Semiconductor sensors of temperature

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Semiconductor sensors of temperature"

Transcription

1 Semconductor sensors of temperature he measurement objectve 1. Identfy the unknown bead type thermstor. Desgn the crcutry for lnearzaton of ts transfer curve.. Fnd the dependence of forward voltage drop on the dode on temperature for constant forward current. 3. For the converter temperature to duty cycle SM-16 fnd the dependence of output varable (DUY rato) on temperature. he measurement procedure 1. hermstor 1.1 Measure the dependence of thermstor resstance on temperature = f() wth measurng current 5 µa for the range of temperature from C to 35 C. hermstor s nserted n water bath heated by hotplate. Calculate the constant of thermstor now. (You need t for further procedures.) 1. emove the bead thermstor from bath and measure the volt-ampere characterstc of thermstor n ar for the range of currents from 5 µa to 5 ma. In seres wth thermstor s connected protectng resstor wth resstance of 1 Ω. For adjustng the ntensty of small currents use the decade resstor (rheostat box) (see Fg. 1.1). For the hghest current I = 5 ma measure also the voltage drop on thermstor nserted n water bath (change water n bath to cold one) wth strrng swtched on and off. ecord the ambent temperature,.e. the temperature of ar and the temperature of water. Determne the self-heatng of thermstor due to measurng current and calculate the loadng constant D for three cases,.e. thermstor placed n ar, n strred water and n stll water. When performng the numercal calculatons n the formulas always use the temperature n Kelvn! 1.3 In a narrow regon around the temperature t = 5 C consder the functon = f() as beng lnear and fulfllng the relaton = (1 α ). Derve relaton for thermal coeffcent α correspondng to the tangent lne of the functon = f() and calculate ts value at the temperature t = 5 C. Compare the value of α wth the values of temperature coeffcent for platnum (e.g. Pt1) D. 1. Calculate the value of seral lnearzaton resstor S (Fg. 1.) whch sets the pont of nflexon of the functon I = f() to temperature t = 5 C. y means of the decade resstor nsert the calculated value of S nto the crcut. Do not forget to subtract the value of protectng resstor P 1 Ω. 1.5 Determne by measurement the lnearty of crcut n Fg. (1.),.e. the lnearty of the functon I = f() up to temperature t = 55 C. he voltage of the source should be set to the value at whch current 15 µa would flow at the ntal temperature. Approxmate the measured characterstc by a straght lne of the type I = I I α. 1

2 Fg. 1.1 Fg. 1.. Sensor of temperature wth PN juncton (dode thermometer) Determne the dependence of voltage drop on the transstor KC 37 connected as a dode. Fnd the lnearty of the measured relaton. What s the value of current flowng through the dode? he temperature of alumnum block s also measured by means of semconductor temperature sensor AD 59 (511). hs sensor behaves (after connecton to power supply) as the source of current controlled by temperature. he converson constant of ths sensor s 1 µa/k. he sgnal condtonng crcut n Fg.1.3 shfts the orgn of range (zero suppresson). Smultaneously (at the same heatng) measure the transfer functon of temperature to duty cycle converter (SM 16-3). Calculate the values of senstvty and offset. Fg he temperature to current converter AD 59 and transstor KC37

3 he hnts for measurement When usng the relatons shown below, the temperature should be expressed n K o step 1.1: see dscusson of -constant below, n he dervaton of the load characterstc o step 1.: he loadng constant D: (1.1) expresses the relaton between power appled by measurng current and resultng error by selfheatng. It can be converted to where [K] s the ambent temperature [K] s the constant of thermstor, U 1 [V] the voltage drop at thermstor at mnmal measurng current I = 5 µa, U [V] the voltage drop at thermstor at maxmal measurng current I = 5 ma. Prove the valdty of the relaton (1.). (1.) o step 1.3: When dervng the relaton for α substtute the rato / for > by dfferentaton d/d of the relaton = A.e / expressng the temperature dependence of the thermstor. o step 1.: he resstance of thermstor at the temperature of 5 C (whch s necessary for calculaton of S ) fnd by calculaton (extrapolaton) usng the constant. he relaton for the calculaton of lnearzng resstor value S dependng on the selected temperature of nflexon can be derved from the condton d I/d =. he dervaton of the load characterstc For the resstance of NC thermometers the followng equaton s vald: ( ) = he value of the constant A s usually not quoted n thermstor data sheet, the thermstor s characterzed by ts senstvty and the resstance o at the temperature. Ae he thermstor characterstc s mostly expressed by the equaton ( ) 1 1 o = e 3

4 where [Ω] s the resstance of thermstor at the temperature [K], [Ω] s the resstance of the thermstor at the temperature [K]. he constant can be found n a datasheet or by measurement. For the calculaton of D the measurement of voltage U 1 on thermstor for very small current I 1 (e.g. 5 µa), s necessary. For the low current the self-heatng effect of thermstor can be neglected (thermstor s practcally at ambent temperature ). he voltage drop U s measured for large current I (e.g. 5 ma), whch causes the warmng of thermstor above the ambent temperature of.e. on the temperature =. Neglectng the warmng effect of the small measurng current we obtan P D = U I = emperature can be calculated as After substtuton we have and fnally Dervaton of equaton for lnearzaton of thermstor transfer characterstc he connecton of the seral resstance S belongs to the most frequently used method of lnearzaton of exponental dependence of thermstor on temperature. he seral combnaton of S s drven from source of constant voltage, the current I represents the output varable. he value of S s chosen n such a way that the nflexon pont of resultant functon I=f() les n the mddle of the range for the selected value of temperature and the overall lnearty error s optmally spread over the range.

