# Magic Squares and Modular Arithmetic

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Magic Squares and Modular Arithmetic Jim Carlson November 7, Introduction Recall that a magic square is a square array of consecutive distinct numbers such that all row and column sums and are the same. Here is an example, a magic square of order three: Fig. 1 The common row (or column) sum is called the magic sum. In Figure 1 above, the magic sum is 15. This is the first known example of a magic square, taken from Loh-Shu scroll in China. Some scholars date it to the mythical founder of Chinese civilization, Fuh-Shi, BC. In any case, it is very, very old. Below is another magic square of order three which uses nine consecutive numbers starting with zero. Notice how it is related to the Loh-Shu square. What is its magic sum? Fig. 2 In these notes we will, except for historical examples and those directly related to them, use magic squares which start with zero. 1

2 Introductory problems 1. Find a magic square of order three whose first row is Find a magic square of order three whose first row is Find a magic squares of order three which is different from all the previous ones. 4. Are there magic squares of order one and two? 5. Are there ways to construct new magic squares from old ones that do not change the magic sum? 6. Consider a 4 4 magic square with elements 0, 1,..., 15. What is the magic sum? 7. Consider an n n magic square with elements 0, 1,..., n 2 1. What is the magic sum? 8. There are 4 4 magic squares. The one illustrated in Figure 3, below comes from the engraving Melancholia, dated 1514, by the artist Albrecht Dürer. Like the Loh-Shuh square, it starts with the number Fig. 3 What is the magic sum of the Dürer square? How does it relate to the magic sum of the previous two problems? See if you can construct a 4 4 magic square using the same numbers as the Dürer square which completes the figure below:

3 Problems like this are much harder than the 3 3 case without some kind of theory or method as a guide (see 10 and reflect upon it). You may want to try this problem for, say, ten, fifteen, thirty minutes, then come back to it later, or after reading the next section. 9. Find a magic square with first row Again: such problems are hard without a theory or a method. 10. How many ways are there of filling an n n square with the numbers 0, 1,..., n 1? Make a table of this number, which we will call F (n), for n = 1, 2, 3, 4, 5. Let M(n) be the number of magic squares of order n. Any guesses about how large this number is? Notes Consider the following 5 5 array of 5 symbols, which we call X: a b c d e b c d e a c d e a b d e a b c e a b c d It has the property that in each symbol occurs once and only once in each row, and also in each column. Such a square is called a Latin. What is the rule used in its construction? Here another Latin square, which we call Y : a b c d e e a b c d d e a b c c d e a b b c d e a What is its rule of construction? Now superimpose the two Latin squares to get the following array, which we call XY : 3

4 aa bb cc dd ee be ca db ec ad cd de ea ab bc dc ed ae ba cb eb ac bd ce da Notice that each pair of symbols occurs once and only once. When XY has this property, we call X and Y orthogonal Latin squares. The square XY is called a Greco-Latin squares. Questions for contemplation: Is there a connection between Latin squares and magic squares? n Investigate and comment. How many Latin squares of orer n are there? How many Greco-Latin squares? Is there a way to systematically construct all Latin squares? All Greco-Latin squares? are the Latin (or Greco-Latin) squares of all orders? 2 Modular arithmetic We re now going to learn how to construct magic squares using modular arithmetic. This is something we know, even if we don t know the name: if it is now 7 o clock, and if a friend calls to say please meet me at the airport in 8 hours, then we go to the airport at 3 o clock. This is because = 15, but when we subtract 12, we get 3. If we were told to meet at the airport in 39 hours, we would compute = 46 = Our appointment is at 10 PM one day later. Clock arithmetic is modular arithmetic with modulus 12. The basic idea is do the usual arithmetic, then add or subtract multiples of 12 to get a number in range. In range means in the range 1 to 12 (or 0 to 11). Of course, one can do this with any number as modulus, not just 12. Here are some examples (mod 12) (mod 12) (mod 12) (mod 5) (mod 5) (mod 5) (mod 5) Note that 3 4 = 1, but = 4, so that 3 4 is the same as 4 modulo 5. Again, two numbers a and b are considered to be the same modulo n if they 4

