EAA492/6: FINAL YEAR PROJECT DEVELOPING QUESTIONNAIRES PART 2 A H M A D S H U K R I Y A H A Y A E N G I N E E R I N G C A M P U S U S M

Size: px
Start display at page:

Download "EAA492/6: FINAL YEAR PROJECT DEVELOPING QUESTIONNAIRES PART 2 A H M A D S H U K R I Y A H A Y A E N G I N E E R I N G C A M P U S U S M"

Transcription

1 EAA492/6: FINAL YEAR PROJECT DEVELOPING QUESTIONNAIRES PART 2 1 A H M A D S H U K R I Y A H A Y A E N G I N E E R I N G C A M P U S U S M

2 CONTENTS Reliability And Validity Sample Size Determination Sampling Designs Descriptive And Inferential Statistics Pilot Study 2

3 CHOICE OF QUESTIONNAIRES Adopt the questionnaire based on previous studies 3 Adapt the questionnaire based on previous studies Create a NEW questionnaire

4 RELIABILITY AND VALIDITY 4 Validity can be defined as the extent to which any measuring instrument measures what it is intended to measure. Reliability concerns the extent to which an experiment, test or any measuring procedure yields the same results on repeated trials.

5 VALIDITY 5 Validity is the extent to which any measuring instrument measures what it is intended to measure. Validity is about interpretation of data arising from a specified procedure. It is not a test! Thus, validity is not about the measuring instrument itself but the measuring instrument in relation to the purpose for which it is being used.

6 VALIDITY Three types of validity: (1) Content Validity (2) Criterion-Related Validity (3) Construct Validity 6

7 Content Validity 7 Content validity depends on the extent to which an empirical measurement reflects a specific domain of content. Example: A test in arithmetical operations would not be valid if the test problems focused only on addition and neglecting subtraction, multiplication and division. Thus a researcher must be able to specify the full domain of content that is relevant to the particular measurement situation. Example: We must specify all the words that a standard four student should know how to spell. Choose at random the number of words that should be sampled. Then, they must be put in a form that is testable.

8 Content Validity Some limitations 8 The process of determining the domain of the content is more difficult and complex when dealing with the abstract concepts typically found in the social sciences. There is no agreed upon criterion for determining the extent to which a measure has attained content validity. Thus, a measure can only be considered as strongly or weakly valid (i.e., the alternative is not between fully valid or fully invalid measures).

9 Criterion-Related Validity Also known as Predictive Validity 9 Has the closest relationship to what is meant by the term validity Definition: Is an issue when the purpose is to use an instrument to estimate some important form of behaviour that is external to the measuring instrument itself, the latter being referred to as the criterion Example: We assess the validity of college board examination by showing they accurately predict how well high school college seniors will do in college instruction

10 Criterion-Related Validity 10 Example: We validate a written driver s test by showing that it accurately predicts how well some group of persons can operate an automobile. The indicator between the test and the criterion is usually estimated by the size of the correlation.

11 Criterion-Related Validity 11 Have been used mainly in psychology and education. Should be used in any situation or area of scientific enquiry in which it makes sense to correlate scores obtained on a given test with performance on a particular criterion or set of relevant criteria. For some cases, criterion-related validity cannot be used because we cannot determine the relevant criterion variables.

12 Construct validity 12 It is concerned with the extent to which a particular measure relates to other measures consistent with theoretically derived hypotheses concerning the concepts (or constructs) that are being measured. Example: Suppose a researcher wanted to evaluate the construct validity of a particular measure of self-esteem say Rosenberg s self-esteem scale. Theoretically, Rosenberg has argued that a student s level of self-esteem is positively related to participation in school activities. Determine correlation between Rosenberg s self-esteem scale to a group of students and their extent of involvement in school activities. If correlation is positive and substantial, then it supports one piece of evidence on the validity of Rosenberg s self-esteem scale.

13 Involves three steps: Construct validity 13 (1) Theoretical relationships between the concepts must be specified. (2) Empirical relationships between the measures of the concepts must be examined. (3) Empirical evidence must be interpreted in terms of how it clarifies the construct validity of a particular measure.

14 RELIABILITY 14 Reliability concerns the degree to which results are consistent across repeated measures Basic formulation of measurements where X is the observed score, t is the true score and e is the random error

15 RELIABILITY Assumptions: Note : For (3), it is assumed that two sets of measurements are observed for a single person for a single variable.

16 RELIABILITY Therefore, 16 From Assumption (1), This result is true for repeated measurements of a single variable for a single person.

17 RELIABILITY 17 Reliability refers to the consistency of repeated measurements across persons rather than within a single person. Thus, look at the variance of the measurement. Hence

18 RELIABILITY Thus the ratio of true to observed variance is called the reliability of X as a measure of T. 18 Reliability can also be expressed as

19 RELIABILITY 19 The estimate of a measure s reliability can be obtained by correlating parallel measurements. Two measurements (X and X ) are defined as parallel if they have identical true scores and equal variances as shown below:

20 RELIABILITY 20 Thus, Thus it follows that the estimate of reliability is simply the correlation between parallel measures.

21 RELIABILITY 21 There are four basic methods to estimate the reliability of empirical measurements namely the retest method, the alternative-form method, the split-halves method and the internal consistency method The range of values for the reliability method is from 0 to 1. Values near 1 show good reliability. Usually, if the value is more than 0.7 than the method is reliable.