5 5 For I=f() s vald he nflexon pont s determned by condton that the second dervaton of the current (the bottom equaton wrtten above) s zero. t s gven by relaton After substtuton to prevous equaton we obtan ( ) = 3 S = S S = (1.9) he example of the effect of the seral resstor s shown n Fg.1.5. he exponental dependence of the thermstor resstance on temperature (Fg a)) s the reason of the consderable error of lnearty n connecton wth constant voltage (Fg b)). he nserton of the seral resstor wll decrease the senstvty, but the lnearty error s suppressed substantally (Fg c)). Fg. 1. Lnearzed crcut

6 [ Ω] I [ma] I [ma] t [ C] t [ C] t [ C] a) b) c) 6

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits Lnear Crcuts Analyss. Superposton, Theenn /Norton Equalent crcuts So far we hae explored tmendependent (resste) elements that are also lnear. A tmendependent elements s one for whch we can plot an / cure.

More information

Lesson 2 Chapter Two Three Phase Uncontrolled Rectifier

Lesson 2 Chapter Two Three Phase Uncontrolled Rectifier Lesson 2 Chapter Two Three Phase Uncontrolled Rectfer. Operatng prncple of three phase half wave uncontrolled rectfer The half wave uncontrolled converter s the smplest of all three phase rectfer topologes.

More information

The circuit shown on Figure 1 is called the common emitter amplifier circuit. The important subsystems of this circuit are:

The circuit shown on Figure 1 is called the common emitter amplifier circuit. The important subsystems of this circuit are: polar Juncton Transstor rcuts Voltage and Power Amplfer rcuts ommon mtter Amplfer The crcut shown on Fgure 1 s called the common emtter amplfer crcut. The mportant subsystems of ths crcut are: 1. The basng

More information

2 The TTL Inverter. (i) An input transistor, T 1, which performs a current steering function, can be thought of as a back-to-back diode arrangement.

2 The TTL Inverter. (i) An input transistor, T 1, which performs a current steering function, can be thought of as a back-to-back diode arrangement. The TTL Inverter.1 Crcut Structure The crcut dagram of the Transstor Transstor Logc nverter s shown n Fg..1. Ths crcut overcomes the lmtatons of the sngle transstor nverter crcut. Some of the notable features

More information

Faraday's Law of Induction

Faraday's Law of Induction Introducton Faraday's Law o Inducton In ths lab, you wll study Faraday's Law o nducton usng a wand wth col whch swngs through a magnetc eld. You wll also examne converson o mechanc energy nto electrc energy

More information

Analysis of Small-signal Transistor Amplifiers

Analysis of Small-signal Transistor Amplifiers Analyss of Small-sgnal Transstor Amplfers On completon of ths chapter you should be able to predct the behaour of gen transstor amplfer crcuts by usng equatons and/or equalent crcuts that represent the

More information

Generator Warm-Up Characteristics

Generator Warm-Up Characteristics NO. REV. NO. : ; ~ Generator Warm-Up Characterstcs PAGE OF Ths document descrbes the warm-up process of the SNAP-27 Generator Assembly after the sotope capsule s nserted. Several nqures have recently been

More information

Section B9: Zener Diodes

Section B9: Zener Diodes Secton B9: Zener Dodes When we frst talked about practcal dodes, t was mentoned that a parameter assocated wth the dode n the reverse bas regon was the breakdown voltage, BR, also known as the peak-nverse

More information

Introduction: Analysis of Electronic Circuits

Introduction: Analysis of Electronic Circuits /30/008 ntroducton / ntroducton: Analyss of Electronc Crcuts Readng Assgnment: KVL and KCL text from EECS Just lke EECS, the majorty of problems (hw and exam) n EECS 3 wll be crcut analyss problems. Thus,

More information

Bipolar Junction Transistor (BJT)

Bipolar Junction Transistor (BJT) polar Juncton Transstor (JT) Lecture notes: Sec. 3 Sedra & Smth (6 th Ed): Sec. 6.1-6.4* Sedra & Smth (5 th Ed): Sec. 5.1-5.4* * Includes detals of JT dece operaton whch s not coered n ths course F. Najmabad,

More information

EE201 Circuit Theory I 2015 Spring. Dr. Yılmaz KALKAN

EE201 Circuit Theory I 2015 Spring. Dr. Yılmaz KALKAN EE201 Crcut Theory I 2015 Sprng Dr. Yılmaz KALKAN 1. Basc Concepts (Chapter 1 of Nlsson - 3 Hrs.) Introducton, Current and Voltage, Power and Energy 2. Basc Laws (Chapter 2&3 of Nlsson - 6 Hrs.) Voltage

More information

3. Bipolar Junction Transistor (BJT)

3. Bipolar Junction Transistor (BJT) 3. polar Juncton Transstor (JT) Lecture notes: Sec. 3 Sedra & Smth (6 th Ed): Sec. 6.1-6.4* Sedra & Smth (5 th Ed): Sec. 5.1-5.4* * Includes detals of JT dece operaton whch s not coered n ths course EE

More information

(6)(2) (-6)(-4) (-4)(6) + (-2)(-3) + (4)(3) + (2)(-3) = -12-24 + 24 + 6 + 12 6 = 0

