# Lecture 6: Newton & Kepler. Tycho Brahe ( ) Johannes Kepler

Save this PDF as:

Size: px
Start display at page:

Download "Lecture 6: Newton & Kepler. Tycho Brahe ( ) Johannes Kepler"

## Transcription

1 Lecture 6: Newton & Kepler Johannes Kepler (1600) was employed by Tycho to develop a mathematical theory to explain the observations made by Tycho Kepler was a pure theorist; Tycho a pure observer Issac Newton (1642) explained the natural origin of Kepler s laws in terms of a physical model that incorporated his laws of motion and of gravitation Tycho Brahe ( ) Tycho s observations were accurate to about 1 (one arc-minute) The observations were made without a telescope long sighting rods and protractors were used Johannes Kepler Kepler ( ) initially believed that the planetary orbits were related to the perfect geometry of nested solids 1

2 The nested solids idea did not agree very well with the data Later (1600) Kepler was employed by Tycho to develop a mathematical theory to explain the observations made by Tycho Kepler was a pure theorist; Tycho a pure observer In 1601 Tycho dies and Kepler replaced him as Imperial Mathematician At first, Kepler tried circular orbits, with the Sun at the center Johannes Kepler Johannes Kepler He used triangulation to determine the shapes of the orbits This required determination of Earth s orbit too! Later he realized that the orbits were elliptical, with the Sun at one focus of the ellipse: Kepler s Laws First Law (1609): The planetary orbits are elliptical, with the Sun at one focus 2

3 Kepler s Laws Second Law (1609): A imaginary line connecting the Sun to any planet sweeps out equal areas in equal times Kepler s Laws Animation Kepler s Laws Third Law (1619): The square of a planet s orbital period is proportional to the cube of its semi-major axis The orbital period is the time it takes to complete one orbit semi-major axis a 3

4 Kepler s Laws Third Law (1619): The square of a planet s orbital period is proportional to the cube of its semi-major axis 2 3 P a = years A.U. The orbital period P is the time it takes to complete one orbit The semi-major axis a is half the distance across the long dimension of the ellipse One A.U. (astronomical unit) is the distance form the Earth to the Sun = 1.5 x 10 8 km Example: Orbit of Venus Kepler s third law relates the semi-major axis a to the orbital period P 2 P years Solving for the period P yields 3 a = AU P a = years AU 3/ 2 Since a = 0.72 AU for Venus, we obtain P = Earth years or P = 225 Earth days Kepler s Laws Kepler was the first person to explain the planetary motions without any epicycles Kepler s laws are empirical why do they work?? This was the major question facing astronomy in the 17 th century Astronomers wanted a physical explanation 4

5 Isaac Newton ( ) Isaac Newton Isaac Newton ( ) was born in the year Galileo died He discovered the Law of Gravitation in 1665 He developed the Laws of Mechanics that govern all motions In order to solve the resulting mathematical problem to determine the motions of real objects, he invented calculus in 1665 Newton s laws explain the elliptical orbits deduced by Kepler! 5

6 Isaac Newton In 1670 he passed white light through a prism and observed the rainbow of colors, establishing that white light is not a single entity Isaac Newton Recognition of the problem of chromatic aberration in telescopes with lenses led Newton to design a reflecting telescope in 1672 Newton s Laws of Motion (1666) First Law: Every body continues in a state of rest or uniform motion unless acted on by an outside force 6

7 Newton s First Law of Motion Newton s Laws of Motion (1666) Second Law: When a force F is applied to a mass M, the resulting acceleration A is related to F by A = F M F = M A A is directly proportional to F (for fixed M ) A is inversely proportional to M (for fixed F ) Newton s Laws of Motion (1666) Third Law: To every action, there is an equal and opposite reaction 7

8 Newton s Law of Gravitation (1687) Universal Gravitation: Every particle in the universe attracts every other particle with a force that is directly proportional to the product of the two masses and inversely proportional to the square of the distance between them Here, G is the universal gravitational constant, M 1 and M 2 are the two masses, and R is the distance between them Newton s Law of Gravitation 8