22 RELIABILITY In SPSS, the reliability analysis is obtained from the following commands: ANALYZE SCALE RELIABILITY ANALYSIS Under reliability, there are five different types of methods namely (1) The alpha Cronbach s method 22 (2) The split-half method (3) The Guttman method (4) The parallel method (5) The strict parallel method

23 The easiest method. The Retest Method 23 Suppose that a set of questionnaires or tests are given to some respondents. Then if the same set of questionnaires or tests are given to the same respondents after some specified time period, then this is known as the retest method. The interval between the two tests are usually taken to be from two to four weeks.

24 The Retest Method The equations for the two tests are as follows: Assumptions: (i) (ii) Thus and 24 X 1 X t t X X t V V 1 2, x X X

25 The Retest Method 25 Weaknesses of this method 1. Researches usually cannot do more than one tests 2. The reaction of the respondents about certain surveys. Example: If a respondent is being interviewed about whether he/she will vote in a coming election at time 1, the respondent might make a decision at time 2 and will actually vote at time 3 due to the fact that he/she was sensitized to the election through the interview.

26 The alternative form method 26 The most frequently used method in the field of education Similar to the retest method as it requires two sets of tests which is given to the same respondents Different from the retest method in that an alternative form of the questions are given The two sets of questions must measure the same thing. Example: If two tests are designed to measure the understanding of mathematical operators using 20 questions for each test then the sets of questions must be of equal difficulty

27 The alternative form method Superior than the retest method 27 Weakness of this method is to design questionnaires or tests which are of equal level.

28 The split-half method Suppose there are N questions in a questionnaire These questions are split into two equal halves each having N/2 questions. 28 Split can be done arbitrarily. Example: Can choose the first questions and the other being the last questions or we can choose the even numbered questions for the first half and the odd numbered questions as the second half. The value of the reliability measures will be different for different splits.

29 The split-half method The Spearman-Brown prophecy formula for measuring reliability is given by : xx 2 xx 1 xx 29 xx is the reliability for the whole sample xx is the correlation between the two split-half

30 Internal consistency method 30 This method require only a single test on the sample and is usually known as the internal consistency method. The most popular of the internal consistency method is the Cronbach s alpha method which is given by N [ 1 ( N 1)] N is equal to the number of questions is the mean correlation between each questions

31 CONTENTS Reliability And Validity Sample Size Determination Sampling Designs Descriptive And Inferential Statistics Pilot Study 31

32 Sample Size Determination 32 Population Sample Sample is chosen at random from a population

33 Sample Size Determination Sample size depends on the budget and degree of confidence required. Smaller samples are more likely to be different from the population than larger ones. So smaller samples have more sampling error and lower reliability. Sample Size 33 Sampling error Sample Reliability

34 Sample Size Determination Krejcie, R.V. and Morgan, D.W. (1970), Determining Sample Size For Research Activities, Educational And Psychological Measurement, 30, The following Table 1 is from this paper. 34

35 Sample Size Determination 35 N S N S N S N is the population size; S is sample size

36 CONTENTS Reliability And Validity Sample Size Determination Sampling Designs Descriptive And Inferential Statistics Pilot Study 36

37 SAMPLING Foundation of a good sample survey is the sample. A sample is some part of a larger body specially selected to represent the population. Sampling is the process by which it is done. Samples must be representative of the population. 37

38 PROBABILITY AND NONPROBABILITY SAMPLING 38 Probability sampling is a process of sample selection in which elements are chosen by chance procedures and with known probabilities of selection. Nonprobability sampling includes all methods in which units are not selected by chance procedures or with known probabilities of selection.

39 NONPROBABILITY SAMPLING 39 Haphazard sampling: Samples are made up of individuals casually met or conveniently available such as students enrolled in a class or people passing by on a street corner. Cannot make generalization beyond the collections themselves and are seldom of scientific interest. Also known as convenience sampling. Judgmental or purposive sampling: Sample elements are chosen from the population by interviewers using their own discretion about which informants are typical or representative. Results of such sampling procedure can be very good, if the interviewers intuition or judgment is sound.

40 NONPROBABILITY SAMPLING 40 Quota sampling: Process of selection in which the element are chosen by interviewers using prearranged categories of sample elements to obtain a predetermined number of cases in each category. Expert sampling: Elements are chosen on the basis of informed opinion that they are representative of the population in question. Example: A specialist on secondary education may decide that four schools across the country adequately represent the range of variation seen in teaching methods.

41 PROBABILITY SAMPLING 41 Simple Random Sampling (srs): Each population member has the same probability of appearing in the sample. Sample size: Depends on the objective of survey. Assume that we need to estimate the population mean, by using a srs mean and restricting to an acceptable level the probability that the absolute difference between the population mean and the sample mean is greater than some specified value.

42 Simple Random Sampling 42 Then we have for some given d and α Thus, where

43 Determination of S 2 in SRS 43 From pilot studies From previous surveys From a preliminary sample

44 PROBABILITY SAMPLING 44 Systematic sampling: Method of selecting units from a list through the application of a selection interval, I, so that every I th unit on the list, following a random start, is included in the sample. Sample size: Depends on the objective of survey. Assume that we need to estimate the population mean, by using a sample mean restricting to an acceptable level the probability that the absolute difference between the population mean and the sample mean is greater than some specified value.

45 Systematic Sampling 45 Then we have for some given d and α Thus, where

46 PROBABILITY SAMPLING 46 Stratified (simple) random sampling: Technique where a population can be conveniently partitioned into a set of sub-populations (strata). Such a population is said to be stratified. Within a strata, simple random sampling method is used to determine the sample. Cluster sampling: Sometimes a finite population may consist of a large number of groups of individuals, e.g. of households in a city. This is a special form of stratification (many strata of rather small size) and is referred as clusters. Draw a cluster sample as a srs of the clusters. If all the members of the sampled clusters are obtained, this is known as one-stage cluster sampling.

