# Geometry. Unit 1. Transforming and Congruence. Suggested Time Frame 1 st Six Weeks 22 Days

Save this PDF as:

Size: px
Start display at page:

Download "Geometry. Unit 1. Transforming and Congruence. Suggested Time Frame 1 st Six Weeks 22 Days"

## Transcription

1 Geometry Unit 1 Transforming and Congruence Title Suggested Time Frame 1 st Six Weeks 22 Days Big Ideas/Enduring Understandings Module 1 Tools of geometry can be used to solve real-world problems. Variety of representations are used to describe geometric relationships. Module 2 Transformations can be used to model and solve real-world problems. Module 3 Congruency can be used to solve real-world problems. Transformations can be used individually or as a composition of transformations to represent real-world situations. Guiding Questions Module 1 How do you draw a segment and measure its length? How is measuring an angle similar or different than measuring a line segment? How can you describe transformations in the coordinate plane using algebraic representations and using words? How do you go about proving a statement? How are conditional statements related to each other? Module 2 How do you draw the image of a figure under a translation? How do you draw the image of a figure under a reflection? How do you draw the image of a figure under a rotation? How do you determine whether a figure has line symmetry or rotational symmetry? Module 3 What happens when you apply more than one transformation to a figure? How can you determine whether two figures are congruent? What can you conclude about two figures that are congruent? How can the concept of congruence be used to solve problems involving transformations of geometric figures?

2 Vertical Alignment Expectations TEA Vertical Alignment Chart Grades 5-8, Geometry Sample Assessment Question Coming Soon... The resources included here provide teaching examples and/or meaningful learning experiences to address the District Curriculum. In order to address the TEKS to the proper depth and complexity, teachers are encouraged to use resources to the degree that they are congruent with the TEKS and research-based best practices. Teaching using only the suggested resources does not guarantee student mastery of all standards. Teachers must use professional judgment to select among these and/or other resources to teach the district curriculum. Some resources are protected by copyright. A username and password is required to view the copyrighted material.

3 Ongoing TEKS Math Processing Skills G.1 Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: (A) apply mathematics to problems arising in everyday life, society, and the Focus is on application workplace; (B) use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution; (C) select tools, including real objects, manipulatives, paper and pencil, and Students should assess which tool to apply rather than trying only one or all technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems; (D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate; (E) create and use representations to organize, record, and communicate mathematical ideas; (F) analyze mathematical relationships to connect and communicate mathematical ideas; and (G) display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication Students should evaluate the effectiveness of representations to ensure they are communicating mathematical ideas clearly Students are expected to use appropriate mathematical vocabulary and phrasing when communicating ideas Students are expected to form conjectures based on patterns or sets of examples and non-examples Precise mathematical language is expected.

4 Knowledge and Skills with Student Expectations District Specificity/ Examples Vocabulary Suggested Resources Resources listed and categorized to indicate suggested uses. Any additional resources must be aligned with the TEKS. G.3 Coordinate and transformational geometry. The students uses the process skills to generate and describe rigid transformations (translation, reflection, and rotation) and nonrigid transformations (dilations that preserve similarity and reductions and enlargements that do not preserve similarity). The student is expected to: (A) The student is expected to describe and perform transformations of figures in a plane using coordinate notation G.3A Students will need to explain how the transformation is changing the x and y for each point on the figure. Students will need to do a transformation on the coordinate grid. NOTES Translation - orientation does not change, can be a composition of two reflections across parallel lines Rotation - can be a composition of reflections across center of dilation composition coordinate notation degree (or angle) of rotation dilation enlargement (scale factor >1) horizontal line of reflection image line of symmetry non-rigid transformation plane figure point (or center) of rotation point of rotation pre-image reduction (0< scale factor <1) reflection reflectional symmetry rigid transformation rotation rotational symmetry scale factor similarity transformation translations vertical line of HMH Geometry Unit 1 Region XI: Livebinder NCTM: Illuminations

