SECTION A MANDATORY EXPERIMENTS...1

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "SECTION A MANDATORY EXPERIMENTS...1"

Transcription

1 CONTENTS Introduction...iv How to revise most effectively...iv How to be prepared on the day of the exam...v Time yourself as follows...v Things not to do...vi The layout of the exam paper...vi How the questions are marked...vi s...vi SECTION A MANDATORY EXPERIMENTS.... Mechanics Experiments: Exam paper question.... Light and Sound Experiments: Exam paper questions / Heat Experiments: Exam paper questions / Electrical Experiments: Exam paper question... SECTION B THEORY...9. Mechanics Light and Sound Heat Electricity Static, Electric Fields and Capacitance Simple Electric Circuits Effects of Electric Current...7. The Force on a Current-carrying Conductor in a Magnetic Field Electromagnetic Induction Semiconductors...9. Electrons, Photoelectric Effect and X-rays Radioactivity and Nuclear Energy Option Particle Physics Option Applied Electricity...38

2 LSMS_87007_ch0 /0/ : PM Page Mechanics Experiments Exam paper question To learn: How to describe the mandatory mechanics experiments in points How to gain maximum marks from the short FAQs that appear towards the end of many mechanics questions in Section A How to decide what to graph against what There are no extra marks for heavy, overwritten descriptions of an experiment. There is no need to list the equipment. This will be clear from the labelled diagram. Pay attention to the FAQs, as many marks are lost here. Be aware of the importance of percentage error. If you are measuring something 0 cm long and you make an error of cm, the percentage error is 0%, but if you are measuring something 00 cm long the percentage error would be only %. If a question involves a formula, ignore the constants and you will see what to graph. For example, the following experiment involves the formula πl g, so eliminate π and graph l (Y axis) T against T (X axis). Aim: To investigate the relationship between period and length for a simple pendulum (and hence to calculate g). Attach the pendulum bob to one end of a light thread and clamp the other end of the thread between two pieces of cork.. Set the pendulum swinging through a small angle and take the time for 0 oscillations.

3 MECHANICS EXPERIMENTS 3 3. Find the periodic time T for one oscillation.. Carefully measure l, the distance from the cork to the centre of the pendulum bob.. Repeat for different values of l. 6. Plot a graph of l against T. A straight line through the origin implies that l T. The slope of this graph gives the value of l. 7. g can now be calculated from the formula g FAQs Why is a light thread used? So that practically all the mass is concentrated in the bob. Why must the angle be kept small? The pendulum formula is only valid for small angles. Why is the time for one oscillation not measured directly? It might be too small to register on the timer and there could be a large percentage error. Why could the number of oscillations be reduced if the length of the pendulum were increased? Because the time for each oscillation would be increased so the overall time would be about the same. How would you ensure that the length of the pendulum remained constant? Use inextensible string. Aim: To measure g by free fall T π l T. With the switch K in position, the ball bearing is attached to the electromagnet with a small piece of paper between them.. When the switch is thrown to position, the ball bearing is released and the timer T starts. 3. When the ball bearing hits the trapdoor, the timer stops. The time for the free fall is now known.. Repeat a number of times and take the minimum time, t.. Measure s carefully. s ut at. In this case u 0 so that s gt s g. t g can now be calculated. electromagnet paper ball bearing timer s trapdoor T K Note: s should be at least m.

4 LESS STRESS MORE SUCCESS FAQs In an experiment to measure g by free fall, give two precautions that should be taken to ensure a more accurate result. Measure from the bottom of the ball bearing. Use large values of s (smaller percentage error). Set the trapdoor as sensitively as possible. Take the shortest time not the average time. What is the piece of paper for? To make sure that the ball bearing does not become magnetised. Give two ways of minimising the effect of air resistance in the experiment. Make sure the object is small, spherical, dense, smooth and that there are no draughts. Using a tickertape timer A tickertape timer puts a dot on a tape every 0.0 of a second. If the tape is moving with uniform velocity, the dots are equally spaced. However, if the tape is accelerating, the distance between the dots is increasing. In this case the acceleration can be calculated as follows.. Measure s, the distance over two spaces at the start of the tape. (Taking two spaces also reduces percentage error.) Now calculate u as above.. Measure s, the distance over two spaces towards the end of the tape. 3. Calculate v as above. The time t is the time taken to go from A to B. a (v u) t Aim: To show that acceleration is proportional to force. Set up the apparatus as shown in the diagram.. Raise one end of the plank until, with a slight push, the trolley moves with constant speed. 3. Place a weight in the pan and let the trolley accelerate down the slope. Note the force F and calculate the acceleration from the tickertape. A s s u = s 0.0 ticker tape ticker tape timer trolley B v = s 0.0