47 CONTENTS Reliability And Validity Sample Size Determination Sampling Designs Descriptive And Inferential Statistics Pilot Study 47

48 Descriptive and Inferential Statistics Descriptive Statistics- used to describe the data where data are presented in the form of tables, charts or summarization by means of percentiles and standard deviation Measures of locations: mean, median, mode 48 Measures of spread: standard deviation, variance, range. Plots such bar chart, pie chart, histogram, Box and Whiskers plot. Not enough just to do this in your FYP!!!

49 Descriptive and Inferential Statistics 49 Population Sample Sample is chosen at random from a population

50 Descriptive and Inferential Statistics 50 Inferential statistics - Process of drawing information from sampled observations of a population and making conclusions about the population. -Two-prong approach. (1) Sampling must be representative of population (2) Correct conclusions made of population

51 Descriptive and Inferential Statistics 51 Inferential statistics - t-tests - Analysis of variance tests - Chi-square tests - Regression models Students must do some inferential statistics.

52 CONTENTS Reliability And Validity Sample Size Determination Sampling Designs Descriptive And Inferential Statistics Pilot Study 52

53 Pilot Study 53 Last major stage of survey work before data collection stage. Designed to find any problems with the data collection process such as: - Poor introduction and instructions to questionnaire - Unclear or undefined terms - Unclear or ambiguous response task - Too many don t know responses - Biased or offensive questions - and so on. Check reliability

54 Pilot Study 54 Choose potential respondents to complete a questionnaire Other approaches are: - Behaviour coding: Investigator watches the respondent and/or interviewer complete the questionnaire or observes the behaviour after it has been recorded on tape. - Cognitive interview: Respondents are asked to think aloud while completing the survey and to describe everything that comes to mind while arriving at an answer.

55 Pilot Study 55 Interviewer evaluation: Interviewers are asked to code question characteristics and respondent behaviour. Respondent evaluation: Respondents are asked to rate and/or comment about the questions. Expert panels: Experts in survey research can be asked to review a questionnaire and identify potential problems.

56 Guidelines 56 Sample size: At least 25 samples. For behaviour and cognitive interview, sample size can be reduced to about 12 samples. Sample composition: Should be similar to that of the survey. Number of pretests: One pretest is adequate but not always recommended. Data collection time: For interviews, can allow 50% longer than the projected interview. Statistical analysis: Can be done if data is more than 25. Number of identified problems: Will definitely find problems. Measure the reliability of the questionnaire

57 SOME COMMENTS Before the pilot study, the following must be followed: 57 (1) For questionnaires that are adopted and adapted (with less than 20% change), content validity need not be checked. (2) For NEW and adapted (more than 20%) questionnaires, content validity must be done with at least three experts.

58 SOME COMMENTS 58 During the pilot study, for NEW questionnaires, (1)the number of sample size must be more than 100 (2)factor analysis must be carried out.

59 SUMMARY FYP report must include (1) Validity Content Validity (2) Reliability (3) Pilot Study (4) Descriptive Statistics (5) Inferential Statistics 59

60 THANK YOU 60

Describe what is meant by a placebo Contrast the double-blind procedure with the single-blind procedure Review the structure for organizing a memo

Describe what is meant by a placebo Contrast the double-blind procedure with the single-blind procedure Review the structure for organizing a memo Readings: Ha and Ha Textbook - Chapters 1 8 Appendix D & E (online) Plous - Chapters 10, 11, 12 and 14 Chapter 10: The Representativeness Heuristic Chapter 11: The Availability Heuristic Chapter 12: Probability

More information

Chapter 8: Quantitative Sampling

Chapter 8: Quantitative Sampling Chapter 8: Quantitative Sampling I. Introduction to Sampling a. The primary goal of sampling is to get a representative sample, or a small collection of units or cases from a much larger collection or

More information

1) Overview 2) Sample or Census 3) The Sampling Design Process i. Define the Target Population ii. Determine the Sampling Frame iii.

1) Overview 2) Sample or Census 3) The Sampling Design Process i. Define the Target Population ii. Determine the Sampling Frame iii. 1) Overview 2) Sample or Census 3) The Sampling Design Process i. Define the Target Population ii. Determine the Sampling Frame iii. Select a Sampling Technique iv. Determine the Sample Size v. Execute

More information

GCSE Statistics Revision notes

GCSE Statistics Revision notes GCSE Statistics Revision notes Collecting data Sample This is when data is collected from part of the population. There are different methods for sampling Random sampling, Stratified sampling, Systematic

More information

Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.

Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics. Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing

More information

Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics

Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGraw-Hill/Irwin, 2010, ISBN: 9780077384470 [This

More information

4. Introduction to Statistics

4. Introduction to Statistics Statistics for Engineers 4-1 4. Introduction to Statistics Descriptive Statistics Types of data A variate or random variable is a quantity or attribute whose value may vary from one unit of investigation

More information

Descriptive Statistics

Descriptive Statistics Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

More information

Experimental data and survey data

Experimental data and survey data Experimental data and survey data An experiment involves the collection of measurements or observations about populations that are treated or controlled by the experimenter. A survey is an examination

More information

SAMPLING METHODS. Chapter 5

SAMPLING METHODS. Chapter 5 SAMPLING METHODS Chapter 5 1 LEARNING OBJECTIVES Reasons for sampling Different sampling methods Probability & non probability sampling Advantages & disadvantages of each sampling method 2 SAMPLING A sample

More information

GCSE HIGHER Statistics Key Facts

GCSE HIGHER Statistics Key Facts GCSE HIGHER Statistics Key Facts Collecting Data When writing questions for questionnaires, always ensure that: 1. the question is worded so that it will allow the recipient to give you the information