5 intersecting lines reflection Teacher should address clockwise vs. counter clockwise rotation. Reflection - identify line of reflection Can be any line in coordinate plane, not just the x and y axis Dilation - center can be anywhere on plane Example Coordinate Notation: Translation (x, y ) (x +1, y - 4) Reflection (x, y) (-x, y); (x, y) (x, -y); etc. Rotation of 90 degrees around origin: (x, y) (y, -x); Rotation of 180 degrees around origin: (x, y) (-x, -y); Rotation of 270 degrees around origin: (x, y) (-y, x); Rotation of 360 degrees around origin: (x, y) (x, y) Dilation (x, y) (2x, 2y) (notations are applicable to clockwise rotations.) (B)The students is expected to determine the image or pre-image of a given two-dimensional figure under a composition of rigid transformations, a composition of non-rigid transformations, and a composition of both, including dilations where the center can be any point in the plane; G.3B Rigid transformations include rotation, reflection, and translation (size/shape does not change but orientation does) Non-rigid transformations would include dilation. Composition of Transformations: Combining two or more transformations. Be aware that the center of dilation can be in point on the coordinate plane.

6 Find the new image or the original image going through a series of transformation (rigid, non-rigid or a combination of both) Misconceptions: Remind students about the uses of the apostrophe for notation Dilation - center of dilation is NOT always the origin Example: center of dilation not (0,0) Determine a rule ((x,y) (?,?) that can be used to dilate a figure on the coordinate grid by a scale factor of ½ using (2,4) as the center of dilation. (( ½ (x - 2) + 2, ½ (y - 4) + 4) = ( ½ x + 1, ½y +2) Example:

7 (C)The student is expected to identify the sequence of transformations that will carry a given preimage onto an image on and off the coordinate plane G.3C* Students should be able to identify the process and the order of how the image was changed. Teachers need to show examples on the coordinate plane and off the plane. Off the plane could be on patty paper and real world examples. Off Coordinate Plane - Not limited to graphs How It Could Be Assessed: Given pre image & image - students must list the compositions applied Misconception: Students assume that performing the transformations in any order will result in same result

8 (D) The student is expected to identify and distinguish between reflectional and rotational symmetry in a plane figure. G.3D Note to Emphasize Reflectional - over a line Rotational - in respect to a point Note To Teacher: Use a variety of figures when you introduce the concept to students Horizontal Reflection Symmetry Vertical Reflection Symmetry Misconception: 180 degree rotation can also be a reflection, but many times it is not. This example is a rotation of 180 degrees but not a reflection across the line y = x. This can be misleading for students especially with isosceles triangles. Make sure to have students label their vertices.

9 G.4 Logical Argument and Constructions. The student uses the process skills with deductive reasoning to understand geometric relationships. (A) The student is expected to distinguish between undefined terms, definitions, postulates, conjectures, and theorems. G.4A Teachers need to just explain definitions to students. Undefined terms - term or word that doesn t require further explanation or description. It already exists in its most basic form. Euclidean Geo - Point, line, plane Definitions - classifies and gives critical attributes Postulates - A statement, also known as an axiom, which is taken to be true without proof Conjectures- statement believed to be true based on inductive reasoning (process of reasoning that a rule or statement is true based on pattern) Theorems - statement that has been proven on the basis of previously established statements, such as other theorems, and previously accepted statements, such as postulates. axiom (postulate) biconditional statement conditional statement conjecture contrapositive converse counterexample deductive reasoning definition false inverse postulate (axiom) theorem true true conditional statement true converse undefined term validity

10 (B) The student is expected to identify and determine the validity of the converse, inverse, and contrapositive of a conditional statement and recognize the connection between a biconditional statement and a true conditional statement with a true converse G.4B* Big Idea: Students need to determine the truth values for each statement, starting with the original conditional statements Conditional statement: If p then q, (p is the hypothesis and q is the conclusion.) Testing validity: A conditional statement is false only when the hypothesis, p, is true and the conclusion, q, is false. Converse: If q then p Inverse: If not p then not q Contrapositive: if not q, then not p Biconditional Statement: p if and only if (iff) q A biconditional statement exists only when the original statement and its converse are both true. Students Need to Know: In order to write a biconditional statement, then the conditional and converse must both be true. *Need to verify both are true in the truth table before you can write the biconditional statement Example: Given the following conditional statement: If an angle is 90 degrees then the angle is a right angle. This statement is true. If we take the converse which reads, If an angle is a right angle, then the angle is 90 degrees. Since the