5 differ by a multiple of n. Thus one can consider the numbers 0, 1,..., n 1 to form a finite system of arithmetic. 1. Make addition and multiplication tables for arithmetic modulo Let f(x, y) = 3x + y (mod 5). Compute f(1, 2). 3. Make a table of values f(x, y) where x = 0, 1, 2, 3, 4 and y = 0, 1, 2, 3, 4. Study the row and column sums of this table. Can you describe in a non-technical way the pattern of zeroes, the pattern of ones, etc.? 4. Make a table of values g(x, y) = 3x + 4y (mod 5) where x = 0, 1, 2, 3, 4 and y = 0, 1, 2, 3, 4. Study the row and column sums of this table. Can you describe in a non-technical way the pattern of zeroes, the pattern of ones, etc.? 5. Now make a table of for the values of h(x, y) = f(x, y) + 5g(x, y), where the arithmetic used is the ordinary one. Study the row and column sums of this table. 6. Rewrite the entries of the table you just made in base 5 notation. Describe any significant properties you notice. 3 Constructing Magic Squares In the last section you noticed something quite remarkable about the tables that you constructed using modular arithmetic. Here are some ideas to use in thinking about such tables and in constructing magic squares. A square is row magic if all its row sums are the same. A square is column magic if all its column sums are the same. A square is magic if all its row and column sums are the same. A square is simple if all of its entries are distinct. Which terms applies to the tables for f, g, and h? Notice that what we called a magic square in the introduction is a square that is both magic and simple. 1. Construct a 7 7 magic square. 2. Construct a 6 6 magic square. This is harder than the previous problem. 5

6 3. Suppose given two functions f(x, y) = ax + by + c mod n and g(x, y) = dx + ey + f mod n. Let h(x, y) = f(x, y) + ng(x, y). Use h to make an n n table. What are the conditions on (a, b, c) and (d, e, f) that ensure that (i) the square is row magic, (ii) the square is column magic, (iii)) the square is simple? Partial answers are welcome. 4. What is the effect on the Latin squares of changing the constant term in f(x, y), that is, of changing c? What is the effect on the magic square of changing the constant terms in both f(x, y) and g(x, y)? 5. What orders of magic squares can we construct using functions like h(x, y)? Partial answers are welcome. 6. Can you find any other interesting properties of the magic squares constructed? Can you prove that these properties hold? Can you prove that they hold for a general class of magic squares? 7. Are magic squares used for anything besides fun and games? Enjoy working on the problems. You don t have to do them all!! But try some of them between this time and next. This document, including improvements and corrections, is available in pdf form at carlson/mathcircles/magic.pdf 4 Why does it work? In the last section we noticed several remarkable things. The first is that we can use certain modular functions to make Latin squares. In fact one of the functions that works is f(x, y) = x + y mod n, which gives the addition table modulo n. (Remember that in an n n Latin square, the n symbols appear exactly once in each row and in each column, like this: a b c d e b c d e a c d e a b d e a b c e a b c d The Latin square below is the same, but with a different set of symbols. Do you recognize it? 6

7 As noted in the last section that some functions f(x, y) = ax + by + c mod n produce Latin squares. In problem 3 of that section we asked when functions like these can be used to make magic squares. Let s think about that problem some more, and see if we can solve it. Problem 1 What are the conditions on a, b, c, and n that guarantee that f(x, y) = ax + by + c mod n generates a Latin square? What kind of magic properties does the resulting Latin square have? Once we have solved problem 1, we can do a more one: Problem 2 What are the conditions on a, b, c, on d, e, f, and also on n that guarantee that f(x, y) = ax + by + c mod n and h(x, y) = dx + ey + f mod n are orthogonal Latin squares? Recall that given two Latin squares U and V we can make a new square with entries (u, v), in the (i, j) position, where u comes from the (i, j) position of U and v from the (i, j) position of V. We call the new square UV. Then U and V are orthogonal if each pair (u, v) occurs exactly once. Problem 3 What are the conditions on a, b, etc. for f(x, y) and g(x, y) to form a magic square according to the rule h(x, y) = f(x, y) + ng(x, y)? Note that the h(x, y) is formed using the rules of ordinary arithmetic. We ll call such a square an (f, g) magic square. By solving the above three problems, you will understand a lot about the theory of magic squares. In particular, you will be able to generate many magic squares for many orders n. Below are some more problems. Problems 1. How many (f, g) magic squares of order three are there? How does this number compare with the total number of ways of filling a 3 3 square by the numbers 0,..., 8? (This problem, stated for n = 3, can be generalized). 7