9 9

10 Newton s Laws Newton s three laws of motion combined with his law of universal gravitation form the basis for the study of mechanics These laws can be used together to derive all of Kepler s laws from basic physical principles! This yields a deeper, more satisfying explanation for the patterns of motion of the planets Questions remained: where does gravity come from? This was answered by Albert Einstein in 1915 Gravity is really due to the curvature of space-time Triumph of Scientific Method Science is a human endeavor, subject to the whims of culture, personality, religion, etc. The Scientific Method always guides us towards an objective description of our world Sometimes it takes hundreds of years to make progress!! Chapter 3: Radiation In order to understand the universe, we must be able to decode the information contained in the light we receive from celestial sources The light takes time to reach us: Moon: t=1 second Sun: t=8 minutes Jupiter: t=40 minutes Stars: t=years Galaxies: t=10 6 years Beginning of universe: t=10 10 years Hence telescopes are time machines 10

11 Radiation In one second, light travels a distance of 300,000 km or 186,000 miles One light-year is the distance light travels in one year, or 5.9 x miles (9.5 x km) The Andromeda Galaxy is about 2,000,000=2 x 10 6 light-years from Earth! Radiation The information contained in the light we receive is unaffected by distance The information remains intact so long as the light doesn t run into something along the way Since the Earth is not special (according to the Copernican hypothesis), we hypothesize that the physical laws we observe on Earth operate in the same way everywhere Radiation Even from such an enormous distance, the light from the Andromeda galaxy tells us about the stars there The color of the light is related to the temperature of the stars emitting it 11

12 Radiation As an object gets hotter, its color goes from red->yellow->blue->white As an object gets hotter, the radiation it emits becomes brighter Color and Temperature EM Spectrum Animation Wave Nature of Radiation Visible light is part of the electromagnetic radiation spectrum Why electromagnetic? Because the radiation contains oscillating electric and magnetic fields 12

13 Electromagnetic Radiation Radiation It s interesting to compare light waves with water waves If you drop a pebble in a pond, it produces rippling waves We can measure the height of the water at a fixed location as a function of time: 13

### Lecture 7: Light Waves. Newton s Laws of Motion (1666) Newton s First Law of Motion

Lecture 7: Light Waves Isaac Newton (1643-1727) was born in the year Galileo died He discovered the Law of Gravitation in 1665 He developed the Laws of Mechanics that govern all motions In order to solve

### The Main Point. The Scientific Method. Laws of Planetary Motion. Lecture #3: Orbits and Gravity. Laws of Planetary Motion:

Lecture #3: Orbits and Gravity Laws of Planetary Motion: Kepler's Laws. Newton's Laws. Gravity. Planetary Orbits. Spacecraft Orbits. The Main Point Motions of planets, moons, and asteroids can be very

Reminders! Website: http://starsarestellar.blogspot.com/ Lectures 1-5 are available for download as study aids. Reading: You should have Chapters 1-4 read, Chapter 5 by the end of today, and Chapters 6

### Announcements. Eclipses 2/1/12. HW1 is due Thursday. You have to be registered at MasteringAstronomy to do the homework!

Announcements HW1 is due Thursday. You have to be registered at MasteringAstronomy to do the homework! TA Qufei Gu will be in RH111 4:00-5:00PM Wednesday to help with homework. Email: zyx88@unm.edu Feb

### Lecture Outlines. Chapter 2. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines Chapter 2 Astronomy Today 7th Edition Chaisson/McMillan Chapter 2 The Copernican Revolution Units of Chapter 2 2.1 Ancient Astronomy 2.2 The Geocentric Universe 2.3 The Heliocentric Model

### From Aristotle to Newton

From Aristotle to Newton The history of the Solar System (and the universe to some extent) from ancient Greek times through to the beginnings of modern physics. The Geocentric Model Ancient Greek astronomers

### Kepler, Newton, and laws of motion

Kepler, Newton, and laws of motion !! " The only history in this course:!!!geocentric vs. heliocentric model (sec. 2.2-2.4)" The important historical progression is the following:!! Ptolemy (~140 AD) Copernicus

### Introduction to Gravity and Orbits. Isaac Newton. Newton s Laws of Motion

Introduction to Gravity and Orbits Isaac Newton Born in England in 1642 Invented calculus in early twenties Finally published work in gravity in 1687 The Principia Newton s Laws of Motion 1: An object

### Universal Law of Gravitation Honors Physics

Universal Law of Gravitation Honors Physics Newton s Law of Universal Gravitation The greatest moments in science are when two phenomena that were considered completely separate suddenly are seen as just