More information

The Big 50 Revision Guidelines for S1

The Big 50 Revision Guidelines for S1 The Big 50 Revision Guidelines for S1 If you can understand all of these you ll do very well 1. Know what is meant by a statistical model and the Modelling cycle of continuous refinement 2. Understand

More information

Numerical Summarization of Data OPRE 6301

Numerical Summarization of Data OPRE 6301 Numerical Summarization of Data OPRE 6301 Motivation... In the previous session, we used graphical techniques to describe data. For example: While this histogram provides useful insight, other interesting

More information

LEARNING OBJECTIVES SCALES OF MEASUREMENT: A REVIEW SCALES OF MEASUREMENT: A REVIEW DESCRIBING RESULTS DESCRIBING RESULTS 8/14/2016

LEARNING OBJECTIVES SCALES OF MEASUREMENT: A REVIEW SCALES OF MEASUREMENT: A REVIEW DESCRIBING RESULTS DESCRIBING RESULTS 8/14/2016 UNDERSTANDING RESEARCH RESULTS: DESCRIPTION AND CORRELATION LEARNING OBJECTIVES Contrast three ways of describing results: Comparing group percentages Correlating scores Comparing group means Describe

More information

Dr Roy Ramphal (UNISA)

Dr Roy Ramphal (UNISA) Dr Roy Ramphal (UNISA) It is a process that involves obtaining scientific knowledge by means of various objective methods and procedures. Objective means that these methods and procedures do not rely on

More information

Descriptive statistics parameters: Measures of centrality

Descriptive statistics parameters: Measures of centrality Descriptive statistics parameters: Measures of centrality Contents Definitions... 3 Classification of descriptive statistics parameters... 4 More about central tendency estimators... 5 Relationship between

More information

STA-201-TE. 5. Measures of relationship: correlation (5%) Correlation coefficient; Pearson r; correlation and causation; proportion of common variance

STA-201-TE. 5. Measures of relationship: correlation (5%) Correlation coefficient; Pearson r; correlation and causation; proportion of common variance Principles of Statistics STA-201-TE This TECEP is an introduction to descriptive and inferential statistics. Topics include: measures of central tendency, variability, correlation, regression, hypothesis

More information

RESEARCH METHODS IN I/O PSYCHOLOGY

RESEARCH METHODS IN I/O PSYCHOLOGY RESEARCH METHODS IN I/O PSYCHOLOGY Objectives Understand Empirical Research Cycle Knowledge of Research Methods Conceptual Understanding of Basic Statistics PSYC 353 11A rsch methods 01/17/11 [Arthur]

More information

Descriptive Methods Ch. 6 and 7

Descriptive Methods Ch. 6 and 7 Descriptive Methods Ch. 6 and 7 Purpose of Descriptive Research Purely descriptive research describes the characteristics or behaviors of a given population in a systematic and accurate fashion. Correlational

More information

Answer keys for Assignment 10: Measurement of study variables

Answer keys for Assignment 10: Measurement of study variables Answer keys for Assignment 10: Measurement of study variables (The correct answer is underlined in bold text) 1. In a study, participants are asked to indicate the type of pet they have at home (ex: dog,

More information

Guided Reading 9 th Edition. informed consent, protection from harm, deception, confidentiality, and anonymity.

Guided Reading 9 th Edition. informed consent, protection from harm, deception, confidentiality, and anonymity. Guided Reading Educational Research: Competencies for Analysis and Applications 9th Edition EDFS 635: Educational Research Chapter 1: Introduction to Educational Research 1. List and briefly describe the

More information

BUSINESS OCR LEVEL 3 CAMBRIDGE TECHNICAL. Cambridge TECHNICALS MARKET RESEARCH IN BUSINESS CERTIFICATE/DIPLOMA IN H/502/5427 LEVEL 3 UNIT 10

BUSINESS OCR LEVEL 3 CAMBRIDGE TECHNICAL. Cambridge TECHNICALS MARKET RESEARCH IN BUSINESS CERTIFICATE/DIPLOMA IN H/502/5427 LEVEL 3 UNIT 10 Cambridge TECHNICALS OCR LEVEL 3 CAMBRIDGE TECHNICAL CERTIFICATE/DIPLOMA IN BUSINESS MARKET RESEARCH IN BUSINESS H/502/5427 LEVEL 3 UNIT 10 GUIDED LEARNING HOURS: 60 UNIT CREDIT VALUE: 10 MARKET RESEARCH

More information

Fairfield Public Schools

Fairfield Public Schools Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity

More information

430 Statistics and Financial Mathematics for Business

430 Statistics and Financial Mathematics for Business Prescription: 430 Statistics and Financial Mathematics for Business Elective prescription Level 4 Credit 20 Version 2 Aim Students will be able to summarise, analyse, interpret and present data, make predictions

More information

2. Describing Data. We consider 1. Graphical methods 2. Numerical methods 1 / 56

2. Describing Data. We consider 1. Graphical methods 2. Numerical methods 1 / 56 2. Describing Data We consider 1. Graphical methods 2. Numerical methods 1 / 56 General Use of Graphical and Numerical Methods Graphical methods can be used to visually and qualitatively present data and

More information

Selecting Research Participants

Selecting Research Participants C H A P T E R 6 Selecting Research Participants OBJECTIVES After studying this chapter, students should be able to Define the term sampling frame Describe the difference between random sampling and random

More information

Inferential Statistics

Inferential Statistics Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are

More information

Variables and Data A variable contains data about anything we measure. For example; age or gender of the participants or their score on a test.