5 0 LESS STRESS MORE SUCCESS Aim: To find the specific latent heat of vaporisation of water wet steam. Weigh the calorimeter. Weigh the calorimeter and water. Take water trap the temperature of the water.. Set up the apparatus as shown in the diagram. dry steam 3. Allow steam to pass into the water in the calorimeter until lagging the temperature has risen by about 0 C to C.. Finally, re-weigh the calorimeter and contents to find the mass of steam condensed.. The latent heat of vaporisation of water can be calculated from the equation: Heat lost by steam heat lost by resulting water heat gained by calorimeter heat gained by water FAQs In an experiment to measure the specific latent heat of vaporisation of water: (a) Why was dry steam used? To make sure that only dry steam, and not condensed steam (water), is added to the calorimeter. (b) How was the steam dried? By using a water trap to trap the condensed steam. It also helps to insulate the delivery tube and have it sloping backwards towards the steam generator. thermometer copper calorimeter Remember, most people believe that if you are familiar with one method of doing an experiment that is sufficient. This is generally true but not always! For example, most people would use the electrical method given above to find the specific heat capacity of water but take a look at Question, 007 Higher Level where it is found by adding hot copper to water in a copper calorimeter. (c) Why is the rise in temperature often the least accurate value? Standard thermometers only read to. (d) Give two ways of improving the accuracy of this value. Use a thermometer that reads to 0. degrees. Reduce percentage error by using more steam and less water. Increase insulation.

6 HEAT EXPERIMENTS (e) Why would a thermometer with low heat capacity increase accuracy? It would absorb less heat from the water in the calorimeter. ( f ) Why should the calorimeter be polished? To reduce heat loss by radiation. (g) How would you find the mass of the steam added? Subtract mass of calorimeter plus water from the final mass of calorimeter plus water plus condensed steam. Exam questions Q : The specific heat capacity of water was found by adding hot copper to water in a copper calorimeter. (a) Describe how the copper was heated and how its temperature was measured. A: The copper was heated as shown in the diagram and the temperature was read from the thermometer. (b) Give two precautions which were taken to minimise heat loss to the surroundings. A: Polish the calorimeter, insulate the calorimeter, transfer the copper quickly, use a low heat capacity thermometer. Q : In an experiment to find the specific latent heat of fusion of ice the following readings were obtained. mass of copper calorimeter 0 g mass of calorimeter water g initial temperature of water C final temperature C mass of calorimeter water melted ice 70 g Find the specific latent heat of fusion of ice. A: Specific heat capacity of water,00 J kg K Specific heat capacity of copper 00 J Kg K Heat gained by ice in melting Heat to raise resulting water by C 0.0l 00 7, l 8,380 7,8 7,8 l 3,00 J 3. kj kg g of copper turnings Heat lost by calorimeter thermometer loose cotton wool Heat lost by warm water 0.0 l (0.0,00 ) ( ) (0.09,00 0)

7 LSMS_87007_ch0_LSMS_87007_ch0.qxd /0/ :0 PM Page Electrical Experiments Exam paper question To learn: How to describe mandatory electrical experiments in points How to answer FAQs on the above How to get maximum marks from graphs Aim: To investigate how the current flowing through various conductors varies with potential difference applied. Set up the apparatus as shown in the diagram.. Set the variable resistor to give a small potential difference (voltage). Note the voltage and the current. 3. Adjust the variable resistor to give a slightly larger voltage. Note voltage and current again.. Repeat or more times.. Draw a graph of voltage (Y axis) against current (X axis). switch I (ma) variable resistor A ammeter tungsten filament bulb 6 V, 0.3 A resistor 00 V voltmeter 0 I (A) I (A) V (V) copper sulphate with copper electrodes Ohmic conductor V (V) V (V)

8 ELECTRICAL EXPERIMENTS 3 I (ma) silicon diode IN V (V) At constant temperature the current flowing through a metallic conductor is directly proportional to the potential difference across it. This is Ohm s law. Not all conductors are Ohmic (obey Ohm s law). FAQs On a graph showing the relationship between current and voltage for a metal at constant temperature, how would the graph change if the temperature was increasing? At constant temperature the graph would be linear (Ohm s law) but as the temperature increased the resistance would increase I and the slope of the graph would decrease to give a curved graph. In the case of a similar experiment using a filament bulb, why would the resistance of the bulb change during the experiment? As the current increases, the temperature of the filament increases making it more difficult for electrons to pass through. How would the graph for an ionic solution be altered if the concentration of the solution was reduced? Reducing the concentration would mean fewer ions, fewer charge carriers, greater resistance leading to a reduction in the slope of the graph. In an experiment to investigate the variation of current with I potential difference for a copper sulphate solution, draw a sketch of the graph that would be obtained if inactive electrodes were used. In an experiment to investigate the variation of current with potential difference for a semiconductor diode, if the student changed the diode to reverse bias what changes should be made to the original circuit? Replace the milliammeter with a microammeter and make sure the voltmeter is in parallel with a series combination of the diode and microammeter. V V

PHYSICS EXPERIMENTS (HEAT)

PHYSICS EXPERIMENTS (HEAT) PHYSICS EXPERIMENTS (HEAT) In the matter of physics, the first lessons should contain nothing but what is experimental and interesting to see. A pretty experiment is in itself often more valuable than

More information

Science AS90191 Describe Aspects of Physics.

