Lesson 2: YOU RE PLANNING TO LAUNCH A ROCKET!

Size: px
Start display at page:

Download "Lesson 2: YOU RE PLANNING TO LAUNCH A ROCKET!"

Transcription

1 Key to Curriculum Formatting: Volunteer Directions Volunteer Notes Volunteer-led Classroom Experiments Lesson 2: YOU RE PLANNING TO LAUNCH A ROCKET! Begin the presentation by telling the class that this is Lesson 2: You re Planning to Launch a Rocket! If this is your second visit, reintroduce yourself and the program. Briefly review key concepts from the first lesson, You re Piloting a Plane! If this is your first visit, here is a suggested personal introduction: Hello, my name is, and I am a (position title) at Aerojet Rocketdyne. I will be visiting your class once over the next few months to speak to you about space exploration and space travel. We will learn about the basics of aerodynamics, rocket propulsion, and spaceflight to the space station, the moon, and future missions to Mars! Answer any questions left over from the previous visit. MATERIALS NEEDED DVD/Presentation Projector screen/tv Balloons Page 1 of 13

2 Matches/lighter Small strip of paper Rolling chair or something a student can easily sit on and be pushed Candle Plate or candle holder Paper (or plastic) bag or paper cup Handouts Index cards See lesson to assess total equipment needs. LESSON OUTLINE (NOTE: total time of video is about 1 minute) Introduction Lesson Concepts Vocabulary Balloon and Rocket Comparison Newton s Laws of Motion First Law Second Law Third Law Comparing and Contrasting Liquid and Solid Propellants Cooling What we use Rockets For Applying What We Have Learned Experiment INTRODUCTION Rocket launches have mesmerized audiences, often entire nations, for centuries. What kind of power does it take to propel spacecraft out of the atmosphere and into the vacuum of space? This unit introduces you to rocket propulsion systems. Newton s Laws will provide a basis for discussions of rocket engines, motors, propulsions, fuels, launch vehicles and future rocket engine concepts. LESSON CONCEPTS Newton s laws of motion Rocket propulsions systems Force and acceleration Page 2 of 13

3 VOCABULARY Acceleration: Change in an object s velocity Air breathing engines: An engine that requires air for operation Cryogenic fuels: Liquefied gas at very low temperature, such as liquid oxygen or hydrogen Hypergolic liquids: Ignite and burn on contact. No ignition system required Liquid rocket engines: An engine that utilizes liquid propellants Solid rocket motors: Rocket motors that burn solid propellant Monopropellant liquid rocket engine: A rocket engine that utilizes a catalyst bed to burn the liquid fuel Multi-stage rocket: A rocket consisting of two or more propulsion units (stages), stacked vertically to form the rocket structure, that fire in succession Payload: All the cargo, including scientific equipment, carried into space by a rocket powered vehicle Oxidizer: A substance that provides the "air" to burn rocket fuel; can be a liquid or a solid material Vector: A concept characterized by a magnitude and a direction BALLOON AND ROCKET COMPARISON Tell the class that today's session deals with rocket propulsion. Tell them you've brought some very simple rockets with you. Take a couple of balloons out of your supply bag, blow them up, and release them into the crowd. Explain to the class that the balloon is technically a rocket because the balloon contains all of the propellant, in this case compressed air, needed to propel the balloon (rocket). Introduce the following key rocket propulsion concept: Page 3 of 13

4 Rockets operate in the vacuum of space and must therefore carry not only the rocket engine fuel, but also the "air" (oxidizer) needed to burn the fuel in the rocket engine or motor. NEWTON'S LAWS OF MOTION Sir Isaac Newton had three laws of motion that apply also to rocket flight. Objects won t move unless there is some kind of push or pull (force). A push will make an object speed up until the push is no longer affecting it. The push of an object will have an equal force against it. First Law of Motion Objects won t move unless there is some kind of push or pull (force). An object at rest will stay at rest until an external force acts upon the object (a roller skate will remain motionless until an external force acts upon it) and a moving object will travel at a constant speed in a straight line until acted upon by an external force. (A moving roller skate will stop when it runs into the wall or when the friction of floor and air cause it to slow down and stop.) Rocket Launch Page 4 of 13

5 Like Newton s first law of motion, a rocket must be pushed to have movement. To exit our atmosphere and the gravitational pull of the Earth, it must be moving at 7 miles per second (about 25,000 miles per hour). Show students the video which is a launch from the Apollo mission. Second Law of Motion A push will make an object speed up until the push is no longer affecting it. The defining mathematical expression is F=ma where F is the force applied, m is the mass of the object, and a is the object s acceleration. F and a are vector quantities, which have both magnitude and direction. Third Law of Motion Every action produces an equal and opposite reaction. (The air escaping from the balloon pushes Page 5 of 13

