# f max s = µ s N (5.1)

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Chapter 5 Forces and Motion II 5.1 The Important Stuff Friction Forces Forces which are known collectively as friction forces are all around us in daily life. In elementary physics we discuss the friction force as it occurs between two objects whose surfaces are in contact and which slide against one another. If in such a situation, a body is not moving while an applied force F acts on it, then static friction forces are opposing the applied force, resulting in zero net force. Empirically, one finds that this force can have a maximum value given by: f max s = µ s N (5.1) where µ s is the coefficient of static friction for the two surfaces and N is the normal (perpendicular) force between the two surfaces. If one object is in motion relative to the other one (i.e. it is sliding on the surface) then there is a force of kinetic friction between the two objects. The direction of this force is such as to oppose the sliding motion and its magnitude is given by f k = µ k N (5.2) where again N is the normal force between the two objects and µ k is the coefficient of kinetic friction for the two surfaces Uniform Circular Motion Revisited Recall the result given in Chapter 3: When an object is in uniform circular motion, moving in a circle of radius r with speed v, the acceleration is directed toward the center of the circle and has magnitude a cent = v2 r. 103

2 104 CHAPTER 5. FORCES AND MOTION II Therefore, by Newton s Second Law of Motion, the net force on this object must also be directed toward the center of the circle and have magnitude F cent = mv2 r. (5.3) Such a force is called a centripetal force, as indicated in this equation Newton s Law of Gravity (Optional for Calculus Based) The force of gravity is one of the fundamental forces in nature. Although in our first physics examples we only dealt with the fact that the earth pulls downward on all masses, in fact all masses exert an attractive gravitational force on each other, but for most objects the force is so small that we can ignore it. Newton s Law of Gravity says that for two masses m 1 and m 2 separated by a distance r, the magnitude of the (attractive) gravitational force is F = G m 1m 2 11 N m2 where G = (5.4) r 2 kg 2 While the law as given really applies to point (i.e. small) masses, it can be used for spherical masses as long as we take r to be the distance between the centers of the two masses. 5.2 Worked Examples Friction Forces 1. An ice skater moving at 12 m s coasts to a halt in 95m on an ice surface. What is the coefficient of (kinetic) friction between ice and skates? [Ser4 5-51] The information which we are given about the skater s (one-dimensional) motion is shown in Fig. 5.1(a). We know that the skater s notion is one of constant acceleration so we can use the results in Chapter 2. In particular we know the initial and final velocities of the skater: v 0 = 12 m s v = 0 and we know the displacement for this interval: x x 0 = 95m we can use 2.8 to find the (constant) acceleration a. We find: v 2 x = v 2 0x + 2a x (x x 0 ) = a x = (v2 x v 2 0x) 2(x x 0 )

3 5.2. WORKED EXAMPLES 105 x N x v=12 m/s v=0 f k 95 m mg (a) (b) Figure 5.1: Skater slowed to a halt by friction in Example 1. Motion is shown in (a); forces acting on the skater are shown in (b). Substituting, we get: a x = ((0 m s )2 (12 m s )2 ) 2(95 m) = 0.76 m s 2. Next, think about the forces acting on the skater; these are shown in Fig. 5.1(b). If the mass of the skater is m then gravity has magnitude mg and points downward; the ice exerts a normal force N upward. It also exerts a frictional force f k in a direction opposing the motion. Since the skater has no motion in the vertical direction, the vertical forces must sum to zero so that N = mg. Also, since the magnitude of the force of kinetic friction is given by f k = µ k N we have: f k = µ k N = µ k mg. So the net force in the x direction is F x = µ k mg. Newton s law tells us: F x, net = ma x. Using the results we have found, this gives us: From which the m cancels to give: µ k mg = m( 0.76 m s 2 ) µ k = (0.76 m s 2 ) g = (0.76 m s 2 ) (9.80 m s 2 ) = The coefficient of kinetic friction between ice and skates is (Note, the coefficient of friction is dimensionless.) Recall that we were not given the mass of the skater. That didn t matter, because it cancelled out of our equations. But we did have to consider it in writing down our equations. 2. Block B in Fig. 5.2 weighs 711N. The coefficient of static friction between block and table is 0.25; assume that the cord between B and the knot is horizontal. Find the maximum weight of block A for which the system will be stationary. [HRW6 6-19] We need to look at the forces acting at the knot (the junction of the three cables). These are shown in Fig. 5.3(a). The vertical cord must have a tension equal to the weight of block