Science AS90191 Describe Aspects of Physics. Circuits and components Science AS90191 Describe Aspects of Physics. An electric current is the movement of electrons (negatively charged particles). A circuit is made up of components connected together

More information

Electric Currents. Electric Potential Energy 11/23/16. Topic 5.1 Electric potential difference, current and resistance

Electric Currents. Electric Potential Energy 11/23/16. Topic 5.1 Electric potential difference, current and resistance Electric Currents Topic 5.1 Electric potential difference, current and resistance Electric Potential Energy l If you want to move a charge closer to a charged sphere you have to push against the repulsive

More information

state and explain how the internal energy and the absolute (kelvin) temperature are related....

state and explain how the internal energy and the absolute (kelvin) temperature are related.... 6 N08/4/PHYSI/SP2/ENG/TZ0/XX+ A2. This question is about ideal gases. (a) State what is meant by an ideal gas....... For an ideal gas define internal energy. state and explain how the internal energy and

More information

Level 2 Physics: Demonstrate understanding of electricity and electromagnetism

Level 2 Physics: Demonstrate understanding of electricity and electromagnetism Level 2 Physics: Demonstrate understanding of electricity and electromagnetism Static Electricity: Uniform electric field, electric field strength, force on a charge in an electric field, electric potential

More information

Experiment #3, Ohm s Law

Experiment #3, Ohm s Law Experiment #3, Ohm s Law 1 Purpose Physics 182 - Summer 2013 - Experiment #3 1 To investigate the -oltage, -, characteristics of a carbon resistor at room temperature and at liquid nitrogen temperature,

More information

Ohmic and Non Ohmic Devices

Ohmic and Non Ohmic Devices Experiment 1 17 Kuwait University Physics 107 Physics Department Ohmic and Non Ohmic Devices Introduction In this experiment, you will study Ohm s law by examining the I-V characteristics of a fixed resistor,

More information

OHM S LAW 05 AUGUST 2014

OHM S LAW 05 AUGUST 2014 OHM S LAW 05 AUGUST 2014 In this lesson, we: Current Lesson Description Revise the definitions of current, potential difference and emf Explore Ohm s law Identify the characteristics of ohmic and non-ohmic

More information

Electrostatics. Electrostatics Version 2

Electrostatics. Electrostatics Version 2 1. A 150-watt lightbulb is brighter than a 60.-watt lightbulb when both are operating at a potential difference of 110 volts. Compared to the resistance of and the current drawn by the 150-watt lightbulb,

More information

Resistance and Ohm s Law - MBL

Resistance and Ohm s Law - MBL Resistance and Ohm s Law - MBL In this experiment you will investigate different aspects of Ohm s Law, which relates voltage, current, and resistance. A computer will be used to collect, display, and help

More information

Specific Heat Capacity and Latent Heat Mixed Questions

Specific Heat Capacity and Latent Heat Mixed Questions Specific Heat Capacity and Latent Heat Mixed Questions 1. 12 000 J of heat energy raises the temperature of a 2kg block of a metal from 20 0 C to 30 0 C. What is the specific heat capacity of the metal?

More information

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other. PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

More information

PHYS245 Lab: Light bulb and resistor ΙΙ: Current voltage (I-V) curves

PHYS245 Lab: Light bulb and resistor ΙΙ: Current voltage (I-V) curves Purpose: PHYS245 Lab: Light bulb and resistor ΙΙ: Current voltage (I-V) curves Measure the current voltage curve of a light bulb and a resistor using a variable d.c. power supply. Understanding of Ohm

More information

Q1. (a) Complete the sentence below to name the instrument used to measure electrical current.

Q1. (a) Complete the sentence below to name the instrument used to measure electrical current. Q. (a) Complete the sentence below to name the instrument used to measure electrical current. The instrument used to measure electrical current is called... () (b) In the diagram below each box contains

More information

[2]...[1] [3]

[2]...[1] [3] High Demand Questions QUESTIONSHEET 1 (a) In the circuit below, lamps P and Q are identical. The reading on the ammeter is 3A. The cell shown is of emf. 6V. A P Q Calculate the current that passes through

More information

The diagram shows a negatively charged plastic rod held near to a thin stream of water. The water is attracted towards the rod.

The diagram shows a negatively charged plastic rod held near to a thin stream of water. The water is attracted towards the rod. Current electricity exam qs C grade Madeley High School Q.(a) The diagram shows a negatively charged plastic rod held near to a thin stream of water. The water is attracted towards the rod. Which one of

More information

FXA 2008. Candidates should be able to : Define and apply the concept of specific heat capacity. Select and apply the equation : E = mcδθ

FXA 2008. Candidates should be able to : Define and apply the concept of specific heat capacity. Select and apply the equation : E = mcδθ UNIT G484 Module 3 4.3.3 Thermal Properties of Materials 1 Candidates should be able to : Define and apply the concept of specific heat capacity. Select and apply the equation : E = mcδθ The MASS (m) of

More information

Lab 1: DC Circuits. Student 1, student1@ufl.edu Partner : Student 2, student2@ufl.edu

Lab 1: DC Circuits. Student 1, student1@ufl.edu Partner : Student 2, student2@ufl.edu Lab Date Lab 1: DC Circuits Student 1, student1@ufl.edu Partner : Student 2, student2@ufl.edu I. Introduction The purpose of this lab is to allow the students to become comfortable with the use of lab

More information

7. What is the current in a circuit if 15 coulombs of electric charge move past a given point in 3 seconds? (1) 5 A (3) 18 A (2) 12 A (4) 45 A

7. What is the current in a circuit if 15 coulombs of electric charge move past a given point in 3 seconds? (1) 5 A (3) 18 A (2) 12 A (4) 45 A 1. Compared to the number of free electrons in a conductor, the number of free electrons in an insulator of the same volume is less the same greater 2. Most metals are good electrical conductors because

More information

Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament

Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament Name Partner Date Introduction Carbon resistors are the kind typically used in wiring circuits. They are made from a small cylinder of

More information

3_given a graph of current_voltage for a resistor, determine the resistance. Three resistance R1 = 1.0 kω, R2 = 1.5 kω, R3 = 2.