11 converse is true as well, we can now write a biconditional statement which will read, An angle is 90 degrees iff the angle is a right angle. (C) The student is expected to verify that a conjecture is false using a counterexample. G.4C A conjecture is an if- then statement that is false when the hypothesis, p, is true and the conclusion, q, is false Examples: The statement If a figure is a triangle then all angles are congruent. is false because a counterexample would be a triangle. Notes: Teachers need to be aware that sometimes there will be multiple counterexamples, one counterexample, or no counterexamples. An extension of counterexample is determining if a statement is sometimes true, always true, or never true based on the number of counterexamples. Misconception: Counterexamples must satisfy the hypothesis of the conditional statement, or they cannot be considered as counterexamples. Example: Conditional: If an angle is acute, then it is less than 180 degrees. Some students will say a counterexample could be 120 degrees. However, this cannot be a counterexample because 120 degrees does not satisfy the hypothesis of the statement, and therefore, would not be considered.

12 G.5 Logical Argument and Constructions. The student uses constructions to validate conjectures about geometric figures. (B) The student is expected to identify and determine the validity of the converse, inverse, and contrapositive of a conditional statement and recognize the connection between a biconditional statement and a true conditional statement with a true converse G.5B Teachers should: Make formal geometric constructions with a variety of tools and methods Possible tools - compass, folding, patty paper, string, reflective mirrors, geo software Students should: Copy a segment Copy an angle Bisect an angle Construct perpendicular lines including perpendicular bisectors Construct parallel line Misconceptions: Assume one part is true (ex. 90 degrees) Examples: angle bisector bisect compass congruent congruent angles congruent segments constructions endpoint line line segment parallel perpendicular perpendicular bisector perpendicular lines point segment bisector straight edge

13 G.6 Proof and Congruence. The student uses the process skills with deductive reasoning to prove and apply theorems by utilizing a variety of methods such as coordinate, transformational, axiomatic and formats such G.6C Big Idea - identify congruent figures and identify their corresponding parts Rigid Transformation - when the size of the figure does NOT change (translation, rotation, reflection, NOT dilation) congruent figures corresponding angles corresponding sides

14 as two-column, paragraph, flow chart. (C) The students is expected to apply the definition of congruence, in terms of rigid transformations, to identify congruent figures and their corresponding sides and angles. Teachers should show: Explain what a rigid transformation is and how the size of the figure will not change Explain definition of congruence & corresponding parts Relate terminology of rigid transformations (reflection, translation, rotation) to congruent transformations CPCTC **Review how to find the length of a segment in the coordinate plane, slope of parallel/perpendicular lines Students should do: Look at two figures & identify corresponding parts Prove congruence based on congruent corresponding parts Misconceptions: Students should understand that figures can be congruent even when they are rotated or flipped. Congruence is true even if figures have different orientation. Examples: on next page

15

16

### Module 3 Congruency can be used to solve real-world problems. What happens when you apply more than one transformation to

Transforming and Congruence *CISD Safety Net Standards: G.3C, G.4C Title Big Ideas/Enduring Understandings Module 1 Tools of geometry can be used to solve real-world problems. Variety of representations

### A Correlation of Pearson Texas Geometry Digital, 2015

A Correlation of Pearson Texas Geometry Digital, 2015 To the Texas Essential Knowledge and Skills (TEKS) for Geometry, High School, and the Texas English Language Proficiency Standards (ELPS) Correlations

### Coordinate Coplanar Distance Formula Midpoint Formula

G.(2) Coordinate and transformational geometry. The student uses the process skills to understand the connections between algebra and geometry and uses the oneand two-dimensional coordinate systems to

### Suggested Time Frame Time Frame: 4 th Six Weeks Suggested Duration: 13 days. Vertical Alignment Expectations

Title Scatterplots and Data Analysis Big Ideas/Enduring Understandings The student will understand how patterns are used when comparing two quantities. Suggested Time Frame Time Frame: 4 th Six Weeks Suggested

### Numbers and Operations

Grade 7 MATH Unit Number 1 Numbers and Operations Title Big Ideas/Enduring Understandings Problems can be solved easier when using variety of equivalent forms. All numbers fall within the real number system.

### Grade 7 Pre-AP Math Unit 1. Numbers and Operations *CISD Safety Net Standards: 7.3B. Suggested Time Frame. 1 st Six Weeks 15 Days

Numbers and Operations *CISD Safety Net Standards: 7.3B 7.3B Title Big Ideas/Enduring Understandings Problems can be solved easier when using variety of equivalent forms. All numbers fall within the real

### Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.

Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)

### Chapter 1: Essentials of Geometry

Section Section Title 1.1 Identify Points, Lines, and Planes 1.2 Use Segments and Congruence 1.3 Use Midpoint and Distance Formulas Chapter 1: Essentials of Geometry Learning Targets I Can 1. Identify,

### Geometry Essential Curriculum

Geometry Essential Curriculum Unit I: Fundamental Concepts and Patterns in Geometry Goal: The student will demonstrate the ability to use the fundamental concepts of geometry including the definitions

### Geometry - Chapter 2 Review

Name: Class: Date: Geometry - Chapter 2 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Determine if the conjecture is valid by the Law of Syllogism.

### Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

### Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.

Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.

### conditional statement conclusion Vocabulary Flash Cards Chapter 2 (p. 66) Chapter 2 (p. 69) Chapter 2 (p. 66) Chapter 2 (p. 76)

biconditional statement conclusion Chapter 2 (p. 69) conditional statement conjecture Chapter 2 (p. 76) contrapositive converse Chapter 2 (p. 67) Chapter 2 (p. 67) counterexample deductive reasoning Chapter

### Pythagorean Theorem. Overview. Grade 8 Mathematics, Quarter 3, Unit 3.1. Number of instructional days: 15 (1 day = minutes) Essential questions

Grade 8 Mathematics, Quarter 3, Unit 3.1 Pythagorean Theorem Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Prove the Pythagorean Theorem. Given three side lengths,

### Geometry Performance Level Descriptors

Geometry Performance Level Descriptors Limited A student performing at the Limited Level demonstrates a minimal command of Ohio s Learning Standards for Geometry. A student at this level has an emerging

### Chapter 111. Texas Essential Knowledge and Skills for Mathematics. Subchapter C. High School

High School 111.C. Chapter 111. Texas Essential Knowledge and Skills for Mathematics Subchapter C. High School Statutory Authority: The provisions of this Subchapter C issued under the Texas Education

### Geometry Texas Mathematics: Unpacked Content

Geometry Texas Mathematics: Unpacked Content What is the purpose of this document? To increase student achievement by ensuring educators understand specifically what the new standards mean a student must

### Geometry Chapter 1 Vocabulary. coordinate - The real number that corresponds to a point on a line.

Chapter 1 Vocabulary coordinate - The real number that corresponds to a point on a line. point - Has no dimension. It is usually represented by a small dot. bisect - To divide into two congruent parts.

### Geometry Enduring Understandings Students will understand 1. that all circles are similar.

High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,

### Explaining Volume Formulas and Modeling Geometric Shapes

Geometry, Quarter 3, Unit 3.1 Explaining Volume Formulas and Modeling Geometric Shapes Overview Number of instructional days: 11 (1 day = 45 60 minutes) Content to be learned Give an informal argument

### GEOMETRY CONCEPT MAP. Suggested Sequence:

CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons

COURSE OVERVIEW The geometry course is centered on the beliefs that The ability to construct a valid argument is the basis of logical communication, in both mathematics and the real-world. There is a need

### Page : 17, 19, 21, 31, 33. Conditional/Biconditional/Inverse/Converse/Contrapositive Page 109-: odd, odd, 47, 48

Geometry UNIT 2 Reasoning and Proof Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 11 Inductive Reasoning and Conjecture Page 93-95: 15-25 odds, 31-34, 36, 38, 47a Logic Page 101-102: 17, 19,

### Mathematics Geometry Unit 1 (SAMPLE)

Review the Geometry sample year-long scope and sequence associated with this unit plan. Mathematics Possible time frame: Unit 1: Introduction to Geometric Concepts, Construction, and Proof 14 days This

### Geometry Unit 1. Basics of Geometry

Geometry Unit 1 Basics of Geometry Using inductive reasoning - Looking for patterns and making conjectures is part of a process called inductive reasoning Conjecture- an unproven statement that is based

### Prentice Hall Mathematics: Course Correlated to: Alaska State Content Standards: Math (Grade 7)

Alaska State Content Standards: Math (Grade 7) A. A student should understand mathematical facts, concepts, principles, and theories. 1. understand and use numeration, including numbers, number systems,

