More information

9/6/2013. Ecosystem Ecology. Orgnaisms (biotic factors) interact with abiotic factors

9/6/2013. Ecosystem Ecology. Orgnaisms (biotic factors) interact with abiotic factors Ecosystem Ecology Orgnaisms (biotic factors) interact with abiotic factors 1 Matter and Energy Matter has mass and occupies space: it is the stuff you and everything else is made of. Energy is what you

More information

HOLT ENVIRONMENTAL SCIENCE HOW ECOSYSTEMS WORK

HOLT ENVIRONMENTAL SCIENCE HOW ECOSYSTEMS WORK HOLT ENVIRONMENTAL SCIENCE CHAPTER 05 HOW ECOSYSTEMS WORK I. Energy Flow in Ecosystems List two examples of ecological succession. Explain how a pioneer species contributes to ecological succession. Explain

More information

Chapter 36: Population Growth. Population Concepts. Population: Carrying Capacity: Critical Number: Growth Rate: Growth rate = Birth rate - Death rate

Chapter 36: Population Growth. Population Concepts. Population: Carrying Capacity: Critical Number: Growth Rate: Growth rate = Birth rate - Death rate Chapter 36: Population Growth Population: Population Concepts interbreeding group of same species Carrying Capacity: maximum population size an ecosystem can sustainably support Critical Number: minimum

More information

Ecosystems. The two main ecosystem processes: Energy flow and Chemical cycling

Ecosystems. The two main ecosystem processes: Energy flow and Chemical cycling Ecosystems THE REALM OF ECOLOGY Biosphere An island ecosystem A desert spring ecosystem Biosphere Ecosystem Ecology: Interactions between the species in a given habitat and their physical environment.

More information

NUTRIENT CYCLES (How are nutrients recycled through ecosystems?)

NUTRIENT CYCLES (How are nutrients recycled through ecosystems?) NUTRIENT CYCLES (How are nutrients recycled through ecosystems?) Why? We have learned the importance of recycling our trash. It allows us to use something again for another purpose and prevents the loss

More information

Ecosystem Ecology. Energy Flows and Nutrient Cycles

Ecosystem Ecology. Energy Flows and Nutrient Cycles Ecosystem Ecology Energy Flows and Nutrient Cycles Introduction to Ecosystems Some reflected Some converted to heat Some absorbed PSN Some absorbed by organisms, soils, water Introduction to Ecosystems

More information

Ecosystem Ecology. Community interacts with abiotic factors. Objectives

Ecosystem Ecology. Community interacts with abiotic factors. Objectives Ecosystem Ecology Community interacts with abiotic factors Objectives Compare the processes of energy flow and chemical cycling as they relate to ecosystem dynamics. Define and list examples of producers,

More information

Ecology. Initial Vocab and Practice. Page 1 in notes

Ecology. Initial Vocab and Practice. Page 1 in notes 2015 1 Ecology Initial Vocab and Practice Page 1 in notes 2 The study of the interactions of living organisms with one another and with their environment. 3 Organism/species an individual living thing.

More information

Name Class Date WHAT I KNOW. life by observing many different kinds of life forms. sunlight for their energy. Other animals eat food to get energy.

Name Class Date WHAT I KNOW. life by observing many different kinds of life forms. sunlight for their energy. Other animals eat food to get energy. The Biosphere Matter of Energy, Interdependence in Nature Q: How do Earth s living and nonliving parts interact and affect the survival of organisms? 3.1 How do we study life? WHAT I KNOW SAMPLE ANSWER:

More information

THE WATER CYCLE. Ecology

THE WATER CYCLE. Ecology THE WATER CYCLE Water is the most abundant substance in living things. The human body, for example, is composed of about 70% water, and jellyfish are 95% water. Water participates in many important biochemical

More information

CCR Biology - Chapter 13 Practice Test - Summer 2012

CCR Biology - Chapter 13 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 13 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A group of organisms of the same

More information

3.2 Energy flows through ecosystems

3.2 Energy flows through ecosystems 3.2 Energy flows through ecosystems Printed Page 60 [Notes/Highlighting] To understand how ecosystems function and how to best protect and manage them, ecosystem ecologists study not only the biotic and