3_given a graph of current_voltage for a resistor, determine the resistance. Three resistance R1 = 1.0 kω, R2 = 1.5 kω, R3 = 2. Ohm s Law Objectives: 1_measure the current_voltage curve for a resistor 2_construct a graph of the data from objective 1 3_given a graph of current_voltage for a resistor, determine the resistance Equipment:

More information

Meters - Ohm s Law R 2 R 1 APPARATUS INTRODUCTION R 1 R 2 A

Meters - Ohm s Law R 2 R 1 APPARATUS INTRODUCTION R 1 R 2 A Meters - Ohm s Law APPARATUS 1. Board on which two wires are mounted, each 1 m long, equipped with a sliding contact 2. Rheostat (variable resistance), 0... 7 Ω 3. DC ammeter (full scale: 2 A) 4. Voltmeter

More information

Energy Matters Heat. Changes of State

Energy Matters Heat. Changes of State Energy Matters Heat Changes of State Fusion If we supply heat to a lid, such as a piece of copper, the energy supplied is given to the molecules. These start to vibrate more rapidly and with larger vibrations

More information

Lab E1: Introduction to Circuits

Lab E1: Introduction to Circuits E1.1 Lab E1: Introduction to Circuits The purpose of the this lab is to introduce you to some basic instrumentation used in electrical circuits. You will learn to use a DC power supply, a digital multimeter

More information

HEAT OF FUSION MECHANICAL EQUIVALENT OF HEAT AND PART A. HEAT OF FUSION

HEAT OF FUSION MECHANICAL EQUIVALENT OF HEAT AND PART A. HEAT OF FUSION HEAT OF FUSION AND MECHANICAL EQUIVALENT OF HEAT CAUTION: Please handle thermometers gently. Broken mercury-filled thermometers should be taken to Rm. B-31 for disposal as mercury is very toxic. If a red-liquid

More information

Electricity Review-Sheet

Electricity Review-Sheet Name: ate: 1. The unit of electrical charge in the MKS system is the. volt. ampere. coulomb. mho 2. Which sketch best represents the charge distribution around a neutral electroscope when a positively

More information

1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

More information

Circuits Review KEY Interpreting Diagrams Use the diagram below to answer the following questions.

Circuits Review KEY Interpreting Diagrams Use the diagram below to answer the following questions. Circuits Review KEY Interpreting Diagrams Use the diagram below to answer the following questions. 1. Look at the arrows which indicate the direction of the flow of electrons. Label the negative and the

More information

Instruction Manual and Experiment Guide F. Basic Calorimetry Set TD-8557A

Instruction Manual and Experiment Guide F. Basic Calorimetry Set TD-8557A Instruction Manual and Experiment Guide 012-03060F Basic Calorimetry Set TD-8557A Al Cu W Table of Contents Introduction......................................................................... 1 Notes

More information

Unit: KPH0/4PH0 Science (Double Award) KSC0/4SC0 Paper: 1P

Unit: KPH0/4PH0 Science (Double Award) KSC0/4SC0 Paper: 1P Write your name here Surname Other names Pearson Edexcel Certificate Pearson Edexcel International GCSE Centre Number Physics Unit: KPH0/4PH0 Science (Double Award) KSC0/4SC0 Paper: 1P Thursday 15 May

More information

Resistors in Series and Parallel

Resistors in Series and Parallel Resistors in Series and Parallel INTRODUCTION Direct current (DC) circuits are characterized by the quantities current, voltage and resistance. Current is the rate of flow of charge. The SI unit is the

More information

Objectives for the standardized exam

Objectives for the standardized exam III. ELECTRICITY AND MAGNETISM A. Electrostatics 1. Charge and Coulomb s Law a) Students should understand the concept of electric charge, so they can: (1) Describe the types of charge and the attraction

More information

Series & Parallel Circuits Challenge

Series & Parallel Circuits Challenge Name: Part One: Series & Parallel Circuits Challenge 1. Build a circuit using two batteries and two light bulbs in a way to illuminate the two light bulbs so that if either light bulb is disconnected,

More information

What is the direction of a compass needle placed at point A?

What is the direction of a compass needle placed at point A? SAMPLE QUIZ: COVERAGE OHM S LAW CIRCUIT ANALYSIS RESISTANCE ELECTRICAL POWER MAGNETISM AND ELECTROMAGNETISM MAGNETISM: 1. In order to produce a magnetic field, an electric charge must be 1. stationary

More information

Question Bank. Electric Circuits, Resistance and Ohm s Law

Question Bank. Electric Circuits, Resistance and Ohm s Law Electric Circuits, Resistance and Ohm s Law. Define the term current and state its SI unit. Ans. The rate of flow of charge in an electric circuit is called current. Its SI unit is ampere. 2. (a) Define