6 the balloon in the opposite direction. Falling off a roller skate makes the skate go in one direction and the skater in another!) Newton s Laws Experiment Experiment Concepts Newton s Laws of Motion Experiment Materials A roller-skate, skate board or rolling chair Experiment Instructions 1. Introduce Isaac Newton's three laws of motion, developed more than 300 years ago (1687). Use the rolling item to illustrate st Law of Motion: Place the rolling item (skate board) in an open space and ask students if the item will move by itself. How about if we push it in a specific direction, what will happen? 3. 2 nd Law of Motion: Put more mass on the rolling item. Ask the students to predict the difference in this situation from the one before (aiming for it s harder to push ). If using a rolling chair, ask a student volunteer to push the chair without the extra mass, then to push it again at the same speed with the extra mass. This shows that you need more force to move a larger mass at the same speed. This means that rockets (for heavy things like space shuttles) need A LOT of force rd Law of Motion: Have two volunteer students come up. One sits in a rolling chair (or something that can move a little when pushed). Ask students to predict the force needed to push a student a certain way while sitting on a chair. Have the student who is standing up push the other student in the indicated direction. Then have the student in the chair push themselves in the indicated direction using the other student, but the standing student isn t allowed to push. Ask students to identify which way they had to push to accomplish this. This shows that forces acted on an object will create forces in the opposite direction. This was also shown with the balloon experiment. By pushing air downwards, the balloon was able to fly. Use the following information to explain to the students how Newton's laws relate to launching a rocket. Experiment Explanation First Law of Motion A rocket on a launch pad is an object at rest. The rocket engine thrust is the force that will accelerate it into the atmosphere and on into space. Second Law of Motion The thrust of the rocket engine(s) and or motors provides the force (F) needed to accelerate (a) the massive rocket (m) off the launch pad. F=ma. Page 6 of 13

7 Note: The thrust of the rocket engines must exceed the weight of the rocket or the rocket will not lift off the launch pad! Third Law of Motion When the rocket propellant ignites, gases are formed that rush out of the nozzles at the back of the rocket. The gases go in one direction and the rocket goes in the opposite direction (away from the earth.) In summary, an unbalanced force must be exerted for a rocket to lift off from a launch pad or for a craft in space to change speed or direction (first law). The amount of thrust (force) produced by a rocket engine will be determined by the mass of rocket fuel that is burned and how fast the gas escapes the rocket (second law). The reaction, or motion, of the rocket is equal to and in the opposite direction of the action, or thrust, from the engine (third law). Perform the following experiment to illustrate Newton's 3 rd law. Newton s Third Law Experiment Experiment Concepts Propellants Newton s third law of motion Experiment Materials 1 large, empty plastic bottle 1 cork (must fit snugly into the bottle opening) Vinegar Water Baking Soda 2X2 inch square of thin cloth or paper towel Experiment Instructions 1. Wrap baking soda in a napkin. 2. Insert the napkin in a bottle. 3. Add vinegar. 4. Cork loosely and shake mixture. 5. Lay bottle quickly on its side on several round pencils or wooden dowels. 6. Observe the reaction as the cork is popped out. BURNING BASICS Page 7 of 13

8 Fuels are burned to consume or produce energy. The storage and burning of fuels adds complexity to powering rockets. It takes oxygen, fuel and ignition to start and maintain a fire. Just like the balloon rocket, rockets used for planes and space shuttles use some kind of fuel (or propellent) to provide the force to move. Unlike the balloon rocket, the ones used for planes and space shuttles burn up their fuels. Burning Basics Experiment Experiment Concepts Propellants Newton s third law of motion Experiment Materials Small strip of paper Matches/lighter Experiment Instructions Burn a small strip of paper and ask the students what you need to have fire happen. The students will get the fuel (the paper), oxygen (or air) and they might get that you need a spark or certain amount of energy to start. The rocket carries fuel with it but how will the rocket have oxygen when in space? Students will get that they have to carry oxygen with it. COMPARING LIQUID AND SOLID PROPELLANTS The most common type of rocket propulsion systems are liquid or solid fueled. The following presentation video will help students see the difference between different types of rockets. Page 8 of 13

9 Show the images of the solid and liquid rockets and discuss advantages and disadvantages of each. Solid This rocket propulsion system uses a mixture of solid oxidizer and solid fuel. The fuel and oxidizer of the solid rocket motor feels like a hard rubber eraser and is usually dark in color. This mixture of fuel and oxidizer is called the solid propellant. There can be several other materials in the solid propellant besides the fuel and oxidizer (for example - binder, the material that holds the fuel and oxidizer together.) A high temperature flame is needed to start the solid propellant burning. It continues to burn until all the solid propellant is consumed you can't easily turn off a solid rocket motor once it starts! The solid propellant is often poured into a case as thick liquid which then hardens. The shape of this solid propellant (a grain) determines how the thrust will change while the propellant burns. Liquid The most common types of liquid propellants we use in liquid rocket engines are called 1. Hypergolic This is a word of Greek origin. It means two materials that ignite on contact without any external aid (like a spark). For the space shuttle, Aerojet Rocketdyne produced two kinds of engines that use hypergolic fuels. The Orbital Maneuvering Subsystem (OMS) engines help propel the shuttle into orbit, adjust the orbit as required, and slow the shuttle to allow for reentry and landing. The shuttle reaction control system engines are used for on orbit attitude control. 2. Cryogenic This is a word of Greek origin (kryos) meaning "cold." The three main engines of the space shuttle use liquid hydrogen (fuel) and liquid oxygen (oxidizer), both kept very cold so they will remain liquid. They are both "cryogenic" propellants. 3. Monopropellant. A monopropellant contains both fuel and oxidizer within the same molecule. When the Page 9 of 13