8 2. Can you make an (f, g) magic square of order 4? 3. Find an (f, g) magic square of order ten. Then color it according to the rules discussed in class. 5 More about modular arithmetic Modular arithmetic is good for many things other besides making Latin, Greco- Latin, and magic squares. We are going to end this session by seeing how to compute and think about big powers mod n. Here is an example: Problem 4 What is mod 101? Raising huge numbers to huge powers modulo a huge number is the kind of mathematics that makes the famous RSA code work. (That s the encryption algorithm used by web browsers to transmit credit card information, etc. Number theory is applied math!) We are going to solve this problem in two ways, but before we do, we are going to do a warm up exercise. What is 5 13 mod 17? Here is a hint on how to do problems like this. First, 13 = This is equivalent to the statement that the binary expansion of 13 is 1101: Do you see why? Now 13 = = But we can easily compute 5 2, 5 4, 5 8, etc. modulo 17 by successive squaring: 5 2 = 25 8 mod mod mod 17 Thus Now you can easily solve Problem mod 17. 8

9 Problems 1. Compute mod Explore the expressions 2 k mod p, where p is a prime. Are there any values of (k, p) for which one notices interesting patterns? Can you prove these patterns to be correct? 9

10 6 Notes Magic square: Magic square:

### MODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction.

MODULAR ARITHMETIC 1 Working With Integers The usual arithmetic operations of addition, subtraction and multiplication can be performed on integers, and the result is always another integer Division, on

### CHAPTER 5: MODULAR ARITHMETIC

CHAPTER 5: MODULAR ARITHMETIC LECTURE NOTES FOR MATH 378 (CSUSM, SPRING 2009). WAYNE AITKEN 1. Introduction In this chapter we will consider congruence modulo m, and explore the associated arithmetic called

### Visa Smart Debit/Credit Certificate Authority Public Keys

CHIP AND NEW TECHNOLOGIES Visa Smart Debit/Credit Certificate Authority Public Keys Overview The EMV standard calls for the use of Public Key technology for offline authentication, for aspects of online

### Elementary Number Theory We begin with a bit of elementary number theory, which is concerned

CONSTRUCTION OF THE FINITE FIELDS Z p S. R. DOTY Elementary Number Theory We begin with a bit of elementary number theory, which is concerned solely with questions about the set of integers Z = {0, ±1,

### Mathematics of Cryptography

CHAPTER 2 Mathematics of Cryptography Part I: Modular Arithmetic, Congruence, and Matrices Objectives This chapter is intended to prepare the reader for the next few chapters in cryptography. The chapter

### To Evaluate an Algebraic Expression

1.5 Evaluating Algebraic Expressions 1.5 OBJECTIVES 1. Evaluate algebraic expressions given any signed number value for the variables 2. Use a calculator to evaluate algebraic expressions 3. Find the sum

### 3. Applications of Number Theory

3. APPLICATIONS OF NUMBER THEORY 163 3. Applications of Number Theory 3.1. Representation of Integers. Theorem 3.1.1. Given an integer b > 1, every positive integer n can be expresses uniquely as n = a

### = 1, or how to convince your parents that your math prof is crazy. We want to introduce a new number system where the only numbers are

MATH 13150: Freshman Seminar Unit 11 1. Modular arithmetic In this chapter, we discuss a new number system, where the only numbers are 0,1,2,3 and 4. The idea is to add and multiply them the way we would

### 3 Structure of Modular Multiplication

3 Structure of Modular Multiplication Unlike addition, multiplication in Z M is fairly strange. There may not always be an inverse, you can multiply two non-zero numbers together and get zero, and in general

### a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

### Mathematics of Cryptography Modular Arithmetic, Congruence, and Matrices. A Biswas, IT, BESU SHIBPUR

Mathematics of Cryptography Modular Arithmetic, Congruence, and Matrices A Biswas, IT, BESU SHIBPUR McGraw-Hill The McGraw-Hill Companies, Inc., 2000 Set of Integers The set of integers, denoted by Z,

### MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix.

MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix. Matrices Definition. An m-by-n matrix is a rectangular array of numbers that has m rows and n columns: a 11

### To introduce the concept of a mathematical structure called an algebraic group. To illustrate group concepts, we introduce cyclic and dihedral groups.