More information

Ecosystems. Chapter 55. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Ecosystems. Chapter 55. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 55 Ecosystems PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Overview:

More information

Objectives. Key Terms

Objectives. Key Terms Objectives Summarize the basic pattern of chemical cycling. Describe how carbon and oxygen are cycled through an ecosystem. Describe the movement of nitrogen through an ecosystem. Describe the processes

More information

How Ecosystems Work ( Holt Environmental Science Chapter 5)

How Ecosystems Work ( Holt Environmental Science Chapter 5) How Ecosystems Work ( Holt Environmental Science Chapter 5) Study online at quizlet.com/_i2rl5 1. AUTOTROPH OR PRODUCER Organism that makes its own food by photosynthesis 2. Biodiversity When an ecosystem

More information

APES Unit 3 Ecosystems

APES Unit 3 Ecosystems APES Unit 3 Ecosystems Ecology From the Greek words oikos = house and logos = study of The study of how organisms interact with one another and with their environment. YOU SHOULD KNOW! The difference between

More information

Chapter 3 How Ecosystems Work. You could cover the whole world with asphalt, but sooner or later green grass would break through.

Chapter 3 How Ecosystems Work. You could cover the whole world with asphalt, but sooner or later green grass would break through. Chapter 3 How Ecosystems Work You could cover the whole world with asphalt, but sooner or later green grass would break through. Ilya Ehrenburg Energy Flow in Ecosystems For most living organisms the sun

More information

Ecosystems and Restoration Ecology

Ecosystems and Restoration Ecology 55 Ecosystems and Restoration Ecology KEY CONCEPTS 55.1 Physical laws govern energy flow and chemical cycling in ecosystems 55.2 Energy and other limiting factors control primary production in ecosystems

More information

Ecosystems. Chapter 55. Ecosystem Ecology Ecosystems, Energy, and Matter An ecosystem consists of

Ecosystems. Chapter 55. Ecosystem Ecology Ecosystems, Energy, and Matter An ecosystem consists of Chapter 55 Ecosystems Ecosystem Ecology Ecosystems, Energy, and Matter An ecosystem consists of All the organisms living in a community, and All the abiotic factors with which they interact PowerPoint

More information

Cycles of Matter. Chapter 13- Lesson 3

Cycles of Matter. Chapter 13- Lesson 3 Cycles of Matter Chapter 13- Lesson 3 What processes are involved in the water cycle? Matter in an ecosystem includes water, carbon, oxygen, nitrogen, and many other substances. The water cycle is the

More information

Energy flow in ecosystems. Lecture 6 Chap. 6

Energy flow in ecosystems. Lecture 6 Chap. 6 Energy flow in ecosystems Lecture 6 Chap. 6 1 What is an ecosystem? System = regularly interacting and interdependent components forming a unified whole Ecosystem = an ecological system; = a community

More information

FOOD CHAINS, FOOD WEBS AND ECOLOGICAL PYRAMIDS

FOOD CHAINS, FOOD WEBS AND ECOLOGICAL PYRAMIDS FOOD CHAINS, FOOD WEBS AND ECOLOGICAL PYRAMIDS In an ecosystem, plants capture the sun's energy and use it to convert inorganic compounds into energy-rich organic compounds. This process of using the sun's

More information

13.1. Principles of Ecology CHAPTER 13. Ecology is the study of the relationships among organisms and their environment.

13.1. Principles of Ecology CHAPTER 13. Ecology is the study of the relationships among organisms and their environment. SECTION 13.1 KEY CONCEPT ECOLOGISTS STUDY RELATIONSHIPS Study Guide Ecology is the study of the relationships among organisms and their environment. VOCABULARY ecology community MAIN IDEA: Ecologists study

More information

Oikos: House and Ology: to Study Scientific discipline in which the relationships among living organisms and the interaction the organisms have with

Oikos: House and Ology: to Study Scientific discipline in which the relationships among living organisms and the interaction the organisms have with Oikos: House and Ology: to Study Scientific discipline in which the relationships among living organisms and the interaction the organisms have with their environments are studied. An Ecologist is someone