Variables and Data A variable contains data about anything we measure. For example; age or gender of the participants or their score on a test. The Analysis of Research Data The design of any project will determine what sort of statistical tests you should perform on your data and how successful the data analysis will be. For example if you decide

More information

Univariate Descriptive Statistics

Univariate Descriptive Statistics Univariate Descriptive Statistics Displays: pie charts, bar graphs, box plots, histograms, density estimates, dot plots, stemleaf plots, tables, lists. Example: sea urchin sizes Boxplot Histogram Urchin

More information

Glossary of Terms Ability Accommodation Adjusted validity/reliability coefficient Alternate forms Analysis of work Assessment Battery Bias

Glossary of Terms Ability Accommodation Adjusted validity/reliability coefficient Alternate forms Analysis of work Assessment Battery Bias Glossary of Terms Ability A defined domain of cognitive, perceptual, psychomotor, or physical functioning. Accommodation A change in the content, format, and/or administration of a selection procedure

More information

What is Statistics? Statistics is about Collecting data Organizing data Analyzing data Presenting data

What is Statistics? Statistics is about Collecting data Organizing data Analyzing data Presenting data Introduction What is Statistics? Statistics is about Collecting data Organizing data Analyzing data Presenting data What is Statistics? Statistics is divided into two areas: descriptive statistics and

More information

TYPES OF SAMPLING. 2. Types of Non-probability Sample: There are the following four types of nonprobability PROBABILITY SAMPLING

TYPES OF SAMPLING. 2. Types of Non-probability Sample: There are the following four types of nonprobability PROBABILITY SAMPLING TYPES OF SAMPLING 1. Types or Techniques Probability Sampling: There are a number of techniques of taking Probability sample. But here only six important techniques have been discussed as follows: 1. Simple

More information

Analyzing and interpreting data Evaluation resources from Wilder Research

Analyzing and interpreting data Evaluation resources from Wilder Research Wilder Research Analyzing and interpreting data Evaluation resources from Wilder Research Once data are collected, the next step is to analyze the data. A plan for analyzing your data should be developed

More information

Sampling: Design and Procedures

Sampling: Design and Procedures MBACATÓLICA JAN/APRIL 2006 Marketing Research Fernando S. Machado Week 6 Sampling: Design and Procedures Sampling: Sample Size Determination Data Preparation 1 Sampling: Design and Procedures The Sampling

More information

Quantitative Methods for Finance

Quantitative Methods for Finance Quantitative Methods for Finance Module 1: The Time Value of Money 1 Learning how to interpret interest rates as required rates of return, discount rates, or opportunity costs. 2 Learning how to explain

More information

SAMPLING & INFERENTIAL STATISTICS. Sampling is necessary to make inferences about a population.

SAMPLING & INFERENTIAL STATISTICS. Sampling is necessary to make inferences about a population. SAMPLING & INFERENTIAL STATISTICS Sampling is necessary to make inferences about a population. SAMPLING The group that you observe or collect data from is the sample. The group that you make generalizations

More information

A Correlation of. to the. South Carolina Data Analysis and Probability Standards

A Correlation of. to the. South Carolina Data Analysis and Probability Standards A Correlation of to the South Carolina Data Analysis and Probability Standards INTRODUCTION This document demonstrates how Stats in Your World 2012 meets the indicators of the South Carolina Academic Standards

More information

POLI 300 Handout #2 N. R. Miller RANDOM SAMPLING. Key Definitions Pertaining to Sampling

POLI 300 Handout #2 N. R. Miller RANDOM SAMPLING. Key Definitions Pertaining to Sampling POLI 300 Handout #2 N. R. Miller Key Definitions Pertaining to Sampling RANDOM SAMPLING 1. Population: the set of units (in survey research, usually individuals or households), N in number, that are to

More information

Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013

Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013 Statistics I for QBIC Text Book: Biostatistics, 10 th edition, by Daniel & Cross Contents and Objectives Chapters 1 7 Revised: August 2013 Chapter 1: Nature of Statistics (sections 1.1-1.6) Objectives

More information

Sampling & Sample Size Estimation

Sampling & Sample Size Estimation Sampling & Sample Size Estimation Moazzam Ali MD, PhD, MPH Department of Reproductive Health and Research World Health Organization Geneva, Switzerland Presented at: GFMER September 16, 2014 Topics to

More information

Basic Biostatistics for Clinical Research. Ramses F Sadek, PhD GRU Cancer Center

Basic Biostatistics for Clinical Research. Ramses F Sadek, PhD GRU Cancer Center Basic Biostatistics for Clinical Research Ramses F Sadek, PhD GRU Cancer Center 1 1. Basic Concepts 2. Data & Their Presentation Part One 2 1. Basic Concepts Statistics Biostatistics Populations and samples

More information

Manual. How large a Sample do we need SRS STRAT.xls. Guido Lüchters September 2006

Manual. How large a Sample do we need SRS STRAT.xls. Guido Lüchters September 2006 Manual How large a Sample do we need SRS STRAT.xls Guido Lüchters September 2006 File: How large a Sample do we need SRS STRAT.doc Last save: Friday, 8. September 2006 How large a Sample do we need SRS

More information

Sampling: Design and Procedures

Sampling: Design and Procedures Chapter Eleven Sampling: Design and Procedures 11-1 Brand name change and re-position Coke to New Coke Legend to Lenovo (2003) Panasonic, National, Technic all to Panasonic Vegemite to isnack 2.0 (social

More information

Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010

Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010 Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010 Week 1 Week 2 14.0 Students organize and describe distributions of data by using a number of different