10 monopropellant flows over certain materials called catalysts, it decomposes. When it decomposes, hot gas is produced which flows out the rocket engine nozzle producing thrust. One of the biggest problems with liquid rockets is keeping them cool. For example, the Space Shuttle Main Engine (called SSME) burns liquid oxygen and liquid hydrogen. The temperature in the combustion chamber is about 6,000 F which is higher than the melting point of steel. The SSME contains a significant amount of steel. Why doesn't it melt when exposed to temperatures of 6000 degrees Fahrenheit? Let's do an experiment to show how many rocket engines are cooled so they don't melt. Now that we know something about liquid rocket engines and solid rocket motors, how do they compare? Talk with the students about the following properties of liquid rocket engines and solid rocket motors. Liquid propellant rocket engine facts: Liquid engines are more complicated than solid rocket motors. They contain many more parts. They contain many moving parts in their turbo pumps, valves, and gearboxes. They can start and stop multiple times during one flight. They have a higher specific impulse than solid propellant. This means that the propellant has a better gas mileage rating. Liquid engines can be throttled to increase or decrease thrust as required. Solid propellant rocket motor facts: Solid propellant rocket motors typically ignite once and burn until solid propellant is consumed in the reaction. Solid propellant rocket motors are simpler and cheaper to produce. No moving parts. Thrust profile can be tailored to meet mission requirements by varying grain cross section design. COOLING Page 10 of 13

11 When burning these fuels, solid or liquid, the tempurature gets really high. It gets so hot that the rocket shell (usually made of some type of steel) can start to melt. Talk briefly about the extreme temperatures present in a rocket engine and how we keep the rocket from melting. Then perform the following experiment. Regenerative Cooling Demonstration Experiment Concepts Rocket propulsion systems Experiment Materials Candle Matches Plate or candle holder Paper (or plastic) bag or paper cup Experiment Instructions 1. Light the candle. 2. Put 1.5 inches of water into the bottom of a bag or cup. 3. Put the bag or cup directly over the lit candle. 4. Watch what doesn t happen! Experiment Explanation This experiment illustrates (in principle) how many liquid rocket engines are kept from melting, as the temperatures inside many liquid rocket engines during combustion are much higher than the melting temperatures of many of the materials used to make the engine. One or both of the rocket engine propellants (fuel or oxidizer) flows through passages in the hottest parts of the rocket engine. The propellant absorbs the heat, keeping the rocket engine itself cool. The propellant is then burned in the combustion chamber. Because the propellant is hot from the regenerative (regen) cooling, it reacts more readily in the combustion chamber. Page 11 of 13

12 ROCKET POWER USES LET S REVIEW QUIZ THE TEACHER (Q & A) Hand out index cards to the class and ask them to write down one or two questions for you. Ask for a volunteer to collect the cards. Read some the questions aloud and answer them for the entire class. If you and your teacher have set a meeting for the next presentation, let students know what they will be exploring next session: Page 12 of 13

13 In the next session, You re Going to the Moon!, your class will learn about past, current and future moon missions, as well as what life would be like on the moon. Thank class. Page 13 of 13

How Rockets Work Newton s Laws of Motion

How Rockets Work Newton s Laws of Motion How Rockets Work Whether flying a small model rocket or launching a giant cargo rocket to Mars, the principles of how rockets work are exactly the same. Understanding and applying these principles means

More information

SPACE ENGINEERING-REBELLING ROCKETS

SPACE ENGINEERING-REBELLING ROCKETS SPACE ENGINEERING-REBELLING ROCKETS MAKING ROCKETS AND LAUNCHING COMPETITION Experiment Objective: Students will design and construct a small rocket and rocket fuel. They will then launch the rockets and

More information

Rocket Principles. Rockets: A Teacher's Guide with Activities in Science, Mathematics, and Technology EG-108 February Outside Air Pressure

Rocket Principles. Rockets: A Teacher's Guide with Activities in Science, Mathematics, and Technology EG-108 February Outside Air Pressure Rocket Principles Outside ir Pressure Inside ir Pressure ir Moves Balloon Moves rocket in its simplest form is a chamber enclosing a gas under pressure. small opening at one end of the chamber allows the

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion The Earth revolves around the sun in an elliptical orbit. The moon orbits the Earth in the same way. But what keeps the Earth and the moon in orbit? Why don t they just fly off

More information

Rocketry for Kids. Science Level 4. Newton s Laws

Rocketry for Kids. Science Level 4. Newton s Laws Rocketry for Kids Science Level 4 Newton s Laws Victorian Space Science Education Centre 400 Pascoe Vale Road Strathmore, Vic 3041 www.vssec.vic.edu.au Some material for this program has been derived from

More information

Handheld Water Bottle Rocket & Launcher

Handheld Water Bottle Rocket & Launcher Handheld Water Bottle Rocket & Launcher Category: Physics: Force and Motion Type: Make & Take Rough Parts List: Rocket Launcher: 1 3/8 One- hole rubber stopper 2 Valve stems, from an inner tube 4 Small

More information

Lesson 3: YOU RE GOING TO THE MOON!

Lesson 3: YOU RE GOING TO THE MOON! Key to Curriculum Formatting: Volunteer Directions Volunteer Notes Volunteer-led Classroom Experiments Lesson 3: YOU RE GOING TO THE MOON! Begin the presentation by telling the class that this is Lesson

More information

4 TH GRADE AIR AND AIR PRESSURE

4 TH GRADE AIR AND AIR PRESSURE 4 TH GRADE AIR AND AIR PRESSURE Summary: Students experiment with air by finding that it has mass and pressure. Warm air is less dense than cool air and this is tested using a balance. Students experiment

More information

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction Newton s Laws of Motion I. Law of Inertia II. F=ma III. Action-Reaction While most people know what Newton's laws say, many people do not know what they mean (or simply do not believe what they mean).