1 Section 6. Introduction to the Algebraic Group Purpose of Section: To introduce the concept of a mathematical structure called an algebraic group. To illustrate group concepts, we introduce cyclic and

### 9 abcd = dcba. 9 ( b + 10c) = c + 10b b + 90c = c + 10b b = 10c.

In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should

### Math E-301: Homework 4 Notes Due 10/5/09

Math E-301: Homework 4 Notes Due 10/5/09 The notes for homeworks will vary. For some problems, I may give one solution, but there may be other ways to approach the problem. I will try to mention these

### Problem Set 7 - Fall 2008 Due Tuesday, Oct. 28 at 1:00

18.781 Problem Set 7 - Fall 2008 Due Tuesday, Oct. 28 at 1:00 Throughout this assignment, f(x) always denotes a polynomial with integer coefficients. 1. (a) Show that e 32 (3) = 8, and write down a list

### Introduction to Modular Arithmetic, the rings Z 6 and Z 7

Introduction to Modular Arithmetic, the rings Z 6 and Z 7 The main objective of this discussion is to learn modular arithmetic. We do this by building two systems using modular arithmetic and then by solving

MODULAR ARITHMETIC KEITH CONRAD. Introduction We will define the notion of congruent integers (with respect to a modulus) and develop some basic ideas of modular arithmetic. Applications of modular arithmetic

### Basic Properties of Rings

Basic Properties of Rings A ring is an algebraic structure with an addition operation and a multiplication operation. These operations are required to satisfy many (but not all!) familiar properties. Some

### MATH 321 EQUIVALENCE RELATIONS, WELL-DEFINEDNESS, MODULAR ARITHMETIC, AND THE RATIONAL NUMBERS

MATH 321 EQUIVALENCE RELATIONS, WELL-DEFINEDNESS, MODULAR ARITHMETIC, AND THE RATIONAL NUMBERS ALLAN YASHINSKI Abstract. We explore the notion of well-definedness when defining functions whose domain is

### Pattern Co. Monkey Trouble Wall Quilt. Size: 48" x 58"

.............................................................................................................................................. Pattern Co..........................................................................................

### Pigeonhole Principle Solutions

Pigeonhole Principle Solutions 1. Show that if we take n + 1 numbers from the set {1, 2,..., 2n}, then some pair of numbers will have no factors in common. Solution: Note that consecutive numbers (such

### SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Numbers

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mathematics Numbers. Factors 2. Multiples 3. Prime and Composite Numbers 4. Modular Arithmetic 5. Boolean Algebra 6. Modulo 2 Matrix Arithmetic 7. Number Systems

### COMPRESSION SPRINGS: STANDARD SERIES (INCH)

: STANDARD SERIES (INCH) LC 014A 01 0.250 6.35 11.25 0.200 0.088 2.24 F F M LC 014A 02 0.313 7.94 8.90 0.159 0.105 2.67 F F M LC 014A 03 0.375 9.52 7.10 0.126 0.122 3.10 F F M LC 014A 04 0.438 11.11 6.00

### It is time to prove some theorems. There are various strategies for doing

CHAPTER 4 Direct Proof It is time to prove some theorems. There are various strategies for doing this; we now examine the most straightforward approach, a technique called direct proof. As we begin, it

### 4. MATRICES Matrices

4. MATRICES 170 4. Matrices 4.1. Definitions. Definition 4.1.1. A matrix is a rectangular array of numbers. A matrix with m rows and n columns is said to have dimension m n and may be represented as follows:

### PRIME NUMBERS & SECRET MESSAGES

PRIME NUMBERS & SECRET MESSAGES I. RSA CODEBREAKER GAME This is a game with two players or teams. The players take turns selecting either prime or composite numbers as outlined on the board below. The

### CONVERSION CHART PROBATE CODE TO ESTATES CODE

Revised January 27, 2014 Prepared by Prof. Gerry W. Beyer CONVERSION CHART PROBATE CODE TO ESTATES CODE 2(a) (part) 21.006 2(c) 21.004 3 (part) 22.001 3(a) 22.002 3(b) 22.004 3(c) 22.005 3(d) 22.006 3(e)

### Chapter 8. Matrices II: inverses. 8.1 What is an inverse?

Chapter 8 Matrices II: inverses We have learnt how to add subtract and multiply matrices but we have not defined division. The reason is that in general it cannot always be defined. In this chapter, we

### V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography

V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography 3 Congruence Congruences are an important and useful tool for the study of divisibility. As we shall see, they are also critical

### Discrete mathematics is the study of techniques, ideas and modes

CHAPTER 1 Discrete Systems Discrete mathematics is the study of techniques, ideas and modes of reasoning that are indispensable in applied disciplines such as computer science or information technology.

### Math 312 Homework 1 Solutions

Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please

### A DIVISION OF THE MENO. Meno proposes a question: whether virtue can be taught. Three conversations or discussions following question

A DIVISION OF THE MENO 70A 70B-100B Meno proposes a question: whether virtue can be taught Three conversations or discussions following question 70B-80D Conversation on a question before Meno's: what is

### 1.4 Factors and Prime Factorization

1.4 Factors and Prime Factorization Recall from Section 1.2 that the word factor refers to a number which divides into another number. For example, 3 and 6 are factors of 18 since 3 6 = 18. Note also that

### Algebra I Notes Review Real Numbers and Closure Unit 00a

Big Idea(s): Operations on sets of numbers are performed according to properties or rules. An operation works to change numbers. There are six operations in arithmetic that "work on" numbers: addition,

### 9 Matrices, determinants, inverse matrix, Cramer s Rule

AAC - Business Mathematics I Lecture #9, December 15, 2007 Katarína Kálovcová 9 Matrices, determinants, inverse matrix, Cramer s Rule Basic properties of matrices: Example: Addition properties: Associative:

### The Four Numbers Game

University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-1-2007 The Four Numbers Game Tina Thompson University

### Chapter 4: Binary Operations and Relations

c Dr Oksana Shatalov, Fall 2014 1 Chapter 4: Binary Operations and Relations 4.1: Binary Operations DEFINITION 1. A binary operation on a nonempty set A is a function from A A to A. Addition, subtraction,

### Clock Arithmetic and Modular Systems Clock Arithmetic The introduction to Chapter 4 described a mathematical system

CHAPTER Number Theory FIGURE FIGURE FIGURE Plus hours Plus hours Plus hours + = + = + = FIGURE. Clock Arithmetic and Modular Systems Clock Arithmetic The introduction to Chapter described a mathematical

### CHAPTER 2. Inequalities

CHAPTER 2 Inequalities In this section we add the axioms describe the behavior of inequalities (the order axioms) to the list of axioms begun in Chapter 1. A thorough mastery of this section is essential

### Advanced Encryption Standard by Example. 1.0 Preface. 2.0 Terminology. Written By: Adam Berent V.1.7

Written By: Adam Berent Advanced Encryption Standard by Example V.1.7 1.0 Preface The following document provides a detailed and easy to understand explanation of the implementation of the AES (RIJNDAEL)

### EULER S THEOREM. 1. Introduction Fermat s little theorem is an important property of integers to a prime modulus. a p 1 1 mod p.