More information

ECOSYSTEMS: THE ROLE OF ABIOTIC FACTORS from the series Biology: The Science of Life Pre-Test

ECOSYSTEMS: THE ROLE OF ABIOTIC FACTORS from the series Biology: The Science of Life Pre-Test 1 Pre-Test Directions: Answer each of the following either true or false: 1. In ecosystems, non-living (abiotic) factors usually have insignificant effects on living things. True False 2. Carbon dioxide

More information

Introduction to Ecology

Introduction to Ecology Introduction to Ecology Ecology is the scientific study of the interactions between living organisms and their environment. Scientists who study ecology are called ecologists. Because our planet has many

More information

Chapter 3 Ecosystems and Energy

Chapter 3 Ecosystems and Energy Chapter 3 Ecosystems and Energy A. Ecology I. Ecology 1. eco house & logy study of 2. The study of interactions among and between organisms in their abiotic environment B. Biotic - living environment 1.Includes

More information

Ecology - Exchange of energy and matter

Ecology - Exchange of energy and matter - Exchange of energy and matter You should be able to: (a) briefly describe the non-cyclical nature of energy flow (b) establish the relationship of the following in food webs: producer, consumer, herbivore,

More information

Ecosystem Ecology. Ecosystems as machines. Simple laws of physics. Energy Ability to do work

Ecosystem Ecology. Ecosystems as machines. Simple laws of physics. Energy Ability to do work Ecosystem Ecology Read Chps 18-19 (know N, P, C cycles) Ecosystem: A community of organisms plus its nonlinving (=abiotic) environment At the individual level, the abiotic environment affects organisms

More information

4 Ecology. Chapter summary a reminder of the issues to be revised

4 Ecology. Chapter summary a reminder of the issues to be revised 4 Ecology Chapter summary a reminder of the issues to be revised 1 Ecology is the study of organisms in relation to their environment. An ecosystem, such as a lake or woodland, is a stable and settled

More information

Chapter 13- Food chains and webs

Chapter 13- Food chains and webs Section 4: Food Chains and Food Webs Chapter 13- Food chains and webs KEY CONCEPT Food chains and food webs model the flow of energy in an ecosystem. VOCABULARY food chain herbivore carnivore omnivore

More information

Ecology Module B, Anchor 4

Ecology Module B, Anchor 4 Ecology Module B, Anchor 4 Key Concepts: - The biological influences on organisms are called biotic factors. The physical components of an ecosystem are called abiotic factors. - Primary producers are

More information

Nitrogen Cycling in Ecosystems

Nitrogen Cycling in Ecosystems Nitrogen Cycling in Ecosystems In order to have a firm understanding of how nitrogen impacts our ecosystems, it is important that students fully understand how the various forms of nitrogen cycle through

More information

Ecology limiting factors plant limiting factors field mouse nitrogen nitrogen ALL nitrogen returned to soil process major role; mutualism

Ecology limiting factors plant limiting factors field mouse nitrogen nitrogen ALL nitrogen returned to soil process major role; mutualism Ecology List some limiting factors that would affect a plant (such as a corn plant) population. Light, carbon dioxide concentration, temperature, nutrients in soil, water List some limiting factors that

More information

Ecology PS 12 PS 13:

Ecology PS 12 PS 13: Ecology PS 12: Matter cycles and energy flows through living and nonliving components in ecosystems. The transfer of matter and energy is important for maintaining the health and sustainability of ecosystems.

More information

The animals at higher levels are more competitive, so fewer animals survive. B.

The animals at higher levels are more competitive, so fewer animals survive. B. Energy Flow in Ecosystems 1. The diagram below shows an energy pyramid. Which of the following best explains why the number of organisms at each level decreases while moving up the energy pyramid? The

More information

ENERGY WHAT IS AN ECOSYSTEM? PATTERNS OF ENERGY FLOW IN ECOSYSTEMS LAWS OF THERMODYNAMICS

ENERGY WHAT IS AN ECOSYSTEM? PATTERNS OF ENERGY FLOW IN ECOSYSTEMS LAWS OF THERMODYNAMICS ENERGY PATTERNS OF ENERGY FLOW IN ECOSYSTEMS WHAT IS AN ECOSYSTEM? Biological community plus all abiotic factors affecting the community Ecosystem first proposed by Arthur Tansley Boundaries not fixed