(6)(2) (-6)(-4) (-4)(6) + (-2)(-3) + (4)(3) + (2)(-3) = -12-24 + 24 + 6 + 12 6 = 0 Chapter 3 Homework Soluton P3.-, 4, 6, 0, 3, 7, P3.3-, 4, 6, P3.4-, 3, 6, 9, P3.5- P3.6-, 4, 9, 4,, 3, 40 ---------------------------------------------------- P 3.- Determne the alues of, 4,, 3, and 6

More information

Solution of Algebraic and Transcendental Equations

Solution of Algebraic and Transcendental Equations CHAPTER Soluton of Algerac and Transcendental Equatons. INTRODUCTION One of the most common prolem encountered n engneerng analyss s that gven a functon f (, fnd the values of for whch f ( = 0. The soluton

More information

The example below solves a system in the unknowns α and β:

The example below solves a system in the unknowns α and β: The Fnd Functon The functon Fnd returns a soluton to a system of equatons gven by a solve block. You can use Fnd to solve a lnear system, as wth lsolve, or to solve nonlnear systems. The example below

More information

EE 4343 Lab#1 Identification of Static Motor Module Parameters

EE 4343 Lab#1 Identification of Static Motor Module Parameters EE 4343 Lab# Identfcaton of Statc Motor Module Parameters Prepared by: Stacy Cason Updated: Wednesday, May 26, 999 The block dagram for the DC motor module to be used n today s lab s shown below. (Fgure

More information

Passive Filters. References: Barbow (pp 265-275), Hayes & Horowitz (pp 32-60), Rizzoni (Chap. 6)

Passive Filters. References: Barbow (pp 265-275), Hayes & Horowitz (pp 32-60), Rizzoni (Chap. 6) Passve Flters eferences: Barbow (pp 6575), Hayes & Horowtz (pp 360), zzon (Chap. 6) Frequencyselectve or flter crcuts pass to the output only those nput sgnals that are n a desred range of frequences (called

More information

9.1 The Cumulative Sum Control Chart

9.1 The Cumulative Sum Control Chart Learnng Objectves 9.1 The Cumulatve Sum Control Chart 9.1.1 Basc Prncples: Cusum Control Chart for Montorng the Process Mean If s the target for the process mean, then the cumulatve sum control chart s

More information

Ping Pong Fun - Video Analysis Project

Ping Pong Fun - Video Analysis Project Png Pong Fun - Vdeo Analyss Project Objectve In ths experment we are gong to nvestgate the projectle moton of png pong balls usng Verner s Logger Pro Software. Does the object travel n a straght lne? What

More information

Lesson04:Bipolar Junction Transistors

Lesson04:Bipolar Junction Transistors Lesson04:Bpolar Juncton ransstors Chapter Goals Explore the physcal structure of bpolar transstor tudy termnal characterstcs of BJ. Explore dfferences between npn and pnp transstors. Deelop the ransport

More information

LOOP ANALYSIS. The second systematic technique to determine all currents and voltages in a circuit

LOOP ANALYSIS. The second systematic technique to determine all currents and voltages in a circuit LOOP ANALYSS The second systematic technique to determine all currents and voltages in a circuit T S DUAL TO NODE ANALYSS - T FRST DETERMNES ALL CURRENTS N A CRCUT AND THEN T USES OHM S LAW TO COMPUTE

More information

The Bridge Rectifier

The Bridge Rectifier 9/4/004 The Brdge ectfer.doc 1/9 The Brdge ectfer Now consder ths juncton dode rectfer crcut: 1 Lne (t) - O (t) _ 4 3 We call ths crcut the brdge rectfer. Let s analyze t and see what t does! Frst, we

More information

INTRODUCTION. governed by a differential equation Need systematic approaches to generate FE equations

INTRODUCTION. governed by a differential equation Need systematic approaches to generate FE equations WEIGHTED RESIDUA METHOD INTRODUCTION Drect stffness method s lmted for smple D problems PMPE s lmted to potental problems FEM can be appled to many engneerng problems that are governed by a dfferental

More information

( ) Homework Solutions Physics 8B Spring 09 Chpt. 32 5,18,25,27,36,42,51,57,61,76

( ) Homework Solutions Physics 8B Spring 09 Chpt. 32 5,18,25,27,36,42,51,57,61,76 Homework Solutons Physcs 8B Sprng 09 Chpt. 32 5,8,25,27,3,42,5,57,,7 32.5. Model: Assume deal connectng wres and an deal battery for whch V bat = E. Please refer to Fgure EX32.5. We wll choose a clockwse

More information

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by 6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng

More information

Homework Solutions Physics 8B Spring 2012 Chpt. 32 5,18,25,27,36,42,51,57,61,76

Homework Solutions Physics 8B Spring 2012 Chpt. 32 5,18,25,27,36,42,51,57,61,76 Homework Solutons Physcs 8B Sprng 202 Chpt. 32 5,8,25,27,3,42,5,57,,7 32.5. Model: Assume deal connectng wres and an deal battery for whch V bat =. Please refer to Fgure EX32.5. We wll choose a clockwse

More information

b) The mean of the fitted (predicted) values of Y is equal to the mean of the Y values: c) The residuals of the regression line sum up to zero: = ei

b) The mean of the fitted (predicted) values of Y is equal to the mean of the Y values: c) The residuals of the regression line sum up to zero: = ei Mathematcal Propertes of the Least Squares Regresson The least squares regresson lne obeys certan mathematcal propertes whch are useful to know n practce. The followng propertes can be establshed algebracally:

More information

+ + + - - This circuit than can be reduced to a planar circuit

+ + + - - This circuit than can be reduced to a planar circuit MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to

More information

Time Domain simulation of PD Propagation in XLPE Cables Considering Frequency Dependent Parameters

Time Domain simulation of PD Propagation in XLPE Cables Considering Frequency Dependent Parameters Internatonal Journal of Smart Grd and Clean Energy Tme Doman smulaton of PD Propagaton n XLPE Cables Consderng Frequency Dependent Parameters We Zhang a, Jan He b, Ln Tan b, Xuejun Lv b, Hong-Je L a *

More information

The Full-Wave Rectifier

The Full-Wave Rectifier 9/3/2005 The Full Wae ectfer.doc /0 The Full-Wae ectfer Consder the followng juncton dode crcut: s (t) Power Lne s (t) 2 Note that we are usng a transformer n ths crcut. The job of ths transformer s to

More information

ChE 4520/5520: Mass Transport. Objective/Introduction. Outline. Gerardine G. Botte

ChE 4520/5520: Mass Transport. Objective/Introduction. Outline. Gerardine G. Botte ChE 450/550: Mass Transport Gerardne G. Botte Objectve/Introducton In prevous chapters we neglected transport lmtatons In ths chapter we wll learn how to evaluate the effect of transport lmtatons We wll

More information

5. Simultaneous eigenstates: Consider two operators that commute: Â η = a η (13.29)

5. Simultaneous eigenstates: Consider two operators that commute:  η = a η (13.29) 5. Smultaneous egenstates: Consder two operators that commute: [ Â, ˆB ] = 0 (13.28) Let  satsfy the followng egenvalue equaton: Multplyng both sdes by ˆB  η = a η (13.29) ˆB [  η ] = ˆB [a η ] = a

More information

3.4 Operation in the Reverse Breakdown Region Zener Diodes

3.4 Operation in the Reverse Breakdown Region Zener Diodes 3/3/2008 secton_3_4_zener_odes 1/4 3.4 Operaton n the everse Breakdown egon Zener odes eadng Assgnment: pp. 167171 A Zener ode The 3 techncal dfferences between a juncton dode and a Zener dode: 1. 2. 3.

More information

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered

More information

Calculating the high frequency transmission line parameters of power cables

Calculating the high frequency transmission line parameters of power cables < ' Calculatng the hgh frequency transmsson lne parameters of power cables Authors: Dr. John Dcknson, Laboratory Servces Manager, N 0 RW E B Communcatons Mr. Peter J. Ncholson, Project Assgnment Manager,

More information

Section C2: BJT Structure and Operational Modes

Section C2: BJT Structure and Operational Modes Secton 2: JT Structure and Operatonal Modes Recall that the semconductor dode s smply a pn juncton. Dependng on how the juncton s based, current may easly flow between the dode termnals (forward bas, v

More information

Multiple stage amplifiers

Multiple stage amplifiers Multple stage amplfers Ams: Examne a few common 2-transstor amplfers: -- Dfferental amplfers -- Cascode amplfers -- Darlngton pars -- current mrrors Introduce formal methods for exactly analysng multple

More information

Implementation of Deutsch's Algorithm Using Mathcad

Implementation of Deutsch's Algorithm Using Mathcad Implementaton of Deutsch's Algorthm Usng Mathcad Frank Roux The followng s a Mathcad mplementaton of Davd Deutsch's quantum computer prototype as presented on pages - n "Machnes, Logc and Quantum Physcs"

More information

QUANTUM MECHANICS, BRAS AND KETS

QUANTUM MECHANICS, BRAS AND KETS PH575 SPRING QUANTUM MECHANICS, BRAS AND KETS The followng summares the man relatons and defntons from quantum mechancs that we wll be usng. State of a phscal sstem: The state of a phscal sstem s represented

More information

Problem Set 3. a) We are asked how people will react, if the interest rate i on bonds is negative.

Problem Set 3. a) We are asked how people will react, if the interest rate i on bonds is negative. Queston roblem Set 3 a) We are asked how people wll react, f the nterest rate on bonds s negatve. When

More information

Design of Chinese steel TV towers

Design of Chinese steel TV towers Desgn of Chnese steel TV towers Xng Ma Department of Cvl & Envronmental Engneerng, Unversty of Auckland, New Zealand Zhaomn Wang Department of Cvl Engneerng, Tongj Unversty, Shangha, Chna 6 NZSEE Conference

More information

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ). REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or

More information

2. Introduction and Chapter Objectives

2. Introduction and Chapter Objectives eal Analog Crcuts Chapter : Crcut educton. Introducton and Chapter Objectes In Chapter, we presented Krchoff s laws (whch goern the nteractons between crcut elements) and Ohm s law (whch goerns the oltagecurrent

More information

Calibration Curves. Lecture #5 - Overview. Construction of Calibration Curves. Construction of Calibration Curves. Construction of Calibration Curves

Calibration Curves. Lecture #5 - Overview. Construction of Calibration Curves. Construction of Calibration Curves. Construction of Calibration Curves Lecture #5 - Overvew Statstcs - Part 3 Statstcal Tools n Quanttatve Analyss The Method of Least Squares Calbraton Curves Usng a Spreadsheet for Least Squares Analytcal Response Measure of Unknown Calbraton

More information

1E6 Electrical Engineering AC Circuit Analysis and Power Lecture 12: Parallel Resonant Circuits