More information

EXPERIMENT 6 PHYSICS 250 THERMAL MEASUREMENTS

EXPERIMENT 6 PHYSICS 250 THERMAL MEASUREMENTS EXPERIMENT 6 PHYSICS 250 THERMAL MEASUREMENTS Apparatus: Electronic multimeter Iron-constantan thermocouple Thermistor Hot plate Electronic thermometer with two leads Glass beaker Crushed ice Methyl alcohol

More information

PHY 212 LAB Magnetic Field As a Function of Current

PHY 212 LAB Magnetic Field As a Function of Current PHY 212 LAB Magnetic Field As a Function of Current Apparatus DC Power Supply two D batteries one round bulb and socket a long wire 10-Ω resistor set of alligator clilps coil Scotch tape function generator

More information

AP Physics Scoring Guidelines

AP Physics Scoring Guidelines AP Physics 1 2015 Scoring Guidelines College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central is the official online home

More information

PHYSICS. Trial Examination 1. Motion in one and two dimensions Electronics and photonics Investigating materials and their use in structures

PHYSICS. Trial Examination 1. Motion in one and two dimensions Electronics and photonics Investigating materials and their use in structures Online & home tutors Registered business name: mathline ABN: 35 631 847 853 PHYSICS 2008 Trial Examination 1 Motion in one and two dimensions Electronics and photonics Investigating materials and their

More information

Physics/Additional Science

Physics/Additional Science Write your name here Surname Other names Centre Number Candidate Number Edexcel GCSE Physics/Additional Science Unit 2: Physics for Your Future Thursday 7 March 2013 Morning Time: 1 hour You must have:

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2012

Candidate Number. General Certificate of Education Advanced Level Examination June 2012 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 212 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Monday

More information

(b) Draw the direction of for the (b) Draw the the direction of for the

(b) Draw the direction of for the (b) Draw the the direction of for the 2. An electric dipole consists of 2A. A magnetic dipole consists of a positive charge +Q at one end of a bar magnet with a north pole at one an insulating rod of length d and a end and a south pole at

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 1 - D.C. CIRCUITS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 1 - D.C. CIRCUITS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME - D.C. CIRCUITS Be able to use circuit theory to determine voltage, current and resistance in direct

More information

Objectives 200 CHAPTER 4 RESISTANCE

Objectives 200 CHAPTER 4 RESISTANCE Objectives Explain the differences among conductors, insulators, and semiconductors. Define electrical resistance. Solve problems using resistance, voltage, and current. Describe a material that obeys

More information

3 rd International Physics Olympiad 1969, Brno, Czechoslovakia

3 rd International Physics Olympiad 1969, Brno, Czechoslovakia 3 rd International Physics Olympiad 1969, Brno, Czechoslovakia Problem 1. Figure 1 shows a mechanical system consisting of three carts A, B and C of masses m 1 = 0.3 kg, m 2 = 0.2 kg and m 3 = 1.5 kg respectively.

More information

Assessment Schedule 2012: Physics: Demonstrate understanding of aspects of heat (90939)

Assessment Schedule 2012: Physics: Demonstrate understanding of aspects of heat (90939) NCEA Level 1 Physics (90939) 2012 page 1 of 6 Assessment Schedule 2012: Physics: Demonstrate understanding of aspects of heat (90939) Assessment Criteria ONE (a)(i) States the term condensation. States

More information

Chapter 11- Electricity

Chapter 11- Electricity Chapter 11- Electricity Course Content Definition of Electricity Circuit Diagrams Series and Parallel Circuits Calculating total resistances Measurement of Electricity Ammeters and Voltmeters Ohm s Law

More information

Calorimetry - Specific Heat and Latent Heat

Calorimetry - Specific Heat and Latent Heat Chapter 3 Calorimetry - Specific Heat and Latent Heat Name: Lab Partner: Section: 3.1 Purpose The purpose of this experiment is to study the relationship between heat and temperature. Calorimetry will

More information

SIMPLE HARMONIC MOTION

SIMPLE HARMONIC MOTION SIMPLE HARMONIC MOTION PURPOSE The purpose of this experiment is to investigate one of the fundamental types of motion that exists in nature - simple harmonic motion. The importance of this kind of motion

More information

Miscellaneous Heat Problems

Miscellaneous Heat Problems Miscellaneous Heat Problems 1. Given that the specific heat capacity of water is eleven times that of copper, calculate the mass of copper at a temperature of 100 C required to raise the temperature of

More information

Physics 221 Experiment 5: Magnetic Fields

Physics 221 Experiment 5: Magnetic Fields Physics 221 Experiment 5: Magnetic Fields August 25, 2007 ntroduction This experiment will examine the properties of magnetic fields. Magnetic fields can be created in a variety of ways, and are also found

More information

8.3. Resistance and Ohm s Law. Did You Know? Resistance and the Flow of Electrons. Words to Know

8.3. Resistance and Ohm s Law. Did You Know? Resistance and the Flow of Electrons. Words to Know 8.3 Resistance and Ohm s Law Resistance slows down the flow of electrons and transforms electrical energy. Resistance is measured in ohms ( ). We calculate resistance by applying a voltage and measuring

More information

How Does it Flow? Electricity, Circuits, and Motors

How Does it Flow? Electricity, Circuits, and Motors How Does it Flow? Electricity, Circuits, and Motors Introduction In this lab, we will investigate the behavior of some direct current (DC) electrical circuits. These circuits are the same ones that move

More information

PHYSICAL SCIENCES SCHOOL-BASED ASSESSMENT EXEMPLARS CAPS GRADE 12 LEARNER GUIDE

PHYSICAL SCIENCES SCHOOL-BASED ASSESSMENT EXEMPLARS CAPS GRADE 12 LEARNER GUIDE PHYSICAL SCIENCES SCHOOL-BASED ASSESSMENT EXEMPLARS CAPS GRADE 12 LEARNER GUIDE i PHYSICAL SCIENCES SCHOOL-BASED ASSESSMENT EXEMPLARS CAPS GRADE 12 LEARNER GUIDE 1 CONTENTS 1. Introduction 3 2. Objectives

More information

Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true.

Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. ch 7 and 16 review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. The heat released by a burning candle

More information

What is Energy? What is the relationship between energy and work?

What is Energy? What is the relationship between energy and work? What is Energy? What is the relationship between energy and work? Compare kinetic and potential energy What are the different types of energy? What is energy? Energy is the ability to do work. Great, but

More information

Measurement of Thermal Conductivity by Lee s method

Measurement of Thermal Conductivity by Lee s method Measurement of Thermal Conductivity by Lee s method Aim: To determine thermal conductivity of a bad conductor (glass) in form of a disc using Lee s method. Requisites: (1) Lee s apparatus and the experimental

More information

Magnetic Forces and Magnetic Fields

Magnetic Forces and Magnetic Fields 1 Magnets Magnets are metallic objects, mostly made out of iron, which attract other iron containing objects (nails) etc. Magnets orient themselves in roughly a north - south direction if they are allowed

More information

AP physics B - Webreview ch 17 and 18 circuits

AP physics B - Webreview ch 17 and 18 circuits Name: Class: _ Date: _ AP physics B - Webreview ch 17 and 18 circuits Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The current in an electron beam in

More information

Physics Assessment Unit AS 1

Physics Assessment Unit AS 1 Centre Number 71 Candidate Number ADVANCED SUBSIDIARY (AS) General Certificate of Education 2013 Physics Assessment Unit AS 1 assessing Module 1: Forces, Energy and Electricity AY111 [AY111] THURSDAY 13

More information

Two kinds of electrical charges

Two kinds of electrical charges ELECTRICITY NOTES Two kinds of electrical charges Positive charge Negative charge Electrons are negatively charged Protons are positively charged The forces from positive charges are canceled by forces

More information

Chapter 13 Electric Circuits

Chapter 13 Electric Circuits Chapter 13 Electric Circuits What is Electric Current? How does it resemble the flow of water in a pipe? Can you get a flashlight bulb to light, with a battery and a single wire? Electric Circuits and

More information

E X A M I N A T I O N S C O U N C I L REPORT ON CANDIDATES WORK IN THE SECONDARY EDUCATION CERTIFICATE EXAMINATION MAY/JUNE 2010

E X A M I N A T I O N S C O U N C I L REPORT ON CANDIDATES WORK IN THE SECONDARY EDUCATION CERTIFICATE EXAMINATION MAY/JUNE 2010 C A R I B B E A N E X A M I N A T I O N S C O U N C I L REPORT ON CANDIDATES WORK IN THE SECONDARY EDUCATION CERTIFICATE EXAMINATION MAY/JUNE 2010 PHYSICS GENERAL PROFICIENCY Copyright 2010 Caribbean Examinations

More information

Kinetic Molecular Theory. A theory is a collection of ideas that attempts to explain certain phenomena.

Kinetic Molecular Theory. A theory is a collection of ideas that attempts to explain certain phenomena. Kinetic Molecular Theory A theory is a collection of ideas that attempts to explain certain phenomena. A law is a statement of specific relationships or conditions in nature. After centuries of questioning

More information

Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath

Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath 1. The exam will last from 8:00 am to 11:00 am. Use a # 2 pencil to make entries on the answer sheet. Enter the following id information

More information

Saturday X-tra X-Sheet: 19. Electric circuits

Saturday X-tra X-Sheet: 19. Electric circuits Saturday X-tra X-Sheet: 9 Key Concepts Electric circuits This lesson focuses on the following: Potential Difference Current The resistance of a conductor Ohm s Law and circuit calculations Terminology

More information

XX. Introductory Physics, High School

XX. Introductory Physics, High School XX. Introductory Physics, High School High School Introductory Physics Test The spring 2013 high school Introductory Physics test was based on learning standards in the Physics content strand of the Massachusetts

More information

CHAPTER12. Electricity. Multiple Choice Questions. Fig. 12.1

CHAPTER12. Electricity. Multiple Choice Questions. Fig. 12.1 CHAPTER12 Electricity Multiple Choice Questions 1. A cell, a resistor, a key and ammeter are arranged as shown in the circuit diagrams of Figure12.1. The current recorded in the ammeter will be Fig. 12.1

More information

Center of Mass/Momentum

Center of Mass/Momentum Center of Mass/Momentum 1. 2. An L-shaped piece, represented by the shaded area on the figure, is cut from a metal plate of uniform thickness. The point that corresponds to the center of mass of the L-shaped