More information

Commensalism is a symbiotic relationship in which one organism benefits and the other organism is not affected.. What they might ask:

Commensalism is a symbiotic relationship in which one organism benefits and the other organism is not affected.. What they might ask: B-6.1 Explain how the interrelationships among organisms (including predation, competition, parasitism, mutualism, and commensalism) generate stability within ecosystems. ecosystem - biotic community (all

More information

Ecology Review Questions

Ecology Review Questions 1. The food chain above shows (A) one autotroph and two heterotrophs (B) one producer, one autotroph, and one decomposer (C) one producer and two omnivores (D) one heterotroph and two autotrophs 2. Assume

More information

Ecosystems and Energy

Ecosystems and Energy 3 Ecosystems and Energy Overview of Chapter 3 What is Ecology? The Energy of Life Laws of Thermodynamics Photosynthesis and Cellular Respiration Flow of Energy Through Ecosystems Producers, Consumers &

More information

ECOSYSTEM 1. SOME IMPORTANT TERMS

ECOSYSTEM 1. SOME IMPORTANT TERMS ECOSYSTEM 1. SOME IMPORTANT TERMS ECOSYSTEM:- A functional unit of nature where interactions of living organisms with physical environment takes place. STRATIFICATION:- Vertical distribution of different

More information

Carbon and Nitrogen Cycles Interdependence within Environmental Systems. Carbon the Element

Carbon and Nitrogen Cycles Interdependence within Environmental Systems. Carbon the Element Carbon the Element The element carbon is one of the most essential elements on our planet. All living organisms contain carbon, making it a critical component of all life on planet earth. In fact, the

More information

Ecosystems and Food Webs

Ecosystems and Food Webs Ecosystems and Food Webs How do AIS affect our lakes? Background Information All things on the planet both living and nonliving interact. An Ecosystem is defined as the set of elements, living and nonliving,

More information

Use this diagram of a food web to answer questions 1 through 5.

Use this diagram of a food web to answer questions 1 through 5. North arolina Testing Program EO iology Sample Items Goal 4 Use this diagram of a food web to answer questions 1 through 5. coyotes 3. If these organisms were arranged in a food pyramid, which organism

More information

Chapter 3 Ecosystems and Energy

Chapter 3 Ecosystems and Energy Chapter 3 Ecosystems and Energy Overview of Chapter 3 What is Ecology? The Energy of Life Laws of Thermodynamics Photosynthesis and Cellular Respiration Flow of Energy Through Ecosystems Producers, Consumers

More information

aerobic cellular respiration a process by which organisms convert sugar into usable energy (SRB, IG)

aerobic cellular respiration a process by which organisms convert sugar into usable energy (SRB, IG) FOSS Populations and Ecosystems, Second Edition Glossary abiotic nonliving (SRB, aerobic cellular respiration a process by which organisms convert sugar into usable energy (SRB, aquatic of the water (SRB,

More information

Energy Flow in the Pond Teacher s Guide February 2011

Energy Flow in the Pond Teacher s Guide February 2011 Energy Flow in the Pond Teacher s Guide February 2011 Grades: 6, 7 & 8 Time: 3 hours With the pond as a model, students explore how energy that originates from the sun keeps changing shape and form as

More information

Grade 7. Objective. Students will be able to:

Grade 7. Objective. Students will be able to: Grade 7 Objective Students will be able to: Describe the carbon cycle in more detail: o Learn about the importance of carbon and the role it plays in photosynthesis and cellular respiration, Identify elements

More information

UNIT 4: SUSTAINABILITY OF ECOSYSTEMS Worksheet #4: Energy Flow In An Ecosystem

UNIT 4: SUSTAINABILITY OF ECOSYSTEMS Worksheet #4: Energy Flow In An Ecosystem SCIENCE 1206 UNIT 4: SUSTAINABILITY OF ECOSYSTEMS Worksheet #4: Energy Flow In An Ecosystem The sun is the source of energy for Earth. It is a one-way flow. Energy enters food chains through the process