### Chapter 13 Newton s Theory of Gravity

Chapter 13 Newton s Theory of Gravity Chapter Goal: To use Newton s theory of gravity to understand the motion of satellites and planets. Slide 13-2 Chapter 13 Preview Slide 13-3 Chapter 13 Preview Slide

### What s going on during a solar eclipse. Solar Eclipses. Total Solar Eclipse on March 29, 2006 (viewed from Turkey) Partial, Total, and Annular

Solar Eclipses The Sun disappears behind the Moon The Moon is always in the New phase during a solar eclipse Can only be seen from certain places on Earth These events are even more rare than lunar eclipses

### Chapter 2 The Science of Life in the Universe

Chapter 2 The Science of Life in the Universe The Big Idea This is a perspective Chapter How did we get to the point where we can address the question of extra-terrestrial life in a scientific way? And

### Lecture 13. Gravity in the Solar System

Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

### Kepler s Laws and Gravity. Ian Morison

Kepler s Laws and Gravity Ian Morison Observations of a supernova. Tycho made detailed observations of the supernova of 1572 now called Tycho s supernova. It was initially brighter than Venus and was visible

### Unit 8 Lesson 2 Gravity and the Solar System

Unit 8 Lesson 2 Gravity and the Solar System Gravity What is gravity? Gravity is a force of attraction between objects that is due to their masses and the distances between them. Every object in the universe

### Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around

### Today. Galileo. Planetary Motion. Tycho Brahe s Observations. Kepler s Laws

Today Galileo Planetary Motion Tycho Brahe s Observations Kepler s Laws 1 Galileo c. 1564-1642 First telescopic astronomical observations 2 First use of telescope for astronomy in 1609 400 years ago! 3

### Today. The Copernican Revolution. Galileo. Planetary Motion. Tycho Brahe s Observations. Kepler s Laws

Today The Copernican Revolution Galileo Planetary Motion Tycho Brahe s Observations Kepler s Laws Galileo c. 1564-1640 First telescopic astronomical observations Galileo s observations of phases of Venus

### The Heliocentric Model of the Solar System

The Heliocentric Model of the Solar System Hypothesis: The Sun is the center of the solar system. Only Moon orbits around Earth; Planets orbit around Sun. Aristarchus of Samos was the first to propose

### Gravitation and Newton s Synthesis

Gravitation and Newton s Synthesis Vocabulary law of unviversal Kepler s laws of planetary perturbations casual laws gravitation motion casuality field graviational field inertial mass gravitational mass

Lecture 8: Radiation Spectrum The information contained in the light we receive is unaffected by distance The information remains intact so long as the light doesn t run into something along the way Since

### Lecture 5: Newton s Laws. Astronomy 111

Lecture 5: Newton s Laws Astronomy 111 Isaac Newton (1643-1727): English Discovered: three laws of motion, one law of universal gravitation. Newton s great book: Newton s laws are universal in scope,

### Chapter 13: Universal Gravitation

Chapter 13: Universal Gravitation I. The Falling Apple (13.1) A. Isaac Newton (1642-1727) 1. Formulated ideas based on earlier work by Galileo (concept of inertia) 2. Concept if object undergoes change

### Lenses and Telescopes

Notes for teachers on Module 3 Lenses and Telescopes Lenses are a basic optical component. However, understanding how they work is non-trivial! They have a wide variety of applications. One such use is

### Exercise: Estimating the Mass of Jupiter Difficulty: Medium

Exercise: Estimating the Mass of Jupiter Difficulty: Medium OBJECTIVE The July / August observing notes for 010 state that Jupiter rises at dusk. The great planet is now starting its grand showing for

### 1 Newton s Laws of Motion

Exam 1 Ast 4 - Chapter 2 - Newton s Laws Exam 1 is scheduled for the week of Feb 19th Bring Pencil Scantron 882-E (available in the Bookstore) A scientific calculator (you will not be allowed to use you

### Gravitation. Physics 1425 Lecture 11. Michael Fowler, UVa

Gravitation Physics 1425 Lecture 11 Michael Fowler, UVa The Inverse Square Law Newton s idea: the centripetal force keeping the Moon circling the Earth is the same gravitational force that pulls us to