EULER S THEOREM KEITH CONRAD. Introduction Fermat s little theorem is an important property of integers to a prime modulus. Theorem. (Fermat). For prime p and any a Z such that a 0 mod p, a p mod p. If

### Problem Set 1 Solutions Math 109

Problem Set 1 Solutions Math 109 Exercise 1.6 Show that a regular tetrahedron has a total of twenty-four symmetries if reflections and products of reflections are allowed. Identify a symmetry which is

### Advanced Encryption Standard by Example. 1.0 Preface. 2.0 Terminology. Written By: Adam Berent V.1.5

Written By: Adam Berent Advanced Encryption Standard by Example V.1.5 1.0 Preface The following document provides a detailed and easy to understand explanation of the implementation of the AES (RIJNDAEL)

### Topics in Number Theory

Chapter 8 Topics in Number Theory 8.1 The Greatest Common Divisor Preview Activity 1 (The Greatest Common Divisor) 1. Explain what it means to say that a nonzero integer m divides an integer n. Recall

### 4.4 Clock Arithmetic and Modular Systems

4.4 Clock Arithmetic and Modular Systems A mathematical system has 3 major properies. 1. It is a set of elements 2. It has one or more operations to combine these elements (ie. Multiplication, addition)

### 4 BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

4 BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.

### UNIT 2 MATRICES - I 2.0 INTRODUCTION. Structure

UNIT 2 MATRICES - I Matrices - I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress

### Squares and Square Roots

SQUARES AND SQUARE ROOTS 89 Squares and Square Roots CHAPTER 6 6.1 Introduction You know that the area of a square = side side (where side means the length of a side ). Study the following table. Side

### Course notes on Number Theory

Course notes on Number Theory In Number Theory, we make the decision to work entirely with whole numbers. There are many reasons for this besides just mathematical interest, not the least of which is that

### Introduction to Finite Systems: Z 6 and Z 7

Introduction to : Z 6 and Z 7 The main objective of this discussion is to learn more about solving linear and quadratic equations. The reader is no doubt familiar with techniques for solving these equations

### SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89 by Joseph Collison Copyright 2000 by Joseph Collison All rights reserved Reproduction or translation of any part of this work beyond that permitted by Sections

### Solving Systems of Linear Equations. Substitution

Solving Systems of Linear Equations There are two basic methods we will use to solve systems of linear equations: Substitution Elimination We will describe each for a system of two equations in two unknowns,

### 4.2 Euclid s Classification of Pythagorean Triples

178 4. Number Theory: Fermat s Last Theorem Exercise 4.7: A primitive Pythagorean triple is one in which any two of the three numbers are relatively prime. Show that every multiple of a Pythagorean triple

### Chapter Prove or disprove: A (B C) = (A B) (A C). Ans: True, since

Chapter 2 1. Prove or disprove: A (B C) = (A B) (A C)., since A ( B C) = A B C = A ( B C) = ( A B) ( A C) = ( A B) ( A C). 2. Prove that A B= A B by giving a containment proof (that is, prove that the

### MATH 13150: Freshman Seminar Unit 14

MATH 13150: Freshman Seminar Unit 14 1. Powers in mod p arithmetic In this Unit, we will study powers a n (mod p). It will turn out that these are much easier to compute then one would imagine. Let s recall

### Most of us would probably believe they are the same, it would not make a difference. But, in fact, they are different. Let s see how.

PROBABILITY If someone told you the odds of an event A occurring are 3 to 5 and the probability of another event B occurring was 3/5, which do you think is a better bet? Most of us would probably believe

### Matrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws.

Matrix Algebra A. Doerr Before reading the text or the following notes glance at the following list of basic matrix algebra laws. Some Basic Matrix Laws Assume the orders of the matrices are such that

### Homework 5 Solutions

Homework 5 Solutions 4.2: 2: a. 321 = 256 + 64 + 1 = (01000001) 2 b. 1023 = 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = (1111111111) 2. Note that this is 1 less than the next power of 2, 1024, which

### SERVER CERTIFICATES OF THE VETUMA SERVICE

Page 1 Version: 3.4, 19.12.2014 SERVER CERTIFICATES OF THE VETUMA SERVICE 1 (18) Page 2 Version: 3.4, 19.12.2014 Table of Contents 1. Introduction... 3 2. Test Environment... 3 2.1 Vetuma test environment...

### INTERSECTION MATH And more! James Tanton

INTERSECTION MATH And more! James Tanton www.jamestanton.com The following represents a sample activity based on the December 2006 newsletter of the St. Mark s Institute of Mathematics (www.stmarksschool.org/math).