More information

Primary Production and Energy Flow Chapter 18

Primary Production and Energy Flow Chapter 18 Primary Production and Energy Flow Chapter 18 Sunlight to photosynthesizer to herbivore to carnivore to decomposer!!! 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or

More information

List and define the six levels of organization in ecology, from the most specific to the most complex. individual (organism)- a single living

List and define the six levels of organization in ecology, from the most specific to the most complex. individual (organism)- a single living List and define the six levels of organization in ecology, from the most specific to the most complex. individual (organism)- a single living organism population- a group of individuals that belong to

More information

FOOD CHAINS, FOOD WEBS AND ECOLOGICAL PYRAMIDS

FOOD CHAINS, FOOD WEBS AND ECOLOGICAL PYRAMIDS FOOD CHAINS, FOOD WEBS AND ECOLOGICAL PYRAMIDS SECTION 1 In an ecosystem, plants capture the sun's energy and use it to convert inorganic compounds into energy-rich organic compounds. This process of using

More information

Chapter 3 Ecosystems and Energy

Chapter 3 Ecosystems and Energy Chapter 3 Ecosystems and Energy Overview of Chapter 3 o Ecology o Energy, the ability to do work First Law of Thermodynamics Second Law of Thermodynamics o Photosynthesis and Cellular Respiration o Flow

More information

The main source of energy in most ecosystems is sunlight.

The main source of energy in most ecosystems is sunlight. Energy in Ecosystems: Ecology: Part 2: Energy and Biomass The main source of energy in most ecosystems is sunlight. What is the amount of energy from the sun? 100 W/ft 2 The energy gets transferred through

More information

ECOSYSTEM : STRUCTURE AND FUNCTION

ECOSYSTEM : STRUCTURE AND FUNCTION ECOSYSTEM : STRUCTURE AND FUNCTION Environment The term environment denotes all the physical, chemical and biotic conditions surrounding and influencing a living organism. Favourable environmental conditions

More information

Dynamic Ecosystems. Energy Flow through an Ecosystem

Dynamic Ecosystems. Energy Flow through an Ecosystem Dynamic Ecosystems Energy Flow through an Ecosystem Energy Transfer and Loss in Ecosystems Biozone PAGE 291 Energy Inputs and Outputs Key Energy Processes Photosynthesis: use of chlorophyll. Energy storing

More information

Section 3: Trophic Structures

Section 3: Trophic Structures Marine Conservation Science and Policy Service learning Program Trophic Structure refers to the way in which organisms utilize food resources and hence where energy transfer occurs within an ecosystem.

More information

Energy & Matter in Ecosystems. Chapter 13

Energy & Matter in Ecosystems. Chapter 13 Energy & Matter in Ecosystems Chapter 13 The Big Idea Matter cycles between organisms and the abiotic environment. Energy flows one way, from sunlight to producers to consumers and decomposers. Lesson

More information

Student Worksheets. 9th Grade. Name

Student Worksheets. 9th Grade. Name Student Worksheets 9th Grade Name Ecosystems Ecosystems are complex entities made up of interacting inorganic and biotic elements. In this worksheet, we will mainly be concerned with one particular ecosystem

More information

Energy Flow in the Biosphere

Energy Flow in the Biosphere Energy Flow in the Biosphere 36.1-36.2 Objectives Compare and contrast the pathways of matter and energy in an ecosystem. Identify and describe the various feeding relationships in an ecosystem. Describe

More information

Biological Productivity and Coastal Habitats

Biological Productivity and Coastal Habitats Biological Productivity and Coastal Habitats Why do we care? Fishing Water quality Wildlife Ecology and Ecosystems Ecology Natural systems Include interactions between living and non-living parts Ecosystem

More information

Some Background Concerning Life Science Content Standards for Fourth-Grade Teachers:

Some Background Concerning Life Science Content Standards for Fourth-Grade Teachers: Some Background Concerning Life Science Content Standards for Fourth-Grade Teachers: Energy and Matter in Ecosystems by Ellen Deehan, M.S. Contents 1. Introduction 2. Biological Overview: Hierarchy of

More information

Contrast the flow of energy and chemicals in ecosystems. Explain how trophic levels relate to food chains and food webs.