4 106 CHAPTER 5. FORCES AND MOTION II B 30 o A Figure 5.2: Diagram for Example 2. T 1 T 2 W A f s N B T 1 (a) (b) W B Figure 5.3: (a) Forces acting at the knot in Example 2. (b) Forces acting on block B in Example 2. A (which we ll call W A ) because at its other end this cord is pulling up on A so as to support it. Let the tensions in the other cords be T 1 for the horizontal one and T 2 for the one that pulls at 30 above the horizontal. The knot is in equilibrium so the forces acting on it add to zero. In particular, the vertical components of the forces add to zero, giving: T 2 sinθ W A = 0 or T 2 sinθ = W A (where θ = 30 ) and the horizontal forces add to zero, giving: T 1 + T 2 cos θ = 0 or T 1 = T 2 cosθ. Now look at the forces acting on the block which rests on the table; these are shown in Fig. 5.3(b). There is the force of gravity pointing down, with magnitude W B (that is, the weight of B, equal to m B g). There is a normal force from the table pointing upward; there is the force from the cable pointing to the right with magnitude T 1, and there is the force of static friction pointing to the left with magnitude f s. Since the vertical forces add to zero, we have N W B = 0 or N = W b The horizontal forces on the block also sum to zero giving T 1 f s = 0 or T 1 = f s

5 5.2. WORKED EXAMPLES 107 Frictionless m F M Figure 5.4: Diagram for Example 3. Now, the problem states that the value of W A we re finding is the maximum value such that the system is stationary. This means that at the value of W A we re finding, block B is just about to slip, so that the friction force f s takes on its maximum value, f s = µ s N. Since we also know that N = W B from the previous equation, we get: T 1 = f s = µ s N = µ s W B From before, we had T 1 = T 2 cos θ, so making this substitution we get T 2 cosθ = µ s W B Almost done! Our very first equation gave T 2 = W A sinθ, so substituting for T 2 gives: Finally, we get: Now just plug in the numbers: ( ) WA cosθ = µ s W B or W A cotθ = µ s W B sinθ W A = µ s W B tan θ W A = (0.25)(711N)tan 30 = 103N Since we solved for W A under the condition that block B was about to slip, this is the maximum possible value for W A so that the system is stationary. 3. The two blocks (with m = 16kg and M = 88kg) shown in Fig. 5.4 are not attached. The coefficient of static friction between the blocks is µ s = 0.38, but the surface beneath M is frictionless. What is the minimum magnitude of the horizontal force F required to hold m against M? [HRW5 6-38] Having understood the basic set-up of the problem, we immediately begin thinking about the the forces acting on each mass so that we can draw free body diagrams. The forces on mass m are: (1) The force of gravity mg which points downward. (2) The applied force F which points to the right. (3) The normal force with which block M pushes on m. This

6 108 CHAPTER 5. FORCES AND MOTION II f s x N surf F N N mg f s Mg (a) (b) Figure 5.5: Free body diagrams for the blocks described in Example 3. force necessarily points to the left. (4) The frictional force which block M exerts on m. This is to be a static friction force, so we have to think about its direction... in this case, it must clearly oppose the force of gravity to keep the block m from falling. So we include a force f s pointing up. These forces are shown in Fig Next we diagram the forces acting on M. There is the force of gravity, with magnitude Mg, pointing down; the surface beneath M exerts a normal force N pointing upward. Since this surface is frictionless, it does not exert a horizontal force on M. The mass m will exert forces on M and these will be equal and opposite to the forces which M exerts on m. So there is a force N on mass M pointing to the right and a frictional force f s pointing downward. Now that we have shown all the forces acting on all the masses we can start to discuss the accelerations of the masses and apply Newton s Second Law. The problem says that mass m is not slipping downward during its motion. This must mean that the forces of friction and gravity balance: f s = mg. But this does us little good until we have an expression for f s. Now, in this problem we are being asked about a critical condition for the slippage of m. We can reasonably guess that here the force of static friction takes on its maximum value, namely f s = µ s N, N being the normal force between the two surfaces. This is an important bit of information, because combining that last two equations we get: mg = µ s N. Let s consider the horizontal motion of both of the masses. Now, since the masses are always touching, their displacements, velocities and accelerations are always the same. Let the x acceleration of both masses be a. Then for mass m, Newton s Second Law gives us: Fx = F N = ma