1E6 Electrical Engineering AC Circuit Analysis and Power Lecture 12: Parallel Resonant Circuits E6 Electrcal Engneerng A rcut Analyss and Power ecture : Parallel esonant rcuts. Introducton There are equvalent crcuts to the seres combnatons examned whch exst n parallel confguratons. The ssues surroundng

More information

Michał Tadeusiewicz. Electric Circuits. Technical University of Łódź International Faculty of Engineering. Łódź 2009

Michał Tadeusiewicz. Electric Circuits. Technical University of Łódź International Faculty of Engineering. Łódź 2009 Mchał Tadeusewcz Electrc Crcuts Techncal Unersty of Łódź Internatonal Faculty of Engneerng Łódź 9 Contents Preface.. 5. Fundamental laws of electrcal crcuts 7.. Introducton... 7.. Krchhoff s oltage Law

More information

Moment of a force about a point and about an axis

Moment of a force about a point and about an axis 3. STATICS O RIGID BODIES In the precedng chapter t was assumed that each of the bodes consdered could be treated as a sngle partcle. Such a vew, however, s not always possble, and a body, n general, should

More information

A Note on the Decomposition of a Random Sample Size

A Note on the Decomposition of a Random Sample Size A Note on the Decomposton of a Random Sample Sze Klaus Th. Hess Insttut für Mathematsche Stochastk Technsche Unverstät Dresden Abstract Ths note addresses some results of Hess 2000) on the decomposton

More information

Multivariate EWMA Control Chart

Multivariate EWMA Control Chart Multvarate EWMA Control Chart Summary The Multvarate EWMA Control Chart procedure creates control charts for two or more numerc varables. Examnng the varables n a multvarate sense s extremely mportant

More information

A Computer Technique for Solving LP Problems with Bounded Variables

A Computer Technique for Solving LP Problems with Bounded Variables Dhaka Unv. J. Sc. 60(2): 163-168, 2012 (July) A Computer Technque for Solvng LP Problems wth Bounded Varables S. M. Atqur Rahman Chowdhury * and Sanwar Uddn Ahmad Department of Mathematcs; Unversty of

More information

Graph Theory and Cayley s Formula

Graph Theory and Cayley s Formula Graph Theory and Cayley s Formula Chad Casarotto August 10, 2006 Contents 1 Introducton 1 2 Bascs and Defntons 1 Cayley s Formula 4 4 Prüfer Encodng A Forest of Trees 7 1 Introducton In ths paper, I wll

More information

Derivation of Humidty and NOx Humidty Correction Factors

Derivation of Humidty and NOx Humidty Correction Factors (Ths document follows the presentatons n "Vapor Pressure Equaton for Water n the Range 0 to 00 C", by Arnold Wexler and Lews Greenspan, February 9, 97 JOURNAL OF RESEARCH of the Natonal Bureau of Standards

More information

Electric circuit components. Direct Current (DC) circuits

Electric circuit components. Direct Current (DC) circuits Electrc crcut components Capactor stores charge and potental energy, measured n Farads (F) Battery generates a constant electrcal potental dfference ( ) across t. Measured n olts (). Resstor ressts flow

More information

FORCED CONVECTION HEAT TRANSFER IN A DOUBLE PIPE HEAT EXCHANGER

FORCED CONVECTION HEAT TRANSFER IN A DOUBLE PIPE HEAT EXCHANGER FORCED CONVECION HEA RANSFER IN A DOUBLE PIPE HEA EXCHANGER Dr. J. Mchael Doster Department of Nuclear Engneerng Box 7909 North Carolna State Unversty Ralegh, NC 27695-7909 Introducton he convectve heat

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada wellng@cs.toronto.edu Abstract Ths s a note to explan support vector machnes.

More information

Time Series Analysis in Studies of AGN Variability. Bradley M. Peterson The Ohio State University

Time Series Analysis in Studies of AGN Variability. Bradley M. Peterson The Ohio State University Tme Seres Analyss n Studes of AGN Varablty Bradley M. Peterson The Oho State Unversty 1 Lnear Correlaton Degree to whch two parameters are lnearly correlated can be expressed n terms of the lnear correlaton

More information

DETERMINATION THERMODYNAMIC PROPERTIES OF WATER AND STEAM

DETERMINATION THERMODYNAMIC PROPERTIES OF WATER AND STEAM DETERMINATION THERMODYNAMIC PROPERTIES OF WATER AND STEAM S. Sngr, J. Spal Afflaton Abstract Ths work presents functons of thermodynamc parameters developed n MATLAB. There are functons to determne: saturaton

More information

Extending Probabilistic Dynamic Epistemic Logic

Extending Probabilistic Dynamic Epistemic Logic Extendng Probablstc Dynamc Epstemc Logc Joshua Sack May 29, 2008 Probablty Space Defnton A probablty space s a tuple (S, A, µ), where 1 S s a set called the sample space. 2 A P(S) s a σ-algebra: a set

More information

SIX WAYS TO SOLVE A SIMPLE PROBLEM: FITTING A STRAIGHT LINE TO MEASUREMENT DATA

SIX WAYS TO SOLVE A SIMPLE PROBLEM: FITTING A STRAIGHT LINE TO MEASUREMENT DATA SIX WAYS TO SOLVE A SIMPLE PROBLEM: FITTING A STRAIGHT LINE TO MEASUREMENT DATA E. LAGENDIJK Department of Appled Physcs, Delft Unversty of Technology Lorentzweg 1, 68 CJ, The Netherlands E-mal: e.lagendjk@tnw.tudelft.nl