More information

ELECTRICITY PROBLEMS BASED ON PRACTICAL SKILLS

ELECTRICITY PROBLEMS BASED ON PRACTICAL SKILLS ELECTRICITY PROBLEMS BASED ON PRACTICAL SKILLS 1 To determine the equivalent resistance of two resistors when connected in series, a student arranged the circuit components as shown in the diagram. But

More information

Thursday 19 June 2014 Afternoon

Thursday 19 June 2014 Afternoon H Thursday 19 June 2014 Afternoon GCSE GATEWAY SCIENCE PHYSICS B B752/02 Physics modules P4, P5, P6 (Higher Tier) *1267054309* Candidates answer on the Question Paper. A calculator may be used for this

More information

TEACHER S CLUB EXAMS GRADE 11. PHYSICAL SCIENCES: PHYSICS Paper 1

TEACHER S CLUB EXAMS GRADE 11. PHYSICAL SCIENCES: PHYSICS Paper 1 TEACHER S CLUB EXAMS GRADE 11 PHYSICAL SCIENCES: PHYSICS Paper 1 MARKS: 150 TIME: 3 hours INSTRUCTIONS AND INFORMATION 1. This question paper consists of 12 pages, two data sheets and a sheet of graph

More information

Circuits and Resistivity

Circuits and Resistivity Circuits and Resistivity Look for knowledge not in books but in things themselves. W. Gilbert OBJECTIVES To learn the use of several types of electrical measuring instruments in DC circuits. To observe

More information

Lab 3 Ohm s Law and Resistors

Lab 3 Ohm s Law and Resistors ` Lab 3 Ohm s Law and Resistors What You Need To Know: The Physics One of the things that students have a difficult time with when they first learn about circuits is the electronics lingo. The lingo and

More information

very small Ohm s Law and DC Circuits Purpose: Students will become familiar with DC potentiometers circuits and Ohm s Law. Introduction: P31220 Lab

very small Ohm s Law and DC Circuits Purpose: Students will become familiar with DC potentiometers circuits and Ohm s Law. Introduction: P31220 Lab Ohm s Law and DC Circuits Purpose: Students will become familiar with DC potentiometers circuits and Ohm s Law. Introduction: Ohm s Law for electrical resistance, V = IR, states the relationship between

More information

LAB 8: Electron Charge-to-Mass Ratio

LAB 8: Electron Charge-to-Mass Ratio Name Date Partner(s) OBJECTIVES LAB 8: Electron Charge-to-Mass Ratio To understand how electric and magnetic fields impact an electron beam To experimentally determine the electron charge-to-mass ratio.

More information

Experimental Question 1: Levitation of Conductors in an Oscillating Magnetic Field SOLUTION ( )

Experimental Question 1: Levitation of Conductors in an Oscillating Magnetic Field SOLUTION ( ) a. Using Faraday s law: Experimental Question 1: Levitation of Conductors in an Oscillating Magnetic Field SOLUTION The overall sign will not be graded. For the current, we use the extensive hints in the

More information

Circuits. Page The diagram below represents a series circuit containing three resistors.

Circuits. Page The diagram below represents a series circuit containing three resistors. Name: Circuits Date: 1. Which circuit segment has an equivalent resistance of 6 ohms? 4. The diagram below represents a series circuit containing three resistors. 2. Base your answer to the following question

More information

Currents in electrical circuits

Currents in electrical circuits Currents in electrical circuits P2 73 minutes 73 marks Page of 3 Q. (a) The diagram shows the inside of a three-pin plug. (i) What name is given to the wire labelled S? Draw a ring around the correct answer.

More information

R C DMM. b a. Power Supply. b a. Power Supply DMM. Red + Black - Red + Black -

R C DMM. b a. Power Supply. b a. Power Supply DMM. Red + Black - Red + Black - Sample Lab Report - PHYS 231 The following is an example of a well-written report that might be submitted by a PHYS 231 student. It begins with a short statement of what is being measured, and why. The

More information

HMWK 3. Ch 23: P 17, 23, 26, 34, 52, 58, 59, 62, 64, 73 Ch 24: Q 17, 34; P 5, 17, 34, 42, 51, 52, 53, 57. Chapter 23

HMWK 3. Ch 23: P 17, 23, 26, 34, 52, 58, 59, 62, 64, 73 Ch 24: Q 17, 34; P 5, 17, 34, 42, 51, 52, 53, 57. Chapter 23 HMWK 3 Ch 23: P 7, 23, 26, 34, 52, 58, 59, 62, 64, 73 Ch 24: Q 7, 34; P 5, 7, 34, 42, 5, 52, 53, 57 Chapter 23 P23.7. Prepare: The connecting wires are ideal with zero resistance. We have to reduce the

More information

STUDY MATERIAL FOR CLASS 10+2 - Physics- CURRENT ELECTRICITY. The flow of electric charges in a particular direction constitutes electric current.