More information

Note: Thrust from the rocket s engines acts downward producing an upward reaction on the rocket

Note: Thrust from the rocket s engines acts downward producing an upward reaction on the rocket Water Rocket Physics Principles Forces and Motion Newton s First Law An object at rest remains at rest, and an object in motion remains in motion at constant speed and in a straight line unless acted on

More information

Newton's Laws of Motion in Motion

Newton's Laws of Motion in Motion Newton's Laws of Motion in Motion Objectives: Students will use simple techniques to demonstrate Newton's 1 st and 3 rd Laws of Motion. Students will demonstrate their understanding of thrust, drag, lift,

More information

Baking Soda & Vinegar Rocket

Baking Soda & Vinegar Rocket Baking Soda & Vinegar Rocket Category: Chemistry; Physics: Force & Motion Type: Make & Take Rough Parts List: 1 Plastic bottle 1 Cork 1 Paper towel Cardstock or thin cardboard Baking soda Vinegar Cardboard

More information

Rockets: Taking Off! Racing Balloon

Rockets: Taking Off! Racing Balloon Rockets: Taking Off! For every action there is an equal and opposite reaction. Rockets and Balloons What happens when you blow up a balloon then let it go? Does the balloon move through the air? Did you

More information

ME 239: Rocket Propulsion Introductory Remarks

ME 239: Rocket Propulsion Introductory Remarks ME 239: Rocket Propulsion Introductory Remarks 1 Propulsion Propulsion: The act of changing a body s motion from mechanisms providing force to that body Jet Propulsion: Reaction force imparted to device

More information

LESSON 17: Balloon Rockets ESTIMATED TIME Setup: 5 10 minutes Procedure: 5 10 minutes

LESSON 17: Balloon Rockets ESTIMATED TIME Setup: 5 10 minutes Procedure: 5 10 minutes LESSON 17: Balloon Rockets ESTIMATED TIME Setup: 5 10 minutes Procedure: 5 10 minutes DESCRIPTION Apply the concepts of pressure and Newton s laws of motion to build simple rockets. OBJECTIVE This lesson

More information

Gases & Volumes: CO2 & 02. Grade 7 Activity Plan

Gases & Volumes: CO2 & 02. Grade 7 Activity Plan Gases & Volumes: CO2 & 02 Grade 7 Activity Plan 1 Gases & Volumes Objectives: 1. To show that gases occupy volume by inflating a balloon with the carbon dioxide produced from the reaction between vinegar

More information

Bite 6: Newton s Third Law

Bite 6: Newton s Third Law Bite 6: Newton s Third Law Newton s three laws of motion predict the motion of virtually all objects on Earth and in space. You are about to know all of them. Newton s 1st law: an object at rest tends

More information

air aerodynamics & flight vocabulary

air aerodynamics & flight vocabulary TERM DEFINITION PICTURE OR CONNECTION Aerodynamics The science of moving through the air. Air Airfoil Air pressure Atmosphere An invisible mixture of gases, which make up earths atmosphere it consists

More information

Soda Straw Rockets. Prep. Before Class. Objectives. Concepts. Workshop #367 PHY. 1 Copyright 2003, A Schmahl Science Workshop All Rights Reserved

Soda Straw Rockets. Prep. Before Class. Objectives. Concepts. Workshop #367 PHY. 1 Copyright 2003, A Schmahl Science Workshop All Rights Reserved Workshop #187 PHY Workshop #367 PHY Prep. Before Class Get # of Straw Rocket kits needed for class, teacher demo box, and teacher prep box. Set up teacher table with activity materials, and extras. Set

More information

CONVECTION. cold water (red)

CONVECTION. cold water (red) CONVECTION Name(s) PART 1 Convection and Density The physical world around us is constantly changing. The activities in this section of the unit will introduce a new model (convection) which is very powerful

More information

E Physics: A. Newton s Three Laws of Motion Activity: Newton s Third Law of Motion

E Physics: A. Newton s Three Laws of Motion Activity: Newton s Third Law of Motion Science as Inquiry: As a result of their activities in grades 5 8, all students should develop Understanding about scientific inquiry. Abilities necessary to do scientific inquiry: identify questions,

More information

Section 3 Newton s Laws of Motion

Section 3 Newton s Laws of Motion Section 3 Newton s Laws of Motion Key Concept Newton s laws of motion describe the relationship between forces and the motion of an object. What You Will Learn Newton s first law of motion states that

More information

Physics 101. Chapter 5: Newton s Third Law

Physics 101. Chapter 5: Newton s Third Law Physics 101 Today Chapter 5: Newton s Third Law First, let s clarify notion of a force: Previously defined force as a push or pull. Better to think of force as an interaction between two objects. You can

More information

Elements of Physics Motion, Force, and Gravity Teacher s Guide

Elements of Physics Motion, Force, and Gravity Teacher s Guide Teacher s Guide Grade Level: 9 12 Curriculum Focus: Physical Science Lesson Duration: Three class periods Program Description Examine Isaac Newton's laws of motion, the four fundamental forces of the universe,

More information

Forces on a Model Rocket

Forces on a Model Rocket Forces on a Model Rocket This pamphlet was developed using information for the Glenn Learning Technologies Project. For more information, visit their web site at: http://www.grc.nasa.gov/www/k-12/aboutltp/educationaltechnologyapplications.html

More information

Review Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion

Review Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

More information

What s the MATTER with chemical reactions? Cori Brant

What s the MATTER with chemical reactions? Cori Brant What s the MATTER with chemical reactions? Cori Brant Synopsis of the Activity: This workshop is to demonstrate chemical and phase changes. The audience should learn that there is a difference between

More information

A Shuttle Flight LAUNCH!