### Kepler, Newton and Gravitation

Kepler, Newton and Gravitation Kepler, Newton and Gravity 1 Using the unit of distance 1 AU = Earth-Sun distance PLANETS COPERNICUS MODERN Mercury 0.38 0.387 Venus 0.72 0.723 Earth 1.00 1.00 Mars 1.52

### PHYS-1000 Chapter 3 Homework Solutions Due: September 9, 2012

1. In the Greek geocentric model, the retrograde motion of a planet occurs when A. Earth is about to pass the planet in its orbit around the Sun. B. the planet actually goes backward in its orbit around

### Physics 130 Astronomy Exam #1 July 19, 2004

Physics 130 Astronomy Exam #1 July 19, 2004 Name Multiple Choice: 1. A scientist observes a new phenomenon that disagrees with his explanation or hypothesis. Following the scientific methods, he should

### 6. What is the approximate angular diameter of the Sun in arcseconds? (d) 1860

ASTR 1020 Stellar and Galactic Astronomy Professor Caillault Fall 2009 Semester Exam 1 Multiple Choice Answers (Each multiple choice question is worth 1.5 points) 1. The number of degrees in a full circle

### Today. Laws of Motion Conservation Laws Gravity tides. What is the phase of the moon?

Today Laws of Motion Conservation Laws Gravity tides What is the phase of the moon? How is mass different from weight? Mass the amount of matter in an object Weight the force that acts upon an object You

### Astron 100 Sample Exam 1 1. Solar eclipses occur only at (A) New moon (B) 1 st quarter moon (C) Full moon (D) 3 rd quarter moon (E) The equinoxes 2.

Astron 100 Sample Exam 1 1. Solar eclipses occur only at (A) New moon (B) 1 st quarter moon (C) Full moon (D) 3 rd quarter moon (E) The equinoxes 2. If the Moon is at first quarter tonight in Amherst,

### Chapter 3 The Science of Astronomy

Chapter 3 The Science of Astronomy Days of the week were named for Sun, Moon, and visible planets. What did ancient civilizations achieve in astronomy? Daily timekeeping Tracking the seasons and calendar

### Astronomy 1140 Quiz 1 Review

Astronomy 1140 Quiz 1 Review Prof. Pradhan September 15, 2015 What is Science? 1. Explain the difference between astronomy and astrology. (a) Astrology: nonscience using zodiac sign to predict the future/personality

### Gravity: The Law of Attraction

Gravity: The Law of Attraction 2009, Copyright@2008 Lecture 1, Oct. 1 2009 Oct. 1, 2009 #1 Questions of the day: How are Force, acceleration, and mass related? Why is gravity the most important force for

### The Motions of Celestial Bodies, and Newton s Laws of Motion

The Motions of Celestial Bodies, and Newton s Laws of Motion Announcements The results of Quiz 1 are posted in OWL Looking ahead: Homework 1 is on-going, and is due on Thu, Sept. 29 th ; Homework 2 will

### Astronomy 114 Summary of Important Concepts #1 1

Astronomy 114 Summary of Important Concepts #1 1 1 Kepler s Third Law Kepler discovered that the size of a planet s orbit (the semi-major axis of the ellipse) is simply related to sidereal period of the

### DERIVING KEPLER S LAWS OF PLANETARY MOTION. By: Emily Davis

DERIVING KEPLER S LAWS OF PLANETARY MOTION By: Emily Davis WHO IS JOHANNES KEPLER? German mathematician, physicist, and astronomer Worked under Tycho Brahe Observation alone Founder of celestial mechanics

### 1 Kepler s Laws of Planetary Motion

1 Kepler s Laws of Planetary Motion 1.1 Introduction Johannes Kepler published three laws of planetary motion, the first two in 1609 and the third in 1619. The laws were made possible by planetary data

### 2. Orbits. FER-Zagreb, Satellite communication systems 2011/12

2. Orbits Topics Orbit types Kepler and Newton laws Coverage area Influence of Earth 1 Orbit types According to inclination angle Equatorial Polar Inclinational orbit According to shape Circular orbit

### ASTR 1010 Astronomy of the Solar System Professor Caillault Fall 2009 Semester Exam 1 Answers

ASTR 1010 Astronomy of the Solar System Professor Caillault Fall 2009 Semester Exam 1 Answers 1. The number of degrees in a full circle is (c) 360 2. An arcsecond is a measure of (d) angle. 3. How many