STUDY MATERIAL FOR CLASS 10+2 - Physics- CURRENT ELECTRICITY. The flow of electric charges in a particular direction constitutes electric current. Chapter : 3 Current Electricity Current Electricity The branch of Physics which deals with the study of electric charges in motion is called current electricity. Electric current The flow of electric charges

More information

THE CONSERVATION OF ENERGY - PENDULUM -

THE CONSERVATION OF ENERGY - PENDULUM - THE CONSERVATION OF ENERGY - PENDULUM - Introduction The purpose of this experiment is to measure the potential energy and the kinetic energy of a mechanical system and to quantitatively compare the two

More information

1 THE LIGHT BULB EXPERIMENT: Exploring Simple Electric Circuits

1 THE LIGHT BULB EXPERIMENT: Exploring Simple Electric Circuits 1 THE LIGHT BULB EXPERIMENT: Exploring Simple Electric Circuits Preparatory Questions for Review: (also read this guide sheet, which contains some of the answers!) 1. State Ohm s Law, defining every term

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *4158352429* PHYSICS 0625/31 Paper 3 Extended October/November 2012 1 hour 15 minutes Candidates

More information

OCR (A) specifications: 5.4.7a,b,c,d,e,f,g,h. Chapter 7 Capacitors

OCR (A) specifications: 5.4.7a,b,c,d,e,f,g,h. Chapter 7 Capacitors OCR (A) specifications: 5.4.7a,b,c,d,e,f,g,h Chapter 7 Capacitors Worksheet Worked examples Practical : Determining the capacitance of a parallel-plate capacitor Practical 2: Determining the capacitance

More information

In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook.

In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook. In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook. When summarising notes, use different colours and draw diagrams/pictures. If you

More information

Force on Moving Charges in a Magnetic Field

Force on Moving Charges in a Magnetic Field [ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

More information

PHYSICS 176 UNIVERSITY PHYSICS LAB II. Experiment 2 (two weeks) Direct Current Measurement and Ohm's Law

PHYSICS 176 UNIVERSITY PHYSICS LAB II. Experiment 2 (two weeks) Direct Current Measurement and Ohm's Law PHYSICS 176 UNIVERSITY PHYSICS LAB II Experiment 2 (two weeks) Direct Current Measurement and Ohm's Law Equipment: Supplies: VOM (volt-ohm-milliammeter), digital multimeter, power supply. 1/2 watt carbon

More information

PHYS 1020 Final Exam. Seating (from exam listing on Aurora) Brown Gym. Gold Gym

PHYS 1020 Final Exam. Seating (from exam listing on Aurora) Brown Gym. Gold Gym PHYS 1020 Final Exam Monday, December 17, 6-9 pm The whole course 30 multiple choice questions Formula sheet provided Seating (from exam listing on Aurora) Brown Gym A - SIM Gold Gym SIN - Z 27 Week of

More information

Understanding Solar Energy Teacher Page

Understanding Solar Energy Teacher Page Understanding Solar Energy Teacher Page Series and Parallel Circuits Student Objective The student: will calculate the current, voltage and power output for modules in which the cells are connected in

More information

E/M Experiment: Electrons in a Magnetic Field.

E/M Experiment: Electrons in a Magnetic Field. E/M Experiment: Electrons in a Magnetic Field. PRE-LAB You will be doing this experiment before we cover the relevant material in class. But there are only two fundamental concepts that you need to understand.

More information

Objectives. Electric Current

Objectives. Electric Current Objectives Define electrical current as a rate. Describe what is measured by ammeters and voltmeters. Explain how to connect an ammeter and a voltmeter in an electrical circuit. Explain why electrons travel

More information

B. 1.3 Ω D Ω (Total 1 mark)

B. 1.3 Ω D Ω (Total 1 mark) Practice Test: 30 marks (39 minutes) Additional Problem: 5 marks (37 minutes) 1. One electronvolt is equal to A. 1.6 10 19 C. B. 1.6 10 19 J. C. 1.6 10 19 V. D. 1.6 10 19 W.. In the circuit below, which

More information

LABORATORY 9. Simple Harmonic Motion

LABORATORY 9. Simple Harmonic Motion LABORATORY 9 Simple Harmonic Motion Purpose In this experiment we will investigate two examples of simple harmonic motion: the mass-spring system and the simple pendulum. For the mass-spring system we

More information

electrons/s

electrons/s CURRNT, RSISTANC, AND DIRCT-CURRNT CIRCUITS 9 Answers to Multiple-Choice Problems. B 2. B 3. D 4. B, D 5. A 6. A 7. C 8. A 9. C 0. C. C 2. C 3. C 4. A 5. Solutions to Problems 9.. Set Up: A 5 C/s. An electron

More information

GCSE Physics Heat Transfer. Instructions and answers for teachers

GCSE Physics Heat Transfer. Instructions and answers for teachers GCSE Physics Heat Transfer Instructions and answers for teachers These instructions should accompany the OCR resource Heat Transfer activity which supports OCR GCSE Physics. The Activity: This resource

More information

Determination of Acceleration due to Gravity

Determination of Acceleration due to Gravity Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two

More information

Cathkin High School Physics Department. Revised Higher Unit 3 Electricity. Problem Booklet

Cathkin High School Physics Department. Revised Higher Unit 3 Electricity. Problem Booklet Cathkin High School Physics Department Revised Higher Unit 3 Electricity Problem Booklet Name Class Exercise 1: Monitoring and measuring a.c. 1. What is the peak voltage of the 230 V mains supply? The

More information

Experiment 6 ~ Joule Heating of a Resistor

Experiment 6 ~ Joule Heating of a Resistor Experiment 6 ~ Joule Heating of a Resistor Introduction: The power P absorbed in an electrical resistor of resistance R, current I, and voltage V is given by P = I 2 R = V 2 /R = VI. Despite the fact that

More information