A Shuttle Flight LAUNCH! The Space Shuttle 1 LAUNCH! The Space Shuttle is launched from the Kennedy Space Center at Cape Canaveral, Florida. A Shuttle flight takes months of careful preparation. Each launch is preceded by a countdown,

More information

Newton s Wagon Newton s Laws

Newton s Wagon Newton s Laws Newton s Wagon Newton s Laws What happens when you kick a soccer ball? The kick is the external force that Newton was talking about in his first law of motion. What happens to the ball after you kick it?

More information

Intro Physics (Each individual student will complete his or her own lab report) Bottle Rocket Lab

Intro Physics (Each individual student will complete his or her own lab report) Bottle Rocket Lab Intro Physics June 013 Name (Each individual student will complete his or her own lab report) Bottle Rocket Lab Group Members: Target Launch Date: Grade: Pre Launch questions (max 0 points) - Due date:

More information

Understanding the motion of the Universe. Motion, Force, and Gravity

Understanding the motion of the Universe. Motion, Force, and Gravity Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.

More information

Rocket Science SCIENCE TOPICS PROCESS SKILLS VOCABULARY

Rocket Science SCIENCE TOPICS PROCESS SKILLS VOCABULARY EXPERIMENT Rocket Science Visitors collect hydrogen and oxygen gas in a tube and squeeze the mixture of gases into a flame, resulting in a small explosion. OBJECTIVES: Visitors learn that energy is sometimes

More information

Combusting Candles. Category: Chemistry Type: Class Experiment (60 min) Materials List: Be careful! This activity involves working with open flames.

Combusting Candles. Category: Chemistry Type: Class Experiment (60 min) Materials List: Be careful! This activity involves working with open flames. Combusting Candles Category: Chemistry Type: Class Experiment (60 min) Materials List: 2 Tealight candles 1 Nail 1 Glass Jar with a flat top, e.g jam jar 1 Lighter or matches Video: (youtubelink) Be careful!

More information

Bottle Rockets. Vanderbilt Student Volunteers for Science. Fall 2008

Bottle Rockets. Vanderbilt Student Volunteers for Science. Fall 2008 Bottle Rockets Vanderbilt Student Volunteers for Science Fall 2008 I. Introduction: History of Rockets Explain to the students that rockets are more than two thousand years old. Give the students a BRIEF

More information

sciencemuseumoutreach Kitchen Science 1 Demonstrations to do at home

sciencemuseumoutreach Kitchen Science 1 Demonstrations to do at home sciencemuseumoutreach Kitchen Science 1 Demonstrations to do at home The Creative Canal Project (CCP) is part of the Science Museum s Outreach Department, which works with teachers, students, families

More information

Newton s Third Law of Motion

Newton s Third Law of Motion Newton s Third Law of Motion Summary of Newton s Laws So Far Newton s 1 st Law of Motion explains the Law of Inertia This law predicts the behavior of objects when all forces acting on them are balanced

More information

Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket.

Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket. Acceleration= Force OVER Mass Design Considerations for Water-Bottle Rockets The next few pages are provided to help in the design of your water-bottle rocket. Newton s First Law: Objects at rest will

More information

EARLY Elementary States of Matter

EARLY Elementary States of Matter EARLY Elementary States of Matter Preparation Grade Level: K-2 Group Size: 25-30 Time: 45 minutes Presenters: 3-5 Objectives: The lesson will enable students to: Define three states of matter. Describe

More information

Forces and Motion: Accelerate your Mass of Students

Forces and Motion: Accelerate your Mass of Students TEACHER GUIDE Forces and Motion: 60 Minute Physical Science Lesson Science- to- Go! Program Grades: 1-5 Forces and Motion: Accelerate your Mass of Students Description Make sure you have plenty of room

More information

Unit 3. Forces Part 1

Unit 3. Forces Part 1 Unit 3 Forces Part 1 1 Vocabulary: Force Acceleration Mass Net Force Balanced Forces Unbalanced Forces Friction Air resistance Gravity Weight Inertia Action Force Reaction Force Concepts: How does a force

More information

STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws

STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws Name: Teacher: Pd. Date: STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws TEK 8.6C: Investigate and describe applications of Newton's law of inertia, law of force and acceleration, and law of action-reaction

More information

Isaac Newton was a British scientist whose accomplishments included

Isaac Newton was a British scientist whose accomplishments included 80 Newton s Laws of Motion R EA D I N G Isaac Newton was a British scientist whose accomplishments included important discoveries about light, motion, and gravity. You may have heard the legend about how

More information

Background information Year 5, unit 1: Solids, liquids and gases

Background information Year 5, unit 1: Solids, liquids and gases Background information Year 5, unit 1: Solids, liquids and gases Matter The Earth and everything on it are made of matter. Matter is anything with mass and volume; it takes up space. There are three traditionally

More information

PROPULSION. Grade 6 Activity Plan

PROPULSION. Grade 6 Activity Plan PROPULSION Grade 6 Activity Plan 6.4 Propulsion Objectives: 1. Describe and demonstrate different means of propulsion. 2. Introduce students to Newton s third law. Keywords/concepts: Propulsion, pressure,

More information

Newton s Laws of Motion (Ch 5)

Newton s Laws of Motion (Ch 5) Newton s Laws of Motion (Ch 5) Force Isaac Newton 1642-1727 English physicist & mathematician By the age of 31, discovered: laws of motion universal gravitation calculus Eccentric read Coming of Age in

More information

The Laws of Newton. Overview. Time Required. Standards Addressed. Objectives. The Laws of Newton [ 1 ] Physical Science Space Science