### Geometry: 2.1-2.3 Notes

Geometry: 2.1-2.3 Notes NAME 2.1 Be able to write all types of conditional statements. Date: Define Vocabulary: conditional statement if-then form hypothesis conclusion negation converse inverse contrapositive

### Wentzville School District Curriculum Development Template Stage 1 Desired Results

Wentzville School District Curriculum Development Template Stage 1 Desired Results Integrated Math 8 Unit Four Geometry Unit Title: Geometry Course: Integrated Math 8 Brief Summary of Unit: In this unit

Overview of Mathematics Task Arcs: Mathematics Task Arcs A task arc is a set of related lessons which consists of eight tasks and their associated lesson guides. The lessons are focused on a small number

### Unit 1: Similarity, Congruence, and Proofs

Unit 1: Similarity, Congruence, and Proofs This unit introduces the concepts of similarity and congruence. The definition of similarity is explored through dilation transformations. The concept of scale

### Common Core State Standard I Can Statements 8 th Grade Mathematics. The Number System (NS)

CCSS Key: The Number System (NS) Expressions & Equations (EE) Functions (F) Geometry (G) Statistics & Probability (SP) Common Core State Standard I Can Statements 8 th Grade Mathematics 8.NS.1. Understand

### Distance, Midpoint, and Pythagorean Theorem

Geometry, Quarter 1, Unit 1.1 Distance, Midpoint, and Pythagorean Theorem Overview Number of instructional days: 8 (1 day = 45 minutes) Content to be learned Find distance and midpoint. (2 days) Identify

### The Basics: Geometric Structure

Trinity University Digital Commons @ Trinity Understanding by Design: Complete Collection Understanding by Design Summer 6-2015 The Basics: Geometric Structure Danielle Kendrick Trinity University Follow

### A Different Look at Trapezoid Area Prerequisite Knowledge

Prerequisite Knowledge Conditional statement an if-then statement (If A, then B) Converse the two parts of the conditional statement are reversed (If B, then A) Parallel lines are lines in the same plane

### Problem of the Month The Shape of Things

Problem of the Month The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:

### Basic Understandings

Activity: TEKS: Exploring Transformations Basic understandings. (5) Tools for geometric thinking. Techniques for working with spatial figures and their properties are essential to understanding underlying

### 2.) 5000, 1000, 200, 40, 3.) 1, 12, 123, 1234, 4.) 1, 4, 9, 16, 25, Draw the next figure in the sequence. 5.)

Chapter 2 Geometry Notes 2.1/2.2 Patterns and Inductive Reasoning and Conditional Statements Inductive reasoning: looking at numbers and determining the next one Conjecture: sometimes thought of as an

### Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9

Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,

### Grade 7 Mathematics, Quarter 4, Unit 4.1. Probability. Overview

Grade 7 Mathematics, Quarter 4, Unit 4.1 Probability Overview Number of instructional days: 8 (1 day = 45 minutes) Content to be learned Understand how to use counting techniques to solve problems involving

### New York State Student Learning Objective: Regents Geometry

New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students

### Discovering Math: Exploring Geometry Teacher s Guide

Teacher s Guide Grade Level: 6 8 Curriculum Focus: Mathematics Lesson Duration: Three class periods Program Description Discovering Math: Exploring Geometry From methods of geometric construction and threedimensional

### 7. 6 Justifying Constructions

31 7. 6 Justifying Constructions A Solidify Understanding Task CC BY THOR https://flic.kr/p/9qkxv Compass and straightedge constructions can be justified using such tools as: the definitions and properties

### GEOMETRY. Constructions OBJECTIVE #: G.CO.12

GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic

### Geometry. Higher Mathematics Courses 69. Geometry

The fundamental purpose of the course is to formalize and extend students geometric experiences from the middle grades. This course includes standards from the conceptual categories of and Statistics and

### Unit 6 Grade 7 Geometry

Unit 6 Grade 7 Geometry Lesson Outline BIG PICTURE Students will: investigate geometric properties of triangles, quadrilaterals, and prisms; develop an understanding of similarity and congruence. Day Lesson

### For example, estimate the population of the United States as 3 times 10⁸ and the

CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number

### Vocabulary. Term Page Definition Clarifying Example. biconditional statement. conclusion. conditional statement. conjecture.