### Newton s laws of motion and gravity

Newton s laws of motion and gravity 1. Every body continues in a state of rest or uniform motion (constant velocity) in a straight line unless acted on by a force. (A deeper statement of this law is that

### Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves sp e e d = d ista

### Chapter 25.1: Models of our Solar System

Chapter 25.1: Models of our Solar System Objectives: Compare & Contrast geocentric and heliocentric models of the solar sytem. Describe the orbits of planets explain how gravity and inertia keep the planets

### Lecture 19 Big Bang Cosmology

The Nature of the Physical World Lecture 19 Big Bang Cosmology Arán García-Bellido 1 News Exam 2: you can do better! Presentations April 14: Great Physicist life, Controlled fusion April 19: Nuclear power,

### The Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Lecture

Chapter 4 Lecture The Cosmic Perspective Seventh Edition Making Sense of the Universe: Understanding Motion, Energy, and Gravity Making Sense of the Universe: Understanding Motion, Energy, and Gravity

### Making Sense of the Universe: Understanding Motion, Energy, and Gravity

Making Sense of the Universe: Understanding Motion, Energy, and Gravity 1. Newton s Laws 2. Conservation Laws Energy Angular momentum 3. Gravity Review from last time Ancient Greeks: Ptolemy; the geocentric

### Understanding the motion of the Universe. Motion, Force, and Gravity

Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.

### 4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion Our goals for learning:! How do we describe motion?! How is mass different from weight? How do we

### Summary: The Universe in 1650

Celestial Mechanics: The Why of Planetary Motions Attempts to Describe How Celestial Objects Move Aristotle, Hipparchus, and Ptolemy: The Ptolemaic System Aristarchus, Copernicus, and Kepler: The Copernican

### Tycho Brahe and Johannes Kepler

Tycho Brahe and Johannes Kepler The Music of the Spheres SC/NATS 1730, XIII 1 1546-1601 1601 Motivated by astronomy's predictive powers. Saw and reported the Nova of 1572. Considered poor observational

### AST 105 HW #2 Solution

AST 105 HW #2 Solution Week of August 31 th, 2015 Note: All Problems are from The Cosmic Perspective (6ed) Chapter 3 Review Problems 1. In what way is scientific thinking natural to all of us? How does

### ELEMENTS OF PHYSICS MOTION, FORCE, AND GRAVITY

1 Pre-Test Directions: This will help you discover what you know about the subject of motion before you begin this lesson. Answer the following true or false. 1. Aristotle believed that all objects fell

### Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

### Newton s Law of Universal Gravitation

Newton s Law of Universal Gravitation The greatest moments in science are when two phenomena that were considered completely separate suddenly are seen as just two different versions of the same thing.

### Jupiter Impact! Monday Sept. 10, 2012 at 11:35 UT Possible asteroid or comet Frame from a video recording made in Dallas, Texas by amateur astronomer

Jupiter Impact! Monday Sept. 10, 2012 at 11:35 UT Possible asteroid or comet Frame from a video recording made in Dallas, Texas by amateur astronomer George Hall Read story in Space weather web site:www.spaceweather.com

### Newton s Law of Gravity

Gravitational Potential Energy On Earth, depends on: object s mass (m) strength of gravity (g) distance object could potentially fall Gravitational Potential Energy In space, an object or gas cloud has

### Astronomy 210 Fall 2016: Quiz 2 Flashcard Questions 1

Astronomy 210 Fall 2016: Quiz 2 Flashcard Questions 1 1. The moon is in its phase during a lunar eclipse. solar (A) new. (B) first quarter. (C) full. (D) third quarter. (E) (Depends on the time of day.)

### Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

### Newton s Law of Universal Gravitation

12.1 Newton s Law of Universal Gravitation SECTION Explain Kepler s laws. Describe Newton s law of universal gravitation. Apply Newton s law of universal gravitation quantitatively. KEY TERMS OUTCOMES

### AE554 Applied Orbital Mechanics. Hafta 1 Egemen Đmre

AE554 Applied Orbital Mechanics Hafta 1 Egemen Đmre A bit of history the beginning Astronomy: Science of heavens. (Ancient Greeks). Astronomy existed several thousand years BC Perfect universe (like circles

### 7.2 Calculate force of gravity at a given distance given the force of gravity at another distance (making use of the inverse square relationship).