The Laws of Newton. Overview. Time Required. Standards Addressed. Objectives. The Laws of Newton [ 1 ] Physical Science Space Science The Laws of Newton Overview In this three-part activity, students explore Newton s three Laws of Motion that govern all bodies in motion, from toy cars to spacecraft in orbit around Earth. Each part (experiment)

More information

Described by Isaac Newton

Described by Isaac Newton Described by Isaac Newton States observed relationships between motion and forces 3 statements cover aspects of motion for single objects and for objects interacting with another object An object at rest

More information

Forces on the Rocket. Rocket Dynamics. Equation of Motion: F = Ma

Forces on the Rocket. Rocket Dynamics. Equation of Motion: F = Ma Rocket Dynamics orces on the Rockets - Drag Rocket Stability Rocket Equation Specific Impulse Rocket otors Thrust orces on the Rocket Equation of otion: = a orces at through the Center of ass Center of

More information

Introduction to Rocket Propulsion

Introduction to Rocket Propulsion OpenStax-CNX module: m42166 1 Introduction to Rocket Propulsion OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract State Newton's

More information

Understanding the motion of the Universe. Motion, Force, and Gravity

Understanding the motion of the Universe. Motion, Force, and Gravity Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.

More information

Unification of the laws of the Earth and the Universe Why do planets appear to wander slowly across the sky?

Unification of the laws of the Earth and the Universe Why do planets appear to wander slowly across the sky? October 19, 2015 Unification of the laws of the Earth and the Universe Why do planets appear to wander slowly across the sky? Key Words Newton s Laws of motion, and Newton s law of universal gravitation:

More information

Chapter 3: Force and Motion

Chapter 3: Force and Motion Force and Motion Cause and Effect Chapter 3 Chapter 3: Force and Motion Homework: All questions on the Multiple- Choice and the odd-numbered questions on Exercises sections at the end of the chapter. In

More information

Civil Air Patrol s. Fizzy Rocket For Use As Enrichment After CAP Foam Rocket by AAS/SW Joint National Project: STEM Outreach

Civil Air Patrol s. Fizzy Rocket For Use As Enrichment After CAP Foam Rocket by AAS/SW Joint National Project: STEM Outreach Civil Air Patrol s Fizzy Rocket For Use As Enrichment After CAP Foam Rocket by AAS/SW Joint National Project: STEM Outreach Partners in Aerospace and STEM Education: Arnold Air Society Civil Air Patrol

More information

Weather Vane and Anemometer

Weather Vane and Anemometer Weather Vane and Anemometer Category: Physics, Force & Motion Type: Make & Take Rough Parts List: 12 Dowel, ¼ 1 Baseboard, 2x4 1 Wood block, - vane: 4 x ½ x ½ 1 Wood block, top: ½ x ½ x ¼ 4 Small plastic

More information

Rocket Science. Educational support materials for groups participating in this activity

Rocket Science. Educational support materials for groups participating in this activity Rocket Science Educational support materials for groups participating in this activity This pack contains information designed to support teachers whose classes are visiting the RAF Museum and participating

More information

First Grade Unit A: PHYSICAL SCIENCE Chapter 1: Observing Solids, Liquids and Gases Lessons 1 to 5

First Grade Unit A: PHYSICAL SCIENCE Chapter 1: Observing Solids, Liquids and Gases Lessons 1 to 5 First Grade Unit A: PHYSICAL SCIENCE Chapter 1: Observing Solids, Liquids and Gases Lessons 1 to 5 Physical Science Overview Materials (matter) come in different forms. Water can be rain falling (liquid)

More information

Activity: Newton s Third Law of Motion Action and Reaction

Activity: Newton s Third Law of Motion Action and Reaction Ascent to Orbit Activity: Newton s Third Law of Motion Action and Reaction Background Information for the Teacher: Adapted from www. nasa.gov, and http://suite101.com/article/newtons-laws-for-kids-overview-a41283.

More information

Teacher notes/ activities. Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth.

Teacher notes/ activities. Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth. Gravity and forces unit Teacher notes/ activities Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth. Galileo, a famous Italian scientist

More information

Category III Physical science examples

Category III Physical science examples Category III Physical science examples Providing variety of phenomena Chemistry That Applies A sufficient number and variety of phenomena are used to support each of the key ideas. For the idea that mass

More information

Vacuum Chamber Demonstration Script (GE Minimum Age 16)

Vacuum Chamber Demonstration Script (GE Minimum Age 16) Vacuum Chamber Demonstration Script (GE Minimum Age 16) Materials Equipment: Vacuum Pump Bell Jar Extension Cord Power Strip with on/off switch Plastic cup (to put marshmallows in) Safety Shield Things

More information

Newton s 3 rd Law Study Guide Chapter 7

Newton s 3 rd Law Study Guide Chapter 7 1. The Big Idea is for every force there is an equal and opposite force 2. If you lean over and push on a wall, why don t you fall over? The wall pushes back on you 3. When you paddle a kayak, your paddle

More information

Unsaved Test, Version: 1 1

Unsaved Test, Version: 1 1 Name: Select the term that best completes the statement. A. force B. net force C. unbalanced force D. Newton's first law E. motion F. inertia 1. is the change of position over time. Date: 2. The overall

More information

All chemical reactions can be placed into one of six categories:

All chemical reactions can be placed into one of six categories: Science 9 Unit B Matter and Chemical Change Topic 4.0 Substances undergo a chemical change when they interact to produce different substances. Chemical Reactions A chemical reaction takes place when two