Contrast the flow of energy and chemicals in ecosystems. Explain how trophic levels relate to food chains and food webs. Objectives Contrast the flow of energy and chemicals in ecosystems. Explain how trophic levels relate to food chains and food webs. Key Terms producer consumer decomposer trophic level food chain herbivore

More information

Chapter 5 The Roles of Organisms in an Ecosystem 5.1: The Roles of Organisms in an Ecosystems

Chapter 5 The Roles of Organisms in an Ecosystem 5.1: The Roles of Organisms in an Ecosystems Chapter 5 The Roles of Organisms in an Ecosystem 5.1: The Roles of Organisms in an Ecosystems photosynthesis a process by which plants use water, carbon dioxide, and sunlight to produce sugars (food) Types

More information

Materials: Containers for holding and collecting water (Could be buckets or trays) Paper or Styrofoam cups Graduated Cylinders or Measuring Cups

Materials: Containers for holding and collecting water (Could be buckets or trays) Paper or Styrofoam cups Graduated Cylinders or Measuring Cups ENERGY FLOW THROUGH ECOSYSTEMS PASS How does energy flow through ecosystems? Energy flows through ecosystems in one direction from photosynthetic organisms to herbivores to carnivores to decomposers. Through

More information

Ecology: Practice Questions #1

Ecology: Practice Questions #1 Ecology: Practice Questions #1 1. One biotic factor that affects consumers in an ocean ecosystem is A. number of autotrophs B. temperature variation C. salt content D. ph of water 2. A food web is represented

More information

Chapter 13 study guide

Chapter 13 study guide Below are listed some Key Topics or terms to aid in focusing your study time. More topics then these may appear on the exam but these are a good place to start. Check each box as you review the concept

More information

Energy Flow Through an Ecosystem. Food Chains, Food Webs, and Ecological Pyramids

Energy Flow Through an Ecosystem. Food Chains, Food Webs, and Ecological Pyramids Energy Flow Through an Ecosystem Food Chains, Food Webs, and Ecological Pyramids What is Ecology? ECOLOGY is a branch of biology that studies ecosystems. Ecological Terminology Environment Ecology Biotic

More information

Energy Flow through an Ecosystem

Energy Flow through an Ecosystem OpenStax-CNX module: m47790 1 Energy Flow through an Ecosystem Miranda Dudzik Based on Energy Flow through Ecosystems by OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative

More information

Modeling of Environmental Systems

Modeling of Environmental Systems Modeling of Environmental Systems The next portion of this course will examine the balance / flows / cycling of three quantities that are present in ecosystems: Energy Water Nutrients We will look at each

More information

food chain Encyclopedic Entry

food chain Encyclopedic Entry This website would like to remind you: Your browser (Apple Safari 7) is out of date. Update your browser for more security, comfort and the best experience on this site. Encyclopedic Entry food chain For

More information

Consortium for Educational Communication

Consortium for Educational Communication Consortium for Educational Communication Module on ENERGY FLOW IN AUTOTROPHIC AND DETRITUS BASED ECOSYSTEMS By Zahoor Ahmad Itoo M. Phil. Scholar Department of Botany Kashmir University Srinagar TEXT 1.1.

More information

Energy Economics in Ecosystems

Energy Economics in Ecosystems Energy Economics in Ecosystems By: J. Michael Beman (School of Natural Sciences, University of California at Merced) 2010 Nature Education Citation: Beman, J. (2010) Energy Economics in Ecosystems. Nature

More information

An Introduction to the Nitrogen Cycle

An Introduction to the Nitrogen Cycle 1 + An Introduction to the Nitrogen Cycle Grade Level: 5-9 Activity Duration: 45 minutes Overview: I. Introduction to the nitrogen cycle II. Nitrogen Cycle Game III. Discussion Literacy Connection Leopold,

More information

16) DETRITIVORE: An organism that feeds on detritus or organic waste but leaves some detritus or feces behind.