Chapter 7 Circular Motion and Gravitation 7.1 Calculate force of gravity using Newton s Law of Universal Gravitation. 5. What is the gravitational force between the Earth and the Sun? (Mass of Earth: 5.98

### Chapter 5. Determining Masses of Astronomical Objects

Chapter 5. Determining Masses of Astronomical Objects One of the most fundamental and important properties of an object is its mass. On Earth we can easily weigh objects, essentially measuring how much

### AST 101 Lecture 7. Newton s Laws and the Nature of Matter

AST 101 Lecture 7 Newton s Laws and the Nature of Matter The Nature of Matter Democritus (c. 470-380 BCE) posited that matter was composed of atoms Atoms: particles that can not be further subdivided 4

### Gravitation. Gravitation

1 Gravitation Newton s observations A constant center seeking force is required to keep an object moving along a circular path. You know that the moon orbits the earth and hence there should be a force

### Chapter 13. Newton s Theory of Gravity

Chapter 13. Newton s Theory of Gravity The beautiful rings of Saturn consist of countless centimeter-sized ice crystals, all orbiting the planet under the influence of gravity. Chapter Goal: To use Newton

### The orbit of Halley s Comet

The orbit of Halley s Comet Given this information Orbital period = 76 yrs Aphelion distance = 35.3 AU Observed comet in 1682 and predicted return 1758 Questions: How close does HC approach the Sun? What

### Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.

Chapter 5. Gravitation Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. 5.1 Newton s Law of Gravitation We have already studied the effects of gravity through the

### Lab 6: Kepler's Laws. Introduction. Section 1: First Law

Lab 6: Kepler's Laws Purpose: to learn that orbit shapes are ellipses, gravity and orbital velocity are related, and force of gravity and orbital period are related. Materials: 2 thumbtacks, 1 pencil,

### Chapter 13 - Gravity. David J. Starling Penn State Hazleton Fall Chapter 13 - Gravity. Objectives (Ch 13) Newton s Law of Gravitation

The moon is essentially gray, no color. It looks like plaster of Paris, like dirty beach sand with lots of footprints in it. -James A. Lovell (from the Apollo 13 mission) David J. Starling Penn State Hazleton

### Chapter 3 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. The Science of Astronomy Pearson Education, Inc.

Reading Quiz Clickers The Cosmic Perspective Seventh Edition The Science of Astronomy 3.1 The Ancient Roots of Science In what ways do all humans use scientific thinking? How is modern science rooted in

### Shenandoah Community School District Astronomy Grade - 11

Shenandoah Community School District Astronomy Grade - 11 11.1 (SCSD) Earth and Space Astronomy 11.1.1 (SCSD) Understand and explain the tools used by astronomers to study electromagnetic radiation to

The beautiful rings of Saturn consist of countless centimeter-sized ice crystals, all orbiting the planet under the influence of gravity. Chapter Goal: To use Newton s theory of gravity to understand the

### Understanding the motion of the Universe. Motion, Force, and Gravity

Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.

### A Brief History of Astronomical Imaging Systems

A Brief History of Astronomical Imaging Systems 1 Oldest Imaging Instruments circa 1000 CE 1600 CE Used to measure angles and positions Included No Optics Astrolabe Octant, Sextant Tycho Brahe s Mural

### Galileo and the physics of motion

Galileo and the physics of motion Studies of motion important : planetary orbits, cannonball accuracy, basic physics. Galileo among first to make careful observations Looked at velocity, acceleration,

### 13 Universal Gravitation. Everything pulls on everything else.

Everything pulls on everything else. Gravity was not discovered by Isaac Newton. What Newton discovered, prompted by a falling apple, was that gravity is a universal force that it is not unique to Earth,

### The Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following:

Unit 4 The Solar System Chapter 7 ~ The History of the Solar System o Section 1 ~ The Formation of the Solar System o Section 2 ~ Observing the Solar System Chapter 8 ~ The Parts the Solar System o Section

### 2-1. True of False: All planets undergo retrograde motion as seen from Earth.

Discovering the Essential Universe Chapter 2, quiz. 2-1. True of False: All planets undergo retrograde motion as seen from Earth. a.) True b.) False X 2-2. The occasional westward (left to right) motion