7 5.2. WORKED EXAMPLES 109 m 1 m 2 q Figure 5.6: Two blocks joined by a rod slide down a slope with friction (coefficient of friction is different for the two blocks). while for mass M, we get Combining these last two equations gives N = Ma F Ma = ma = F = (M + m)a = a = which tells us the force N: N = Ma = MF (M + m) Putting this result for N into our result involving the friction force gives which lets us solve for F: MF mg = µ s N = µ s (M + m) F = And now we can substitute the given values: (M + m)m Mµ s g F (M + m) F = (M + m)m Mµ s g = (16kg + 88kg)(16kg) (9.80 m ) = 488N s (88 kg)(0.38) 2 4. In Fig. 5.6 a box of mass m 1 = 1.65kg and a box of mass m 2 = 3.30kg slide down an inclined plane while attached by a massless rod parallel to the plane. The angle of incline is θ = 30. The coefficient of kinetic friction between m 1 and the incline is µ 1 = 0.226; that between m 2 and the incline is µ 2 = Compute (a) the tension in the rod and (b) the common acceleration of the two boxes. c) How would the answers to (a) and (b) change if m 2 trailed m 1? [HRW6 6-26]

8 110 CHAPTER 5. FORCES AND MOTION II m 1 m 2 f k, 1 T N 1 f k, 2 N 2 m 1 g cos q m 1 g sin q m 2 g cos q T m 2 g sin q m 1 g m 2 g (a) (b) Figure 5.7: (a) Forces acting on block 1 in Example 4. We have assumed that the rod pushes outward; if that is wrong, then T will turn out to be negative. The force of gravity has be split up into components. (b) Forces acting on block 2 in Example 4. (a) We will shortly be drawing force diagrams for the two masses, but we should first pause and consider the force which comes from the rod joining the two masses. A rod differs from a cord in our problems in that it can pull inward on either end or else push outward. (Strings can only pull inward.) For the purpose of writing down our equations we need to make some assumption about what is happening and so here I will assume that the rod is pushing outward with a force of magnitude T, i.e. the rod is compressed. Should it arise in our solution that we get a negative number for T, all is not lost; we will then know that the rod is really pulling inward with a force of magnitude T and so the rod is being stretched. With that in mind, we draw a diagram for the forces acting on block 1 and there are a lot of them, as shown in Fig. 5.7(a). Rod tension T and the force of kinetic friction on block 1 (to oppose the motion) point up the slope. The slope component of gravity m 1 g sinθ points down the slope. The normal component of gravity m 1 g cosθ points into the surface and the normal force N 1 from the slope points out of the surface. As there is no acceleration perpendicular to the slope, those force components sum to zero, giving: N 1 m 1 g cosθ = 0 or N 1 = m 1 g cos θ The sum of force components in the down the slope direction gives m 1 a, where a is the down the slope acceleration common to both masses. So then: m 1 g sinθ T f k,1 = m 1 a We can substitute for f k,1, since f k,1 = µ 1 N 1 = µ 1 m 1 g cos θ. That gives: m 1 g sinθ T µ 1 m 1 g cos θ = m 1 a (5.5) We have a fine equation here, but T and a are both unknown; we need another equation! The forces acting on block 2 are shown in Fig. 5.7(b). The force of kinetic friction f k,2 points up the slope. The rod tension T and the slope component of gravity m 2 g sinθ point