More information

4. Bipolar Junction Transistors. 4. Bipolar Junction Transistors TLT-8016 Basic Analog Circuits 2005/2007 1

4. Bipolar Junction Transistors. 4. Bipolar Junction Transistors TLT-8016 Basic Analog Circuits 2005/2007 1 4. polar Juncton Transstors 4. polar Juncton Transstors TLT-806 asc Analog rcuts 2005/2007 4. asc Operaton of the npn polar Juncton Transstor npn JT conssts of thn p-type layer between two n-type layers;

More information

Interleaved Power Factor Correction (IPFC)

Interleaved Power Factor Correction (IPFC) Interleaved Power Factor Correcton (IPFC) 2009 Mcrochp Technology Incorporated. All Rghts Reserved. Interleaved Power Factor Correcton Slde 1 Welcome to the Interleaved Power Factor Correcton Reference

More information

Chapter 4 Financial Markets

Chapter 4 Financial Markets Chapter 4 Fnancal Markets ECON2123 (Sprng 2012) 14 & 15.3.2012 (Tutoral 5) The demand for money Assumptons: There are only two assets n the fnancal market: money and bonds Prce s fxed and s gven, that

More information

Ring structure of splines on triangulations

Ring structure of splines on triangulations www.oeaw.ac.at Rng structure of splnes on trangulatons N. Vllamzar RICAM-Report 2014-48 www.rcam.oeaw.ac.at RING STRUCTURE OF SPLINES ON TRIANGULATIONS NELLY VILLAMIZAR Introducton For a trangulated regon

More information

"Research Note" APPLICATION OF CHARGE SIMULATION METHOD TO ELECTRIC FIELD CALCULATION IN THE POWER CABLES *

Research Note APPLICATION OF CHARGE SIMULATION METHOD TO ELECTRIC FIELD CALCULATION IN THE POWER CABLES * Iranan Journal of Scence & Technology, Transacton B, Engneerng, ol. 30, No. B6, 789-794 rnted n The Islamc Republc of Iran, 006 Shraz Unversty "Research Note" ALICATION OF CHARGE SIMULATION METHOD TO ELECTRIC

More information

BERNSTEIN POLYNOMIALS

BERNSTEIN POLYNOMIALS On-Lne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful

More information

Lecture 3: Force of Interest, Real Interest Rate, Annuity

Lecture 3: Force of Interest, Real Interest Rate, Annuity Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annuty-mmedate, and ts present value Study annuty-due, and

More information

CIRCUIT ELEMENTS AND CIRCUIT ANALYSIS

CIRCUIT ELEMENTS AND CIRCUIT ANALYSIS EECS 4 SPING 00 Lecture 9 Copyrght egents of Unversty of Calforna CICUIT ELEMENTS AND CICUIT ANALYSIS Lecture 5 revew: Termnology: Nodes and branches Introduce the mplct reference (common) node defnes

More information

Chapter 7: Answers to Questions and Problems

Chapter 7: Answers to Questions and Problems 19. Based on the nformaton contaned n Table 7-3 of the text, the food and apparel ndustres are most compettve and therefore probably represent the best match for the expertse of these managers. Chapter

More information

Chapter 7. Random-Variate Generation 7.1. Prof. Dr. Mesut Güneş Ch. 7 Random-Variate Generation

Chapter 7. Random-Variate Generation 7.1. Prof. Dr. Mesut Güneş Ch. 7 Random-Variate Generation Chapter 7 Random-Varate Generaton 7. Contents Inverse-transform Technque Acceptance-Rejecton Technque Specal Propertes 7. Purpose & Overvew Develop understandng of generatng samples from a specfed dstrbuton

More information

RESEARCH ON DUAL-SHAKER SINE VIBRATION CONTROL. Yaoqi FENG 1, Hanping QIU 1. China Academy of Space Technology (CAST) yaoqi.feng@yahoo.

RESEARCH ON DUAL-SHAKER SINE VIBRATION CONTROL. Yaoqi FENG 1, Hanping QIU 1. China Academy of Space Technology (CAST) yaoqi.feng@yahoo. ICSV4 Carns Australa 9- July, 007 RESEARCH ON DUAL-SHAKER SINE VIBRATION CONTROL Yaoq FENG, Hanpng QIU Dynamc Test Laboratory, BISEE Chna Academy of Space Technology (CAST) yaoq.feng@yahoo.com Abstract

More information

Halliday/Resnick/Walker 7e Chapter 25 Capacitance

Halliday/Resnick/Walker 7e Chapter 25 Capacitance HRW 7e hapter 5 Page o 0 Hallday/Resnck/Walker 7e hapter 5 apactance. (a) The capactance o the system s q 70 p 35. pf. 0 (b) The capactance s ndependent o q; t s stll 3.5 pf. (c) The potental derence becomes

More information

Conversion between the vector and raster data structures using Fuzzy Geographical Entities

Conversion between the vector and raster data structures using Fuzzy Geographical Entities Converson between the vector and raster data structures usng Fuzzy Geographcal Enttes Cdála Fonte Department of Mathematcs Faculty of Scences and Technology Unversty of Combra, Apartado 38, 3 454 Combra,