More information

Schools Value-added Information System Technical Manual

Schools Value-added Information System Technical Manual Schools Value-added Information System Technical Manual Quality Assurance & School-based Support Division Education Bureau 2015 Contents Unit 1 Overview... 1 Unit 2 The Concept of VA... 2 Unit 3 Control

More information

Non-random/non-probability sampling designs in quantitative research

Non-random/non-probability sampling designs in quantitative research 206 RESEARCH MET HODOLOGY Non-random/non-probability sampling designs in quantitative research N on-probability sampling designs do not follow the theory of probability in the choice of elements from the

More information

Basic Research Progress

Basic Research Progress Mgt 540 Research Methods Sampling Issues 1 Basic Research Progress Explorative - Descriptive (Qualitative) 1. Framework / Domain extant knowledge for reference 2. Research Design 3. Data collection / presentation

More information

Mathematics. Probability and Statistics Curriculum Guide. Revised 2010

Mathematics. Probability and Statistics Curriculum Guide. Revised 2010 Mathematics Probability and Statistics Curriculum Guide Revised 2010 This page is intentionally left blank. Introduction The Mathematics Curriculum Guide serves as a guide for teachers when planning instruction

More information

Chapter 15 Multiple Choice Questions (The answers are provided after the last question.)

Chapter 15 Multiple Choice Questions (The answers are provided after the last question.) Chapter 15 Multiple Choice Questions (The answers are provided after the last question.) 1. What is the median of the following set of scores? 18, 6, 12, 10, 14? a. 10 b. 14 c. 18 d. 12 2. Approximately

More information

Dr. Peter Tröger Hasso Plattner Institute, University of Potsdam. Software Profiling Seminar, Statistics 101

Dr. Peter Tröger Hasso Plattner Institute, University of Potsdam. Software Profiling Seminar, Statistics 101 Dr. Peter Tröger Hasso Plattner Institute, University of Potsdam Software Profiling Seminar, 2013 Statistics 101 Descriptive Statistics Population Object Object Object Sample numerical description Object

More information

Elementary Statistics

Elementary Statistics Elementary Statistics Chapter 1 Dr. Ghamsary Page 1 Elementary Statistics M. Ghamsary, Ph.D. Chap 01 1 Elementary Statistics Chapter 1 Dr. Ghamsary Page 2 Statistics: Statistics is the science of collecting,

More information

Statistics revision. Dr. Inna Namestnikova. Statistics revision p. 1/8

Statistics revision. Dr. Inna Namestnikova. Statistics revision p. 1/8 Statistics revision Dr. Inna Namestnikova inna.namestnikova@brunel.ac.uk Statistics revision p. 1/8 Introduction Statistics is the science of collecting, analyzing and drawing conclusions from data. Statistics

More information

X = T + E. Reliability. Reliability. Classical Test Theory 7/18/2012. Refers to the consistency or stability of scores

X = T + E. Reliability. Reliability. Classical Test Theory 7/18/2012. Refers to the consistency or stability of scores Reliability It is the user who must take responsibility for determining whether or not scores are sufficiently trustworthy to justify anticipated uses and interpretations. (AERA et al., 1999) Reliability

More information

Chapter 1: Using Graphs to Describe Data

Chapter 1: Using Graphs to Describe Data Department of Mathematics Izmir University of Economics Week 1 2014-2015 Introduction In this chapter we will focus on the definitions of population, sample, parameter, and statistic, the classification

More information

Survey Process White Paper Series Five Steps in Creating a Survey Sampling Plan

Survey Process White Paper Series Five Steps in Creating a Survey Sampling Plan Survey Process White Paper Series Five Steps in Creating a Survey Sampling Plan POLARIS MARKETING RESEARCH, INC. 1455 LINCOLN PARKWAY, SUITE 320 ATLANTA, GEORGIA 30346 404.816.0353 www.polarismr.com ii

More information

Sampling Techniques Surveys and samples Source: http://www.deakin.edu.au/~agoodman/sci101/chap7.html

Sampling Techniques Surveys and samples Source: http://www.deakin.edu.au/~agoodman/sci101/chap7.html Sampling Techniques Surveys and samples Source: http://www.deakin.edu.au/~agoodman/sci101/chap7.html In this section you'll learn how sample surveys can be organised, and how samples can be chosen in such

More information

Survey Sampling. Know How No 9 guidance for research and evaluation in Fife. What this is about? Who is it for? What do you need to know?

Survey Sampling. Know How No 9 guidance for research and evaluation in Fife. What this is about? Who is it for? What do you need to know? guidance for research and evaluation in Fife What this is about? Sampling allows you to draw conclusions about a particular population by examining a part of it. When carrying out a survey, it is not usually

More information

MAT 12O ELEMENTARY STATISTICS I

MAT 12O ELEMENTARY STATISTICS I LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, AND COMPUTER SCIENCE MAT 12O ELEMENTARY STATISTICS I 3 Lecture Hours, 1 Lab Hour, 3 Credits Pre-Requisite:

More information

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in

More information

Business Research Methods

Business Research Methods ESSENTIALS OF Business Research Methods SECOND EDITION Joseph F. Hair Jr. Mary Wolfinbarger Celsi Arthur H. Money Phillip Samouel Michael J. Page am.e.sharpe Armonk, New York London, England Detailed Table

More information

Survey Research: Choice of Instrument, Sample. Lynda Burton, ScD Johns Hopkins University

Survey Research: Choice of Instrument, Sample. Lynda Burton, ScD Johns Hopkins University This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Introduction to Sampling. Dr. Safaa R. Amer. Overview. for Non-Statisticians. Part II. Part I. Sample Size. Introduction.