CHAPTER Vocabulary The table contains important vocabulary terms from Chapter. As you work through the chapter, fill in the page number, definition, and a clarifying example. biconditional statement conclusion

### Section 12.1 Translations and Rotations

Section 12.1 Translations and Rotations Any rigid motion that preserves length or distance is an isometry (meaning equal measure ). In this section, we will investigate two types of isometries: translations

### Week 1 Chapter 1: Fundamentals of Geometry. Week 2 Chapter 1: Fundamentals of Geometry. Week 3 Chapter 1: Fundamentals of Geometry Chapter 1 Test

Thinkwell s Homeschool Geometry Course Lesson Plan: 34 weeks Welcome to Thinkwell s Homeschool Geometry! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson plan

### Isometries of the Plane Teacher s Notes

Isometries of the Plane Teacher s Notes Henri Picciotto This unit is intended to be consistent with the Common Core State Standards for Mathematics (CCSSM), but it does go quite a bit further than is required

### Triangle Congruence and Similarity: A Common-Core-Compatible Approach

Triangle Congruence and Similarity: A Common-Core-Compatible Approach The Common Core State Standards for Mathematics (CCSSM) include a fundamental change in the geometry curriculum in grades 8 to 10:

### After your registration is complete and your proctor has been approved, you may take the Credit by Examination for GEOM 1B.

GEOM 1B Geometry I, Second Semester #PR-109, BK-1030 (v.3.0) To the Student: After your registration is complete and your proctor has been approved, you may take the Credit by Examination for GEOM 1B.

### Overview Mathematical Practices Congruence

Overview Mathematical Practices Congruence 1. Make sense of problems and persevere in Experiment with transformations in the plane. solving them. Understand congruence in terms of rigid motions. 2. Reason

### Alabama Course of Study Mathematics Geometry

A Correlation of Prentice Hall to the Alabama Course of Study Mathematics Prentice Hall, Correlated to the Alabama Course of Study Mathematics - GEOMETRY CONGRUENCE Experiment with transformations in the

### 2.1 Use Inductive Reasoning

2.1 Use Inductive Reasoning Obj.: Describe patterns and use inductive reasoning. Key Vocabulary Conjecture - A conjecture is an unproven statement that is based on observations. Inductive reasoning - You

### Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade

Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade Standards/Content Padrões / Conteúdo Learning Objectives Objetivos de Aprendizado Vocabulary Vocabulário Assessments Avaliações Resources

### Georgia Standards of Excellence Curriculum Map. Mathematics. GSE Geometry

Georgia Standards of Excellence Curriculum Map Mathematics GSE Geometry These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement. Georgia Department

### The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations

The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations Dynamic geometry technology should be used to maximize student learning in geometry. Such technology

### Name Geometry Exam Review #1: Constructions and Vocab

Name Geometry Exam Review #1: Constructions and Vocab Copy an angle: 1. Place your compass on A, make any arc. Label the intersections of the arc and the sides of the angle B and C. 2. Compass on A, make

### CK-12 Geometry: Perpendicular Bisectors in Triangles

CK-12 Geometry: Perpendicular Bisectors in Triangles Learning Objectives Understand points of concurrency. Apply the Perpendicular Bisector Theorem and its converse to triangles. Understand concurrency

### Prentice Hall Algebra 2 2011 Correlated to: Colorado P-12 Academic Standards for High School Mathematics, Adopted 12/2009

Content Area: Mathematics Grade Level Expectations: High School Standard: Number Sense, Properties, and Operations Understand the structure and properties of our number system. At their most basic level

### Middle Grades Mathematics 5 9

Middle Grades Mathematics 5 9 Section 25 1 Knowledge of mathematics through problem solving 1. Identify appropriate mathematical problems from real-world situations. 2. Apply problem-solving strategies

### GEOMETRY COMMON CORE STANDARDS

1st Nine Weeks Experiment with transformations in the plane G-CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point,

### Geometry Unit 1 Geometric Transformations Lesson Plan (10 days)

Geometry Unit 1 Geometric Transformations Lesson Plan (10 days) Stage 1 Desired Results Learning Goal: Students will be able to draw, describe, specify the sequence, develop definitions, and predict the

### Finding Parallelogram Vertices

About Illustrations: Illustrations of the Standards for Mathematical Practice (SMP) consist of several pieces, including a mathematics task, student dialogue, mathematical overview, teacher reflection

### Algebra II Unit Number 4

Title Polynomial Functions, Expressions, and Equations Big Ideas/Enduring Understandings Applying the processes of solving equations and simplifying expressions to problems with variables of varying degrees.