More information

z(t) = z 1 (t) + t(z 2 z 1 ) z(t) = 1 + i + t( 2 3i (1 + i)) z(t) = 1 + i + t( 3 4i); 0 t 1

z(t) = z 1 (t) + t(z 2 z 1 ) z(t) = 1 + i + t( 2 3i (1 + i)) z(t) = 1 + i + t( 3 4i); 0 t 1 (4.): ontours. Fnd an admssble parametrzaton. (a). the lne segment from z + to z 3. z(t) z (t) + t(z z ) z(t) + + t( 3 ( + )) z(t) + + t( 3 4); t (b). the crcle jz j 4 traversed once clockwse startng at

More information

APPLICATION OF COMPUTER PROGRAMMING IN OPTIMIZATION OF TECHNOLOGICAL OBJECTIVES OF COLD ROLLING

APPLICATION OF COMPUTER PROGRAMMING IN OPTIMIZATION OF TECHNOLOGICAL OBJECTIVES OF COLD ROLLING Journal Journal of Chemcal of Chemcal Technology and and Metallurgy, 50, 6, 50, 2015, 6, 2015 638-643 APPLICATION OF COMPUTER PROGRAMMING IN OPTIMIZATION OF TECHNOLOGICAL OBJECTIVES OF COLD ROLLING Abdrakhman

More information

SPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background:

SPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background: SPEE Recommended Evaluaton Practce #6 efnton of eclne Curve Parameters Background: The producton hstores of ol and gas wells can be analyzed to estmate reserves and future ol and gas producton rates and

More information

Multicomponent Distillation

Multicomponent Distillation Multcomponent Dstllaton need more than one dstllaton tower, for n components, n-1 fractonators are requred Specfcaton Lmtatons The followng are establshed at the begnnng 1. Temperature, pressure, composton,

More information

3. Present value of Annuity Problems

3. Present value of Annuity Problems Mathematcs of Fnance The formulae 1. A = P(1 +.n) smple nterest 2. A = P(1 + ) n compound nterest formula 3. A = P(1-.n) deprecaton straght lne 4. A = P(1 ) n compound decrease dmshng balance 5. P = -

More information

High Order Reverse Mode of AD Theory and Implementation

High Order Reverse Mode of AD Theory and Implementation Hgh Order Reverse Mode of AD Theory and Implementaton Mu Wang and Alex Pothen Department of Computer Scence Purdue Unversty September 30, 2016 Mu Wang and Alex Pothen Hgh Order Reverse AD September 30,

More information

SIMPLE LINEAR CORRELATION

SIMPLE LINEAR CORRELATION SIMPLE LINEAR CORRELATION Smple lnear correlaton s a measure of the degree to whch two varables vary together, or a measure of the ntensty of the assocaton between two varables. Correlaton often s abused.

More information

Prediction of Wind Energy with Limited Observed Data

Prediction of Wind Energy with Limited Observed Data Predcton of Wnd Energy wth Lmted Observed Data Shgeto HIRI, khro HOND Nagasak R&D Center, MITSISHI HEVY INDSTRIES, LTD, Nagasak, 8539 JPN Masaak SHIT Nagasak Shpyard & Machnery Works, MITSISHI HEVY INDSTRIES,

More information

IMPROVEMENT OF CONVERGENCE CONDITION OF THE SQUARE-ROOT INTERVAL METHOD FOR MULTIPLE ZEROS 1

IMPROVEMENT OF CONVERGENCE CONDITION OF THE SQUARE-ROOT INTERVAL METHOD FOR MULTIPLE ZEROS 1 Nov Sad J. Math. Vol. 36, No. 2, 2006, 0-09 IMPROVEMENT OF CONVERGENCE CONDITION OF THE SQUARE-ROOT INTERVAL METHOD FOR MULTIPLE ZEROS Modrag S. Petkovć 2, Dušan M. Mloševć 3 Abstract. A new theorem concerned

More information

Analysis of Reactivity Induced Accident for Control Rods Ejection with Loss of Cooling

Analysis of Reactivity Induced Accident for Control Rods Ejection with Loss of Cooling Analyss of Reactvty Induced Accdent for Control Rods Ejecton wth Loss of Coolng Hend Mohammed El Sayed Saad 1, Hesham Mohammed Mohammed Mansour 2 Wahab 1 1. Nuclear and Radologcal Regulatory Authorty,

More information

21 Vectors: The Cross Product & Torque

21 Vectors: The Cross Product & Torque 21 Vectors: The Cross Product & Torque Do not use our left hand when applng ether the rght-hand rule for the cross product of two vectors dscussed n ths chapter or the rght-hand rule for somethng curl

More information

Aryabhata s Root Extraction Methods. Abhishek Parakh Louisiana State University Aug 31 st 2006

Aryabhata s Root Extraction Methods. Abhishek Parakh Louisiana State University Aug 31 st 2006 Aryabhata s Root Extracton Methods Abhshek Parakh Lousana State Unversty Aug 1 st 1 Introducton Ths artcle presents an analyss of the root extracton algorthms of Aryabhata gven n hs book Āryabhatīya [1,

More information

DETERMINATION OF MOLAR MASS FROM FREEZING POINT DEPRESSION

DETERMINATION OF MOLAR MASS FROM FREEZING POINT DEPRESSION Exercse 1 DETERINTION OF OLR SS FRO FREEZING POINT DEPRESSION Collgatve propertes The propertes we now consder are the lowerng of vapour pressure, the elevaton of bolng pont, the depresson of freezng pont,

More information

State function: eigenfunctions of hermitian operators-> normalization, orthogonality completeness