### What Are Stars? continued. What Are Stars? How are stars formed? Stars are powered by nuclear fusion reactions.

What Are Stars? How are stars formed? Stars are formed from clouds of dust and gas, or nebulas, and go through different stages as they age. star: a large celestial body that is composed of gas and emits

### Black Holes & The Theory of Relativity

Black Holes & The Theory of Relativity A.Einstein 1879-1955 Born in Ulm, Württemberg, Germany in 1879, Albert Einstein developed the special and general theories of relativity. In 1921, he won the Nobel

### QUESTION BANK UNIT-6 CHAPTER-8 GRAVITATION

QUESTION BANK UNIT-6 CHAPTER-8 GRAVITATION I. One mark Questions: 1. State Kepler s law of orbits. 2. State Kepler s law of areas. 3. State Kepler s law of periods. 4. Which physical quantity is conserved

### PHYS-1000 Final Exam Study Guide Fall 2012

This study guide is for the final exam of the course, covering chapters 1 through 5 and 7 through 13. You are responsible for all material in these chapters referenced from this guide as well as the corresponding

### i>clicker Questions A scientific law is something that has been proven to be true. A. True B. False C. Only in experimental sciences.

A scientific law is something that has been proven to be true. A. True B. False C. Only in experimental sciences. i>clicker Questions The fifth planet from the sun, the sixth planet and the seventh planet

### GRAVITY. You can t blame gravity for falling in love. Albert Einstein

You can t blame gravity for falling in love. Albert Einstein LITTLE PLANET If an asteroid was very small but supermassive, could you really live on it like the Little Prince? WHAT IS GRAVITY? Gravity is

### Class 2 Solar System Characteristics Formation Exosolar Planets

Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

### Chapter 13. Gravitation

Chapter 13 Gravitation 13.2 Newton s Law of Gravitation In vector notation: Here m 1 and m 2 are the masses of the particles, r is the distance between them, and G is the gravitational constant. G = 6.67

### 4. Discuss the information as a class (transparency key)

Teacher: Sherry Tipps-Holder Grade: 8 Subject: World History/ Lesson designed for inclusion in unit on Scientific Revolution Essential Question: What were the major contributions/innovations of the who

### Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007 Name: Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures this past week. Choose

### An Introduction to AST 111 Our Solar System and Others

An Introduction to AST 111 Our Solar System and Others What is Astronomy? 50 years ago, astronomy was the study of everything outside Earth s atmosphere: the planets, the Sun, stars, galaxies, the Universe,

### Spectroscopy, the Doppler Shift and Masses of Binary Stars.

Spectroscopy, the Doppler Shift and Masses of Binary Stars http://apod.nasa.gov/apod/astropix.html Doppler Shift At each point the emitter is at the center of a circular wavefront extending out from its

### The Milky Way Galaxy. Our Home Away From Home

The Milky Way Galaxy Our Home Away From Home Lecture 23-1 Galaxies Group of stars are called galaxies Our star, the Sun, belongs to a system called The Milky Way Galaxy The Milky Way can be seen as a band

### Newton, Einstein, and Gravity

Newton, Einstein, and Gravity I have not been able to discover the cause of those properties of gravity from phenomena, and I feign no hypotheses...and to us it is enough that gravity does really exist,

### Lecture 4: Announcements

1 Lecture 4: Announcements Homework: If you do not have access to M.A. then talk to me or send me an email ASAP! My office hours: Today 2:00-3:30 pm, starting at ISB 201 (my office), check if there is

### Motion and Gravity in Space

Motion and Gravity in Space Each planet spins on its axis. The spinning of a body, such a planet, on its axis is called rotation. The orbit is the path that a body follows as it travels around another

### Astronomy 10 Test #1 Practice Version

Given (a.k.a. `First ) Name(s): Family (a.k.a. `Last ) name: ON YOUR PARSCORE: `Bubble your name, your student I.D. number, and your multiple-choice answers. I will keep the Parscore forms. ON THIS TEST

### 1 The Nine Planets. What are the parts of our solar system? When were the planets discovered? How do astronomers measure large distances?

CHAPTER 4 1 The Nine Planets SECTION A Family of Planets BEFORE YOU READ After you read this section, you should be able to answer these questions: What are the parts of our solar system? When were the