16) DETRITIVORE: An organism that feeds on detritus or organic waste but leaves some detritus or feces behind. 16) DETRITIVORE: An organism that feeds on detritus or organic waste but leaves some detritus or feces behind. By consuming dead organic matter they speed up decomposition by increasing the surface area

More information

BIOLOGY CLASS 9 ECOSYSTEMS

BIOLOGY CLASS 9 ECOSYSTEMS BIOLOGY CLASS 9 ECOSYSTEMS Q1. Define the following terms: a) Biosphere The whole of the region of the earth s surface, the sea, and the air where living organisms are found is termed as Biosphere. It

More information

Effective June 2008 All indicators in Standard B-6 1 / 16

Effective June 2008 All indicators in Standard B-6 1 / 16 B-6.1 Explain how the interrelationships among organisms (including predation, competition, parasitism, mutualism, and commensalism) generate stability within ecosystems. Taxonomy Level: 2.7-B Understand

More information

UNIT 3 LECTURE 3 FOOD CHAIN, FOOD WEB, ECOLOGICAL PYRAMID. Italics indicate text already on slide

UNIT 3 LECTURE 3 FOOD CHAIN, FOOD WEB, ECOLOGICAL PYRAMID. Italics indicate text already on slide UNIT 3 LECTURE 3 FOOD CHAIN, FOOD WEB, ECOLOGICAL PYRAMID Italics indicate text already on slide SLIDE 1 Definition of food chain The transfer of food energy from the source in plants through a series

More information

Topic 3: Nutrition, Photosynthesis, and Respiration

Topic 3: Nutrition, Photosynthesis, and Respiration 1. Base your answer to the following question on the chemical reaction represented below and on your knowledge of biology. If this reaction takes place in an organism that requires sunlight to produce

More information

ENERGY FLOW THROUGH LIVING SYSTEMS

ENERGY FLOW THROUGH LIVING SYSTEMS reflect Enter the word domino as a search term on the Internet; you can fi nd some amazing domino runs. You can make your own by setting up a series of dominoes in a line. When you push the fi rst domino

More information

AP Biology Lab 10: Energy Dynamics

AP Biology Lab 10: Energy Dynamics Name: Period: AP Biology Lab 10: Energy Dynamics Purpose: What factors govern energy capture, allocation, storage, and transfer between producers and consumers in a terrestrial ecosystem? Background: Almost

More information

autotroph Encyclopedic Entry producer

autotroph Encyclopedic Entry producer This website would like to remind you: Your browser (Safari 7) is out of date. Update your browser for more security, comfort and the best experience on this site. Encyclopedic Entry autotroph producer

More information

5.1 Ecosystems, Energy, and Nutrients

5.1 Ecosystems, Energy, and Nutrients CHAPTER 5 ECOSYSTEMS 5.1 Ecosystems, Energy, and Nutrients Did anyone ever ask you the question: Where do you get your energy? Energy enters our world from the Sun but how does the Sun s energy become

More information

What are the subsystems of the Earth? The 4 spheres

What are the subsystems of the Earth? The 4 spheres What are the subsystems of the Earth? The 4 spheres Essential Questions What are the 4 spheres of the Earth? How do these spheres interact? What are the major cycles of the Earth? How do humans impact

More information

A Biotic and Abiotic Factors

A Biotic and Abiotic Factors Ecology Project Earth s Biomes Biomes 1. Savanna 2. Temperate Grasslands 3. Desert 4. Tropical Rain Forest 5. Taiga /Boreal Forest 6. Tundra 7. Temperate Forest 8. Temperate Shrubland/Scrublands 9. Nothwestern

More information

The Biosphere Levels Organism Species Populations

The Biosphere Levels Organism Species Populations The Biosphere Levels Organism- one individual living thing Species- group of organisms so similar to one another that they can breed and produce fertile offspring Populations- groups of individuals that

More information

Eastern Regional High School. F 2. Like nutrients and water, energy also recycles through an ecosystem.

Eastern Regional High School. F 2. Like nutrients and water, energy also recycles through an ecosystem. Eastern Regional High School Honors Biology Name: Period: Date: Unit 14 Introduction to Ecology Worksheet The Science of Ecology Part 1 - True or False Write true if the statement is true or false if the

More information