### Just the Factors, Ma am

1 Introduction Just the Factors, Ma am The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive

### Geometry Unit 1. Basics of Geometry

Geometry Unit 1 Basics of Geometry Using inductive reasoning - Looking for patterns and making conjectures is part of a process called inductive reasoning Conjecture- an unproven statement that is based

### Algebraic expansion and simplification

Chapter 3 Algebraic expansion and simplification Contents: A Collecting like terms B Product notation C The distributive law D The product (a + b)(c + d) E Difference of two squares F Perfect squares expansion

### Introduction Proof by unique factorization in Z Proof with Gaussian integers Proof by geometry Applications. Pythagorean Triples

Pythagorean Triples Keith Conrad University of Connecticut August 4, 008 Introduction We seek positive integers a, b, and c such that a + b = c. Plimpton 3 Babylonian table of Pythagorean triples (1800

### . 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9

Introduction The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive integer We say d is a

### INTRODUCTION TO PROOFS: HOMEWORK SOLUTIONS

INTRODUCTION TO PROOFS: HOMEWORK SOLUTIONS STEVEN HEILMAN Contents 1. Homework 1 1 2. Homework 2 6 3. Homework 3 10 4. Homework 4 16 5. Homework 5 19 6. Homework 6 21 7. Homework 7 25 8. Homework 8 28

### Math 139 Problem Set #6 Solution 15 April 2003

Math 139 Problem Set #6 Solution 15 April 2003 A1 (Based on Barr, 41, exercise 3) (a) Let n be an integer greater than 2 Consider the list of numbers n! + 2, n! + 3, n! + 4,, n! + n Explain why all the

### 4.5 Finite Mathematical Systems

4.5 Finite Mathematical Systems We will be looking at operations on finite sets of numbers. We will denote the operation by a generic symbol, like *. What is an operation? An operation is a rule for combining

### Factoring, Solving. Equations, and Problem Solving REVISED PAGES

05-W4801-AM1.qxd 8/19/08 8:45 PM Page 241 Factoring, Solving Equations, and Problem Solving 5 5.1 Factoring by Using the Distributive Property 5.2 Factoring the Difference of Two Squares 5.3 Factoring

### MATH REVIEW KIT. Reproduced with permission of the Certified General Accountant Association of Canada.

MATH REVIEW KIT Reproduced with permission of the Certified General Accountant Association of Canada. Copyright 00 by the Certified General Accountant Association of Canada and the UBC Real Estate Division.

### 1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

### Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is

### Math 311 Test III, Spring 2013 (with solutions)

Math 311 Test III, Spring 2013 (with solutions) Dr Holmes April 25, 2013 It is extremely likely that there are mistakes in the solutions given! Please call them to my attention if you find them. This exam

### GRA6035 Mathematics. Eivind Eriksen and Trond S. Gustavsen. Department of Economics

GRA635 Mathematics Eivind Eriksen and Trond S. Gustavsen Department of Economics c Eivind Eriksen, Trond S. Gustavsen. Edition. Edition Students enrolled in the course GRA635 Mathematics for the academic

### Let s just do some examples to get the feel of congruence arithmetic.

Basic Congruence Arithmetic Let s just do some examples to get the feel of congruence arithmetic. Arithmetic Mod 7 Just write the multiplication table. 0 1 2 3 4 5 6 0 0 0 0 0 0 0 0 1 0 1 2 3 4 5 6 2 0

### Factoring Trinomials: The ac Method

6.7 Factoring Trinomials: The ac Method 6.7 OBJECTIVES 1. Use the ac test to determine whether a trinomial is factorable over the integers 2. Use the results of the ac test to factor a trinomial 3. For

### Algebraic Systems, Fall 2013, September 1, 2013 Edition. Todd Cochrane

Algebraic Systems, Fall 2013, September 1, 2013 Edition Todd Cochrane Contents Notation 5 Chapter 0. Axioms for the set of Integers Z. 7 Chapter 1. Algebraic Properties of the Integers 9 1.1. Background

### Rijndael Encryption implementation on different platforms, with emphasis on performance

Rijndael Encryption implementation on different platforms, with emphasis on performance KAFUUMA JOHN SSENYONJO Bsc (Hons) Computer Software Theory University of Bath May 2005 Rijndael Encryption implementation

### Baltic Way 1995. Västerås (Sweden), November 12, 1995. Problems and solutions

Baltic Way 995 Västerås (Sweden), November, 995 Problems and solutions. Find all triples (x, y, z) of positive integers satisfying the system of equations { x = (y + z) x 6 = y 6 + z 6 + 3(y + z ). Solution.