Introduction to Sampling. Dr. Safaa R. Amer. Overview. for Non-Statisticians. Part II. Part I. Sample Size. Introduction. Introduction to Sampling for Non-Statisticians Dr. Safaa R. Amer Overview Part I Part II Introduction Census or Sample Sampling Frame Probability or non-probability sample Sampling with or without replacement

More information

CALCULATIONS & STATISTICS

CALCULATIONS & STATISTICS CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents

More information

Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm

Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm

More information

Foundation of Quantitative Data Analysis

Foundation of Quantitative Data Analysis Foundation of Quantitative Data Analysis Part 1: Data manipulation and descriptive statistics with SPSS/Excel HSRS #10 - October 17, 2013 Reference : A. Aczel, Complete Business Statistics. Chapters 1

More information

Research Variables. Measurement. Scales of Measurement. Chapter 4: Data & the Nature of Measurement

Research Variables. Measurement. Scales of Measurement. Chapter 4: Data & the Nature of Measurement Chapter 4: Data & the Nature of Graziano, Raulin. Research Methods, a Process of Inquiry Presented by Dustin Adams Research Variables Variable Any characteristic that can take more than one form or value.

More information

Determining Sample Size 1

Determining Sample Size 1 Fact Sheet PEOD-6 November 1992 Determining Sample Size 1 Glenn D. Israel 2 Perhaps the most frequently asked question concerning sampling is, "What size sample do I need?" The answer to this question

More information

Statistics, Research, & SPSS: The Basics

Statistics, Research, & SPSS: The Basics Statistics, Research, & SPSS: The Basics SPSS (Statistical Package for the Social Sciences) is a software program that makes the calculation and presentation of statistics relatively easy. It is an incredibly

More information

Lecture 2: Descriptive Statistics and Exploratory Data Analysis

Lecture 2: Descriptive Statistics and Exploratory Data Analysis Lecture 2: Descriptive Statistics and Exploratory Data Analysis Further Thoughts on Experimental Design 16 Individuals (8 each from two populations) with replicates Pop 1 Pop 2 Randomly sample 4 individuals

More information

AP Statistics: Syllabus 3

AP Statistics: Syllabus 3 AP Statistics: Syllabus 3 Scoring Components SC1 The course provides instruction in exploring data. 4 SC2 The course provides instruction in sampling. 5 SC3 The course provides instruction in experimentation.

More information

What is Psychology? chapter 1

What is Psychology? chapter 1 What is Psychology? chapter 1 Overview! The science of psychology! What psychologists do! Critical and scientific thinking! Correlational studies! The experiment! Evaluating findings What is psychology?

More information

CHAPTER 3 COMMONLY USED STATISTICAL TERMS

CHAPTER 3 COMMONLY USED STATISTICAL TERMS CHAPTER 3 COMMONLY USED STATISTICAL TERMS There are many statistics used in social science research and evaluation. The two main areas of statistics are descriptive and inferential. The third class of

More information

PRINCIPLES OF HIGH QUALITY ASSESSMENT. Allan M. Canonigo

PRINCIPLES OF HIGH QUALITY ASSESSMENT. Allan M. Canonigo PRINCIPLES OF HIGH QUALITY ASSESSMENT Allan M. Canonigo http://love4mathed.com PRINCIPLES OF HIGH QUALITY ASSESSMENT 1. Clarity of learning targets 2. (knowledge, reasoning, skills, products, affects)

More information

Sample size determination

Sample size determination Sample size determination Review Articles Influencing factors and calculation strategies for survey research Ali A. Al-Subaihi, PhD. ABSTRACT The paper reviews both the influencing factors and calculation

More information

Sampling Procedures Y520. Strategies for Educational Inquiry. Robert S Michael

Sampling Procedures Y520. Strategies for Educational Inquiry. Robert S Michael Sampling Procedures Y520 Strategies for Educational Inquiry Robert S Michael RSMichael 2-1 Terms Population (or universe) The group to which inferences are made based on a sample drawn from the population.

More information

Theoretic perspectives & empirical insights from the European Social Survey. August 25th

Theoretic perspectives & empirical insights from the European Social Survey. August 25th Theoretic perspectives & empirical insights from the European Social Survey Research Centre for Survey Research and Methodology Mannheim, Germany ganninger@zuma-mannheim.de August 25th Overview 1 2 3 4

More information

Introduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.

Introduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing. Introduction to Hypothesis Testing CHAPTER 8 LEARNING OBJECTIVES After reading this chapter, you should be able to: 1 Identify the four steps of hypothesis testing. 2 Define null hypothesis, alternative

More information

Sheffield Hallam University. Faculty of Health and Wellbeing Professional Development 1 Quantitative Analysis. Glossary

Sheffield Hallam University. Faculty of Health and Wellbeing Professional Development 1 Quantitative Analysis. Glossary Sheffield Hallam University Faculty of Health and Wellbeing Professional Development 1 Quantitative Analysis Glossary 2 Using the Glossary This does not set out to tell you everything about the topics

More information

Chapter Eight: Quantitative Methods

Chapter Eight: Quantitative Methods Chapter Eight: Quantitative Methods RESEARCH DESIGN Qualitative, Quantitative, and Mixed Methods Approaches Third Edition John W. Creswell Chapter Outline Defining Surveys and Experiments Components of

More information

Online International Interdisciplinary Research Journal, {Bi-Monthly}, ISSN2249-9598, Volume-II, Issue-VI, Nov-Dec 2012

Online International Interdisciplinary Research Journal, {Bi-Monthly}, ISSN2249-9598, Volume-II, Issue-VI, Nov-Dec 2012 Methods of Sampling Design in the Legal Research: Advantages and Disadvantages Kalpana V. Jawale Assistant Professor, Post Graduate Teaching Department of Law, Sant Gadge Baba Amravati University, Amravati,