9 5.2. WORKED EXAMPLES 111 down the slope. The normal component of gravity m 2 g cos θ points into the surface and the normal force of the surface on 2, N 2, points out of the slope. Again there is no net force perpendicular to the slope, so N 2 m 2 g cos θ = 0 or N 2 = m 2 g cos θ. The sum of the down the slope forces on m 2 gives m 2 a, so: m 2 g sin θ + T f k,2 = m 2 a We can substitute for the force of kinetic friction here, with f k,2 = µ 2 N 2 = µ 2 m 2 g cosθ. Then: m 2 g sinθ + T µ 2 m 2 g cos θ = m 2 a (5.6) Two equations (5.5 and 5.5) and tow unknowns (T and a). The physics is done, the rest is math! In solving the equations I will go for an analytic (algebraic) solution, then plug in the numbers at the end. Aside from giving us some good practice with algebra, it will be useful in answering part (c). We note that if we add Eqs. 5.5 and 5.5, T will be eliminated and we can then find a. When we do this, we get: m 1 g sinθ + m 2 g sinθ µ 1 g cosθ µ 2 g cos θ = m a + m 2 a Lots of factoring to do here! Pulling out some common factors, this is: and then we get a: g [(m 1 + m 2 )sin θ cosθ(µ 1 m 1 + µ 2 m 2 )] = (m 1 + m 2 )a a = g [(m 1 + m 2 )sinθ cos θ(µ 1 m 1 + µ 2 m 2 )] (m 1 + m 2 ) (5.7) But it s really T we want in part (a). We can eliminate a by multiplying Eq. 5.5 by m 2 : m 1 m 2 g sinθ m 2 T µ 1 m 1 m 2 g cosθ = m 1 m 2 a and Eq. 5.6 by m 2 : m 1 m 2 g sinθ + m 1 T µ 2 m 1 m 2 g cos θ = m 1 m 2 a and then subtracting the second from the first. Some terms cancel, and this gives: m 2 T m 1 T µ 1 m 1 m 2 g cos θ + µ 2 m 1 m 2 g cos θ = 0 Factor things: T(m 1 + m 2 ) = m 1 m 2 g cos θ(µ 1 µ 2 )

10 112 CHAPTER 5. FORCES AND MOTION II and finally get an expression for T: T = m 1m 2 g cos θ(µ 2 µ 1 ) (m 1 + m 2 ) (5.8) Hey, that algebra wasn t so bad, was it? Now we have general expressions for T and a. Plugging numbers into Eq. 5.8, we get: T = (1.65kg)(3.30kg)(9.80 m s 2 )cos 30 ( ) (1.65kg kg) = 1.05 N Oops! T came out negative! What we find from this is that the assumption was wrong and the rod is really being stretched as the blocks slide down the slope, and the magnitude of the rod s tension is 1.05N. (b) To find the acceleration of the blocks, plug numbers into Eq. 5.7: a = (9.80 m s 2 )[(1.65kg kg)sin 30 cos30 ((0.226)(1.65kg) + (0.113)(3.30kg)] (1.65kg kg) = 3.62 m s 2 The (common) acceleration of the blocks is 3.62 m s 2. (c) Now we ask: What would the answers to (a) and (b) be if the blocks had slid down the slope with m 1 in the lead? Would it make any difference at all? It might, since the friction forces on the masses come from two different µ s. In any case, with our analytic results Eqs. 5.7 and 5.8 we can find the results of switching the labels 1 and 2, since that is all we would get from having the blocks switch positions. If we switch 1 and 2 in Eq. 5.7, we can see that the result for a will not change at all because the sums within that expression are not affected by the switch. So the connected blocks will slide down the slope with the same acceleration, namely 3.62 m s 2 for the given values. What about T? From Eq. 5.8 we see that switching 1 and 2 gives an overall change in sign because of the factor (µ 2 µ 1 ). (The other factors don t change for this switch.) So we know that plugging in the numbers for the case where blocks 1 leads would give T = +1.05N, and since this is a positive number, the assumption about the rod being compressed (and as a result pushing outward) would be correct. So for the case where m 1 leads, the magnitude of the rod s tension is the same (1.05N), but now it pushing outward. 5. A 3.0 kg block starts from rest at the top of a 30.0 incline and slides 2.0m down the incline in 1.5s. Find (a) the magnitude of the acceleration of the block, (b) the coefficient of kinetic friction between the block and the plane, (c) the frictional force acting on the block and (d) the speed of the block after it has slid 2.0 m. [Ser4 5-57]