### Student Name: Teacher: Date: District: Miami-Dade County Public Schools. Assessment: 9_12 Mathematics Geometry Exam 1

Student Name: Teacher: Date: District: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Geometry Exam 1 Description: GEO Topic 1 Test: Tools of Geometry Form: 201 1. A student followed the

### A translation can be defined in terms of reflections:

Geometry Week 26 sec. 12.2 to 12.6 Translation: section 12.2 translation can be defined in terms of reflections: ' '' ' ' '' '' orientation reversed orientation reversed orientation preserved in double

### Geometry Math Standards and I Can Statements

Geometry Math Standards and I Can Statements Unit 1 Subsection A CC.9-12.G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions

### Performance Based Learning and Assessment Task Triangles in Parallelograms I. ASSESSSMENT TASK OVERVIEW & PURPOSE: In this task, students will

Performance Based Learning and Assessment Task Triangles in Parallelograms I. ASSESSSMENT TASK OVERVIEW & PURPOSE: In this task, students will discover and prove the relationship between the triangles

### Algebra I Common Core Standards

Algebra I Common Core Standards Algebra 1 Overview Number and Quantity The Real Number System Extend the properties of exponents to rational exponents. Use properties of rational and irrational numbers.

### CHAPTER 10 GEOMETRY: ANGLES, TRIANGLES, AND DISTANCE (3 WEEKS)...

Table of Contents CHAPTER 10 GEOMETRY: ANGLES, TRIANGLES, AND DISTANCE (3 WEEKS)... 10.0 ANCHOR PROBLEM: REASONING WITH ANGLES OF A TRIANGLE AND RECTANGLES... 6 10.1 ANGLES AND TRIANGLES... 7 10.1a Class

### Statements Goals Identify and evaluate conditional statements. Identify converses and biconditionals. Drafting, Sports, Geography

3-6 Conditional Statements Goals Identify and evaluate conditional statements. Identify converses and biconditionals. Applications Drafting, Sports, Geography Do you think each statement is true or false?

### Mathematics Georgia Performance Standards

Mathematics Georgia Performance Standards K-12 Mathematics Introduction The Georgia Mathematics Curriculum focuses on actively engaging the students in the development of mathematical understanding by

### Unit 8 Grade 7 Similarity, Congruency, and Transformations

Unit 8 Grade 7 Similarity, Congruency, and Transformations Lesson Outline BIG PICTURE Students will: understand location using four quadrants of the coordinate axis; investigate and apply transformations

### Polygons and Area. Overview. Grade 6 Mathematics, Quarter 4, Unit 4.1. Number of instructional days: 12 (1 day = minutes)

Grade 6 Mathematics, Quarter 4, Unit 4.1 Polygons and Area Overview Number of instructional days: 12 (1 day = 45 60 minutes) Content to be learned Calculate the area of polygons by composing into rectangles

### Math, Grades 3-5 TEKS and TAKS Alignment

111.15. Mathematics, Grade 3. 111.16. Mathematics, Grade 4. 111.17. Mathematics, Grade 5. (a) Introduction. (1) Within a well-balanced mathematics curriculum, the primary focal points are multiplying and

### Gary School Community Corporation Mathematics Department Unit Document. Unit Number: 8 Grade: 2

Gary School Community Corporation Mathematics Department Unit Document Unit Number: 8 Grade: 2 Unit Name: YOU SEE IT!!! (2D & 3D Shapes) Duration of Unit: 18 days UNIT FOCUS Students describe and analyze

### 8 th grade mathematics Team: T. Kisker, S. Miller, B. Ricks, B. Byland April 2012

Compare and order all rational numbers including percents and find their approximate location on a number line. N.1.A.8 Number and Operations -Order positive rational numbers on a number line 1, 2, 5,

### Wallingford Public Schools - HIGH SCHOOL COURSE OUTLINE

Wallingford Public Schools - HIGH SCHOOL COURSE OUTLINE Course Title: Geometry Course Number: A 1223, G1224 Department: Mathematics Grade(s): 10-11 Level(s): Academic and General Objectives that have an