More information

ROCKET ROUND THE CLOCK

ROCKET ROUND THE CLOCK ROCKET ROUND THE CLOCK Northrop Grumman Aerospace Systems TABLE OF CONTENTS Section Page Overview... 3 Supplies 4 Standards Matrix. 5 Science Content...... 6 Rocket Descriptions 9 Activity #1 Balloons

More information

Lesson 2: Force and Motion Part 2

Lesson 2: Force and Motion Part 2 Science Unit: Force and Motion Lesson 2: Force and Motion Part 2 School year: 2004/2005 Developed for: Developed by: Grade level: Duration of lesson: Note: Queen Alexandra Elementary School, Vancouver

More information

RADIANT ENERGY CHEMICAL ENERGY

RADIANT ENERGY CHEMICAL ENERGY Lesson 1 Overhead 1 of 7 FORMS OF ENERGY All forms of energy fall under two categories KINETIC Kinetic energy is energy in motion POTENTIAL Potential energy is stored energy RADIANT ENERGY Radiant energy

More information

Pressure. Pressure is one of those words we frequently use, perhaps knowing intuitively what it means. In science, we define pressure as follows:

Pressure. Pressure is one of those words we frequently use, perhaps knowing intuitively what it means. In science, we define pressure as follows: Weather reports in the media provide information on variables such as temperature, precipitation and wind speed. In this chapter, we discuss three physical quantities that help determine weather: (1) Temperature,

More information

FORCES AND MOTION THERE ARE DIFFERENT TYPES OF FORCES... NON-CONTACT FORCES

FORCES AND MOTION THERE ARE DIFFERENT TYPES OF FORCES... NON-CONTACT FORCES FORCES AND MOTION Forces are what make things move, like a push (kicking a football), or a pull (train) THERE ARE DIFFERENT TYPES OF FORCES... Some of the forces are more obvious than others and they can

More information

Climate Discovery Teacher s Guide

Climate Discovery Teacher s Guide Unit: Cycles Lesson: 1 Materials & Preparation Time: Preparation: 40 min Teaching: 40 min Discussion: 30 min Materials for Teacher Balloon filled with automobile exhaust (see Advanced Preparation) Beaker

More information

Newton's laws of motion

Newton's laws of motion Newton's laws of motion Forces Forces as vectors Resolving vectors Explaining motion - Aristotle vs Newton Newton s first law Newton s second law Weight Calculating acceleration Newton s third law Moving

More information

EGG ENGINEERING-SAVE THE EGG

EGG ENGINEERING-SAVE THE EGG EGG ENGINEERING-SAVE THE EGG MAKING AN EGG DROP PROTECTIVE DEVICE Experiment Objective: The aim of this project is to design a carrier that will prevent an egg from breaking when dropped from a certain

More information

The Laws of Newton. Overview. Venn Diagram Positioning. Time Required. Standards Addressed. Materials Required. The Laws of Newton [ 1 ]

The Laws of Newton. Overview. Venn Diagram Positioning. Time Required. Standards Addressed. Materials Required. The Laws of Newton [ 1 ] The Laws of Newton Overview Gravity is one of the fundamental concepts of Physics. It is an abstract concept which can t be explained without the help of activities. Students in the middle grades need

More information

Q: Who established the law of universal gravitation? A: Newton. Q: What is a spring scale used for? A: To measure weight

Q: Who established the law of universal gravitation? A: Newton. Q: What is a spring scale used for? A: To measure weight Q: Who established the law of universal gravitation? A: Newton Q: What is a spring scale used for? A: To measure weight Q: What is the Law of Universal Gravitation? A: Everything in the universe has gravity.

More information

Section Review Answers. Chapter 12

Section Review Answers. Chapter 12 Section Review Answers Chapter 12 Section 1 1. Answers may vary. Students should say in their own words that an object at rest remains at rest and an object in motion maintains its velocity unless it experiences

More information

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all

More information

Force & Motion. Force & Mass. Friction

Force & Motion. Force & Mass. Friction 1 2 3 4 Next Force & Motion The motion of an object can be changed by an unbalanced force. The way that the movement changes depends on the strength of the force pushing or pulling and the mass of the

More information

Science Standard Articulated by Grade Level Strand 5: Physical Science

Science Standard Articulated by Grade Level Strand 5: Physical Science Concept 1: Properties of Objects and Materials Classify objects and materials by their observable properties. Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 PO 1. Identify the following observable properties

More information

The University of Texas at Austin. Forces and Motion

The University of Texas at Austin. Forces and Motion UTeach Outreach The University of Texas at Austin Forces and Motion Time of Lesson: 50-60 minutes Content Standards Addressed in Lesson: 6.8B identify and describe the changes in position, direction and

More information

Newton s 3 rd Law Study Guide Chapter 7

Newton s 3 rd Law Study Guide Chapter 7 1. The Big Idea is 2. If you lean over and push on a wall, why don t you fall over? 3. When you paddle a kayak, your paddle pushes on the water. What makes the kayak move forward? Section 7.1 Forces and

More information

28.3 Mechanical Systems

28.3 Mechanical Systems Most mechanical systems such as automobiles, simple and complex machines, and power generators contain many moving parts that are in contact with each other. In addition, some of these mechanical systems

More information

Balloon Inside a Bottle

Balloon Inside a Bottle Balloon Inside a Bottle What is Needed * One small party balloon * One small bottle. A 16 ounce pop bottle works well. What to Do Put approximately 1 tablespoon of water into the empty pop bottle. Then