### Mth 95 Module 2 Spring 2014

Mth 95 Module Spring 014 Section 5.3 Polynomials and Polynomial Functions Vocabulary of Polynomials A term is a number, a variable, or a product of numbers and variables raised to powers. Terms in an expression

### Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may

Number Theory Divisibility and Primes Definition. If a and b are integers and there is some integer c such that a = b c, then we say that b divides a or is a factor or divisor of a and write b a. Definition

### Quine-McClusky Minimization Procedure

Quine-McClusky Minimization Procedure This is basically a tabular method of minimization and as much it is suitable for computer applications. The procedure for optimization as follows: Step : Describe

### Grade 7/8 Math Circles Greek Constructions - Solutions October 6/7, 2015

Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Greek Constructions - Solutions October 6/7, 2015 Mathematics Without Numbers The

### Dedekind Cuts. Rich Schwartz. September 17, 2014

Dedekind Cuts Rich Schwartz September 17, 2014 1 Decimal Expansions How would you define a real number? It would seem that the easiest way is to say that a real number is a decimal expansion of the form

### CHAPTER 6: RATIONAL NUMBERS AND ORDERED FIELDS

CHAPTER 6: RATIONAL NUMBERS AND ORDERED FIELDS LECTURE NOTES FOR MATH 378 (CSUSM, SPRING 2009). WAYNE AITKEN 1. Introduction In this chapter we construct the set of rational numbers Q using equivalence

### SERVER CERTIFICATES OF THE VETUMA SERVICE

Page 1 Version: 3.5, 4.11.2015 SERVER CERTIFICATES OF THE VETUMA SERVICE 1 (18) Page 2 Version: 3.5, 4.11.2015 Table of Contents 1. Introduction... 3 2. Test Environment... 3 2.1 Vetuma test environment...

### Complex Numbers and the Complex Exponential

Complex Numbers and the Complex Exponential Frank R. Kschischang The Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of Toronto September 5, 2005 Numbers and Equations

### Further linear algebra. Chapter I. Integers.

Further linear algebra. Chapter I. Integers. Andrei Yafaev Number theory is the theory of Z = {0, ±1, ±2,...}. 1 Euclid s algorithm, Bézout s identity and the greatest common divisor. We say that a Z divides

### Lesson 6: Proofs of Laws of Exponents

NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 6 8 Student Outcomes Students extend the previous laws of exponents to include all integer exponents. Students base symbolic proofs on concrete examples to

### 8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

7 Quadratic Expressions A quadratic expression (Latin quadratus squared ) is an expression involving a squared term, e.g., x + 1, or a product term, e.g., xy x + 1. (A linear expression such as x + 1 is

### Math 2331 Linear Algebra

2.2 The Inverse of a Matrix Math 2331 Linear Algebra 2.2 The Inverse of a Matrix Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math2331 Jiwen He, University

### Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

### A matrix over a field F is a rectangular array of elements from F. The symbol

Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F) denotes the collection of all m n matrices over F Matrices will usually be denoted

### SOLUTIONS TO HOMEWORK 1 - MATH 170, SUMMER SESSION I (2012)

SOLUTIONS TO HOMEWORK 1 - MATH 170, SUMMER SESSION I (2012) (1) In class, we had used Pigeonhole Principle to show that if we choose any 6 numbers from {1, 2, 3, 4, 5, 6, 7, 8, 9}, at least two of those

### Euler Enrichment Stage

Euler Enrichment Stage Table of Contents Chapter 1 Problems I Like Michael Evans 1 Chapter 2 Primes and Composites 3 Chapter 3 Least Common Multiple 8 Chapter 4 Highest Common Factor and the Euclidean