### Overall Frequency Distribution by Total Score

Overall Frequency Distribution by Total Score Grade 8 Mean=17.23; S.D.=8.73 500 400 Frequency 300 200 100 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

### Trainer/Instructor Notes: Transformations Terms and Definitions Geometry Module 1-2

Terms and Definitions A line is a straight, continuous arrangement of infinitely many points. It is infinitely long and extends in two directions but has no width or thickness. It is represented and named

### Lesson 2: Circles, Chords, Diameters, and Their Relationships

Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct

### In the examples above, you used a process called inductive reasoning to continue the pattern. Inductive reasoning is.

Lesson 7 Inductive ing 1. I CAN understand what inductive reasoning is and its importance in geometry 3. I CAN show that a conditional statement is false by finding a counterexample Can you find the next

### Georgia Standards of Excellence Mathematics

Georgia Standards of Excellence Mathematics Standards GSE Geometry K-12 Mathematics Introduction Georgia Mathematics focuses on actively engaging the student in the development of mathematical understanding

### HIGH SCHOOL GEOMETRY: COMPANY LOGO

HIGH SCHOOL GEOMETRY: COMPANY LOGO UNIT OVERVIEW This 3-4 week unit uses an investigation of rigid motions and geometric theorems to teach students how to verify congruence of plane figures and use the

### K-12 Mathematics Framework

DRAFT IN PROCESS San Diego City Schools Institute for Learning MATHEMATICS DEPARTMENT K-12 Mathematics Framework Introduction Mathematics Content Mathematics Processes Note: The content in this document

### MATHEMATICS Grade 6 Standard: Number, Number Sense and Operations

Standard: Number, Number Sense and Operations Number and Number C. Develop meaning for percents including percents greater than 1. Describe what it means to find a specific percent of a number, Systems

### Students will understand 1. use numerical bases and the laws of exponents

Grade 8 Expressions and Equations Essential Questions: 1. How do you use patterns to understand mathematics and model situations? 2. What is algebra? 3. How are the horizontal and vertical axes related?

### 14 add 3 to preceding number 35 add 2, then 4, then 6,...

Geometry Definitions, Postulates, and Theorems hapter 2: Reasoning and Proof Section 2.1: Use Inductive Reasoning Standards: 1.0 Students demonstrate understanding by identifying and giving examples of

### Course Title: Math Grade Level: Fourth

Course Title: Math Grade Level: Fourth Math - Fourth Page 1 2.1 Numbers, Number Systems and Number Relationships: A. Use expanded notation to represent whole numbers or decimals. B. Apply number theory

### CARMEL CLAY SCHOOLS MATHEMATICS CURRICULUM

GRADE 4 Standard 1 Number Sense Students understand the place value of whole numbers and decimals to two decimal places and how whole numbers 1 and decimals relate to simple fractions. 4.1.1 Read and write

### Number Sense and Operations

Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents

### Support Materials for Core Content for Assessment. Mathematics

Support Materials for Core Content for Assessment Version 4.1 Mathematics August 2007 Kentucky Department of Education Introduction to Depth of Knowledge (DOK) - Based on Norman Webb s Model (Karin Hess,

### Lesson 13: Proofs in Geometry

211 Lesson 13: Proofs in Geometry Beginning with this lesson and continuing for the next few lessons, we will explore the role of proofs and counterexamples in geometry. To begin, recall the Pythagorean

### GRADE 8 SKILL VOCABULARY MATHEMATICAL PRACTICES Define rational number. 8.NS.1

Common Core Math Curriculum Grade 8 ESSENTIAL DOMAINS AND QUESTIONS CLUSTERS How do you convert a rational number into a decimal? How do you use a number line to compare the size of two irrational numbers?

### FCAT Math Vocabulary

FCAT Math Vocabulary The terms defined in this glossary pertain to the Sunshine State Standards in mathematics for grades 3 5 and the content assessed on FCAT in mathematics. acute angle an angle that

### Year 8 - Maths Autumn Term

Year 8 - Maths Autumn Term Whole Numbers and Decimals Order, add and subtract negative numbers. Recognise and use multiples and factors. Use divisibility tests. Recognise prime numbers. Find square numbers