More information

CH.6 Random Sampling and Descriptive Statistics

CH.6 Random Sampling and Descriptive Statistics CH.6 Random Sampling and Descriptive Statistics Population vs Sample Random sampling Numerical summaries : sample mean, sample variance, sample range Stem-and-Leaf Diagrams Median, quartiles, percentiles,

More information

Session 1.6 Measures of Central Tendency

Session 1.6 Measures of Central Tendency Session 1.6 Measures of Central Tendency Measures of location (Indices of central tendency) These indices locate the center of the frequency distribution curve. The mode, median, and mean are three indices

More information

Geostatistics Exploratory Analysis

Geostatistics Exploratory Analysis Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa Master of Science in Geospatial Technologies Geostatistics Exploratory Analysis Carlos Alberto Felgueiras cfelgueiras@isegi.unl.pt

More information

The main objective of the study was to establish the brand equity of the. provincial, regional and national rugby teams of South Africa.

The main objective of the study was to establish the brand equity of the. provincial, regional and national rugby teams of South Africa. Chapter 5 RESEARCH METHODOLOGY 5.1 INTRODUCTION The main objective of the study was to establish the brand equity of the provincial, regional and national rugby teams of South Africa. Primary research

More information

MARKETING RESEARCH AND MARKET INTELLIGENCE (MRM711S) FEEDBACK TUTORIAL LETTER SEMESTER `1 OF 2016. Dear Student

MARKETING RESEARCH AND MARKET INTELLIGENCE (MRM711S) FEEDBACK TUTORIAL LETTER SEMESTER `1 OF 2016. Dear Student MARKETING RESEARCH AND MARKET INTELLIGENCE (MRM711S) FEEDBACK TUTORIAL LETTER SEMESTER `1 OF 2016 Dear Student Assignment 1 has been marked and this serves as feedback on the assignment. I have included

More information

II. DISTRIBUTIONS distribution normal distribution. standard scores

II. DISTRIBUTIONS distribution normal distribution. standard scores Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,

More information

Task force on quality of BCS data. Analysis of sample size in consumer surveys

Task force on quality of BCS data. Analysis of sample size in consumer surveys Task force on quality of BCS data Analysis of sample size in consumer surveys theoretical considerations and factors determining minimum necessary sample sizes, link between country size and sample size

More information

VALIDITY FOR TEACHERS A N O V E R V I E W

VALIDITY FOR TEACHERS A N O V E R V I E W VALIDITY FOR TEACHERS A N O V E R V I E W DEFINITION Validity refers to how appropriate the interpretations of a test score are for the purpose intended. For instance, does a test that is supposed to measure

More information

Introduction to Statistics and Quantitative Research Methods

Introduction to Statistics and Quantitative Research Methods Introduction to Statistics and Quantitative Research Methods Purpose of Presentation To aid in the understanding of basic statistics, including terminology, common terms, and common statistical methods.

More information

Survey Process White Paper Series The Six Steps in Conducting Quantitative Marketing Research

Survey Process White Paper Series The Six Steps in Conducting Quantitative Marketing Research Survey Process White Paper Series The Six Steps in Conducting Quantitative Marketing Research POLARIS MARKETING RESEARCH, INC. 1455 LINCOLN PARKWAY, SUITE 320 ATLANTA, GEORGIA 30346 404.816.0353 www.polarismr.com

More information

AP Statistics 1998 Scoring Guidelines

AP Statistics 1998 Scoring Guidelines AP Statistics 1998 Scoring Guidelines These materials are intended for non-commercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement

More information

Semester 2 Statistics Short courses

Semester 2 Statistics Short courses Semester 2 Statistics Short courses Course: STAA0001 - Basic Statistics Blackboard Site: STAA0001 Dates: Sat 10 th Sept and 22 Oct 2016 (9 am 5 pm) Room EN409 Assumed Knowledge: None Day 1: Exploratory

More information

Northumberland Knowledge

Northumberland Knowledge Northumberland Knowledge Know Guide How to Analyse Data - November 2012 - This page has been left blank 2 About this guide The Know Guides are a suite of documents that provide useful information about

More information

Study Guide for the Final Exam

Study Guide for the Final Exam Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make

More information

MEASURES OF VARIATION

MEASURES OF VARIATION NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are

More information

Minitab Guide. This packet contains: A Friendly Guide to Minitab. Minitab Step-By-Step

Minitab Guide. This packet contains: A Friendly Guide to Minitab. Minitab Step-By-Step Minitab Guide This packet contains: A Friendly Guide to Minitab An introduction to Minitab; including basic Minitab functions, how to create sets of data, and how to create and edit graphs of different

More information

4.1 Exploratory Analysis: Once the data is collected and entered, the first question is: "What do the data look like?"

4.1 Exploratory Analysis: Once the data is collected and entered, the first question is: What do the data look like? Data Analysis Plan The appropriate methods of data analysis are determined by your data types and variables of interest, the actual distribution of the variables, and the number of cases. Different analyses

More information

Standard Deviation Estimator

Standard Deviation Estimator CSS.com Chapter 905 Standard Deviation Estimator Introduction Even though it is not of primary interest, an estimate of the standard deviation (SD) is needed when calculating the power or sample size of

More information

Hawaii State Standards correlated to Merit Software Math Programs

Hawaii State Standards correlated to Merit Software Math Programs Hawaii State Standards correlated to Merit Software Math Programs The Language Arts Content Standards (1999) emphasize reading, writing, oral communication, and the study of literature and language from

More information