State function: eigenfunctions of hermitian operators-> normalization, orthogonality completeness Schroednger equaton Basc postulates of quantum mechancs. Operators: Hermtan operators, commutators State functon: egenfunctons of hermtan operators-> normalzaton, orthogonalty completeness egenvalues and

More information

HYPOTHESIS TESTING OF PARAMETERS FOR ORDINARY LINEAR CIRCULAR REGRESSION

HYPOTHESIS TESTING OF PARAMETERS FOR ORDINARY LINEAR CIRCULAR REGRESSION HYPOTHESIS TESTING OF PARAMETERS FOR ORDINARY LINEAR CIRCULAR REGRESSION Abdul Ghapor Hussn Centre for Foundaton Studes n Scence Unversty of Malaya 563 KUALA LUMPUR E-mal: ghapor@umedumy Abstract Ths paper

More information

Analysis and Modeling of Buck Converter in Discontinuous-Output-Inductor-Current Mode Operation *

Analysis and Modeling of Buck Converter in Discontinuous-Output-Inductor-Current Mode Operation * Energy and Power Engneerng, 3, 5, 85-856 do:.436/ee.3.54b63 Publshed Onlne July 3 (htt://www.scr.org/journal/ee) Analyss and Modelng of Buck Converter n Dscontnuous-Outut-Inductor-Current Mode Oeraton

More information

Some geometric probability problems involving the Eulerian numbers

Some geometric probability problems involving the Eulerian numbers Some geometrc probablty problems nvolvng the Euleran numbers Frank Schmdt Rodca Smon Department of Mathematcs The George Washngton Unversty Washngton, DC 20052 smon@math.gwu.edu Dedcated to Herb Wlf on

More information

Linear Regression Analysis for STARDEX

Linear Regression Analysis for STARDEX Lnear Regresson Analss for STARDEX Malcolm Halock, Clmatc Research Unt The followng document s an overvew of lnear regresson methods for reference b members of STARDEX. Whle t ams to cover the most common

More information

Modeling a Complex Pole-Zero System in Terms of its Low-Frequency/High-Frequency Cutoffs. Introduction

Modeling a Complex Pole-Zero System in Terms of its Low-Frequency/High-Frequency Cutoffs. Introduction Modelng a Complex Pole-Zero System n Terms of ts Low-Frequency/Hgh-Frequency Cutoffs Introducton Even a smple amplfer crcut wll tend to have multple poles and zeros n ts hgh-frequency behavor, and f t

More information

The Effect of Mean Stress on Damage Predictions for Spectral Loading of Fiberglass Composite Coupons 1

The Effect of Mean Stress on Damage Predictions for Spectral Loading of Fiberglass Composite Coupons 1 EWEA, Specal Topc Conference 24: The Scence of Makng Torque from the Wnd, Delft, Aprl 9-2, 24, pp. 546-555. The Effect of Mean Stress on Damage Predctons for Spectral Loadng of Fberglass Composte Coupons

More information

PROCESS CHANGING MODEL of STRIP CONTINUOUS HEAT TREATMENT FURNACE and its APPLICATION

PROCESS CHANGING MODEL of STRIP CONTINUOUS HEAT TREATMENT FURNACE and its APPLICATION Proceedngs of the 1st Internatonal Conference on Computers & Industral Engneerng PROCE CHANGING MODEL of RIP CONINUOU HEA REAMEN FURNACE and ts APPLICAION Dou Rufeng, Wen Zh, Zhou Gang, Lu Xunlang, Lou

More information

Systematic Circuit Analysis (T&R Chap 3)

Systematic Circuit Analysis (T&R Chap 3) Systematc Crcut Analyss TR Chap ) Nodeoltage analyss Usng the oltages of the each node relate to a ground node, wrte down a set of consstent lnear equatons for these oltages Sole ths set of equatons usng,

More information

1 Approximation Algorithms

1 Approximation Algorithms CME 305: Dscrete Mathematcs and Algorthms 1 Approxmaton Algorthms In lght of the apparent ntractablty of the problems we beleve not to le n P, t makes sense to pursue deas other than complete solutons

More information

7.5. Present Value of an Annuity. Investigate

7.5. Present Value of an Annuity. Investigate 7.5 Present Value of an Annuty Owen and Anna are approachng retrement and are puttng ther fnances n order. They have worked hard and nvested ther earnngs so that they now have a large amount of money on

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fttng of Data Davd Eberly Geoetrc Tools, LLC http://www.geoetrctools.co/ Copyrght c 1998-2016. All Rghts Reserved. Created: July 15, 1999 Last Modfed: January 5, 2015 Contents 1 Lnear Fttng

More information

Computational Fluid Dynamics II

Computational Fluid Dynamics II Computatonal Flud Dynamcs II Eercse 2 1. Gven s the PDE: u tt a 2 ou Formulate the CFL-condton for two possble eplct schemes. 2. The Euler equatons for 1-dmensonal, unsteady flows s dscretsed n the followng

More information

Recurrence. 1 Definitions and main statements

Recurrence. 1 Definitions and main statements Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.

More information

Chapter 4 ECONOMIC DISPATCH AND UNIT COMMITMENT

Chapter 4 ECONOMIC DISPATCH AND UNIT COMMITMENT Chapter 4 ECOOMIC DISATCH AD UIT COMMITMET ITRODUCTIO A power system has several power plants. Each power plant has several generatng unts. At any pont of tme, the total load n the system s met by the

More information