More information

Warm up. Forces. Sir Issac Newton. Questions to think about

Warm up. Forces. Sir Issac Newton. Questions to think about Warm up Have you ever tried to pull something that just wouldn t budge? Describe a situation in which you pulled or tried to pull something. What made the job easier? Forces Sir Issac Newton Newton said

More information

Experimenting With Forces

Experimenting With Forces Have you heard the story about Isaac Newton and the apple? Newton was a scientist who lived about 300 years ago. He made many important discoveries about how and why things move. The apple story goes like

More information

Solids, Liquids, and Gases

Solids, Liquids, and Gases Solids, Liquids, and Gases nd Intended for Grade: 2 Grade Subject: Science Description: Activities to help students understand solids, liquids, gases, and the changes between these states. Objective: The

More information

Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools Supported by: National Science Foundation

Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools Supported by: National Science Foundation Temperature: 6.D.3 Temperature and Heat Transfer Grade Level 6 Sessions Seasonality Instructional Mode(s) Team Size WPS Benchmarks MA Frameworks Key Words 1 Approximately 1.5 hours (10 minutes for cleanup)

More information

Candle Flame in Microgravity

Candle Flame in Microgravity Candle Flame in Microgravity Objective: To observe candle flame properties in freefall. Science Standards: Science as Inquiry Physical Science - position and motion of objects Unifying Concepts & Processes

More information

Aerodynamics Overview

Aerodynamics Overview Aerodynamics Overview Aerodynamics a branch of physics concerned with the study of air as it moves around objects. Answer question 1 on the worksheet. Many things we take for granted are the result of

More information

IV. Rocket Propulsion Systems. A. Overview

IV. Rocket Propulsion Systems. A. Overview IV. Rocket Propulsion Systems A. Overview by J. M. Seitzman for AE 4451 Jet and Rocket Propulsion Seitzman Rocket Overview-1 Rocket Definition Rocket Device that provides thrust to a vehicle by accelerating

More information

At the skate park on the ramp

At the skate park on the ramp At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

More information

Vocabulary: Chemical Reaction Force Thrust Variable. Materials: For Class: Tape Glue Sticks Paper Colored Pencils Scissors

Vocabulary: Chemical Reaction Force Thrust Variable. Materials: For Class: Tape Glue Sticks Paper Colored Pencils Scissors Alka-Seltzer Rockets Author: Cornell Center for Materials Research Date Created: February, 2014 Subject: Physics Level: 4 th grade to 8 th grade Standards: Next Generation Science Standards (nextgenscience.org)

More information

Here is a list of concepts that you will need to include in your observations and explanations:

Here is a list of concepts that you will need to include in your observations and explanations: NEWTON S LAWS Sir Isaac Newton (1642-1727) is probably one of the most remarkable men in the history of science. He graduated from Cambridge University in England at the age of 23. Records indicate that

More information

Chemical reactions, Acids and Bases, Liquids & Gases, Floating & sinking, Buoyancy, Density

Chemical reactions, Acids and Bases, Liquids & Gases, Floating & sinking, Buoyancy, Density Fizzy bubbly science Brief description Students observe the chemical reaction between vinegar (an acid) and sodium bicarbonate (a base). In small groups, they observe how bubbles of carbon dioxide gas

More information

Crosscutting Concepts: Cause and Effect, Energy and Matter, Structure and Function

Crosscutting Concepts: Cause and Effect, Energy and Matter, Structure and Function Lesson Title Lighter Than Air: Building a Hot Air Balloon Grade Level(s) 3 8 Timeline 3 4 Days Objectives Students will build a working model of a hot air balloon. Students will understand the concept

More information

Newton's First Law. Newton s Laws. Page 1 of 6

Newton's First Law. Newton s Laws. Page 1 of 6 Newton's First Law Newton s Laws In previous units, the variety of ways by which motion can be described (words, graphs, diagrams, numbers, etc.) was discussed. In this unit (Newton's Laws of Motion),

More information

The Ball: Aerodynamics Background Information

The Ball: Aerodynamics Background Information The Ball: Background Information When you hit the perfect shot and send the ball soaring, what makes it fly so far? The power of your swing plays an important part, but so does the design of the ball itself.

More information

Lesson 1: Force and Motion Part 1

Lesson 1: Force and Motion Part 1 Science Unit: Force and Motion Lesson 1: Force and Motion Part 1 School year: 2004/2005 Developed for: Developed by: Grade level: Duration of lesson: Note: Queen Alexandra Elementary School, Vancouver

More information

Why be science literate? (my perspec7ve)

Why be science literate? (my perspec7ve) Homework Why be science literate? (my perspec7ve) Different viewpoint h

More information

Today. Laws of Motion. Conservation Laws. Gravity

Today. Laws of Motion. Conservation Laws. Gravity Today Laws of Motion Conservation Laws Gravity Laws of Motion Motion notions: slow fast Speed: Rate at which object moves fast change in direction slow example: speed of 10 m/s Velocity: Speed and direction

More information

The Purpose and Function of Airplane Parts

The Purpose and Function of Airplane Parts The Purpose and Function of Airplane Parts Warm-Up Questions CPS Questions 1-2 Lesson Overview How the fuselage and wing shape correspond to an aircraft s mission The types, purpose, and function of airfoil

More information

LEADER GUIDE for MODULE ONE

LEADER GUIDE for MODULE ONE LEADER GUIDE for MODULE ONE INTRODUCTION TO FLIGHT Chapter One Flight Learning Outcomes--Upon completion of this chapter, the cadet should know: The relationship between Bernoulli s Principle, Newton s

More information