11 5.2. WORKED EXAMPLES 113 y t = 0 y f k x N x 2.0 m v = 0 mg sin q t = 1.5 s q 30 o mg cos q mg (a) (b) Figure 5.8: (a) Block slides down rough slope in Example 5. (b) Forces acting on the block. (a) The basic information about the motion of the block is summarized in Fig. 5.8(a). We use a coordinate system where x points down the slope and y is perpendicular to the slope. We ll put the origin of the coordinate system at the place where the block begins its motion. The block s motion down the slope is one of constant acceleration. (This must be so, since all of the forces acting on the block are constant.) Of course, this is an acceleration in the x direction, as there is no y motion. It begins its slide starting from rest (v 0x = 0) and so the block s motion is given by: x = x 0 + v 0x t a xt 2 = 1 2 a xt 2. We are told that at t = 1.5s, x = 2.0m. Substitute and solve for a x : 2.0m = 1 2 a x(1.5s) 2 = a x = 2(2.0m) (1.5s) 2 = 1.78 m s 2 The magnitude of the block s acceleration is 1.78 m s 2. (b) We must now think about the forces which act on the block. They are shown in Fig. 5.8(b). Gravity pulls downward with a force mg, which we decompose into its components along the slope and perpendicular to it. The surface exerts a normal force N. There is also a force of kinetic friction from the slope. Since the block is moving down the slope, the friction force must point up the slope. The block moves only along the x axis; the forces in the y direction must sum to zero. Referring to Fig. 5.8(b), we get: Fy = N mg cosθ = 0 = N = mg cosθ. This gives us the normal force of the surface on the block; here, θ = The block does have an acceleration in the x direction, which we ve already found in part (a). The sum of the forces in the +x direction gives ma x : Fx = mg sinθ f k = ma x

12 114 CHAPTER 5. FORCES AND MOTION II Now we use the formula for the force of kinetic friction: f k = µ k N. Using our expression for the normal force gives us: f k = µ k N = µ k mg cos θ and using this result in the last equation gives mg sinθ µ k mg cosθ = ma x. Here, the only unknown is µ k, so we find it with a little algebra: First off, we can cancel the common factor of m that appears in all terms: and then solve for µ k : g sinθ µ k g cosθ = a x µ k g cos θ = g sinθ a x = (9.80 m s 2 )sin 30.0 (1.78 m s 2 ) = 3.12 m s 2 So we get: µ k = (3.12 m s 2 ) (9.80 m s 2 )(cos30.0 ) = (c) As we have seen in part (b), the magnitude of the (kinetic) friction force on the mass is f k = µ k mg cosθ = (0.368)(3.0kg)(9.80 m s 2 )cos 30.0 = 9.4N The force of friction is 9.4N. (d) We know the acceleration of the block, its initial velocity (v 0x = 0) and the time of travel to slide 2.0m; its final velocity is v = v 0x + a x t = 0 + (1.78 m s 2 )(1.50s) = 2.67 m s 6. Three masses are connected on a table as shown in Fig The table has a coefficient of sliding friction of The three masses are 4.0kg, 1.0kg, and 2.0kg, respectively and the pulleys are frictionless. (a) Determine the acceleration of each block and their directions. (b) Determine the tensions in the two cords. [Ser4 5-59] (a) First, a little thinking about what we expect to happen. Surely, since the larger mass is hanging on the left side we expect the 4.0 kg mass to accelerate downward, the 1.0[kg block to accelerate to the right and the 2.0kg block to accelerate upward. Also, since the masses are connected by strings as shown in the figure, the magnitudes of all three accelerations

13 5.2. WORKED EXAMPLES 115 m k = kg 4.0 kg 2.0 kg Figure 5.9: System for Example 6 T 1 N T 2 T 1 T 2 f k m 1 g m 2 g m 3 g (a) (b) (c) Figure 5.10: Free body diagrams for the three masses in Example 6. (a) Forces on the mass m 1 = 4.0 kg. (b) Forces on the mass m 2 = 1.0 kg. (c) Forces on the mass m 3 = 2.0 kg. The directions of motion assumed for each mass are also shown.

14 116 CHAPTER 5. FORCES AND MOTION II must be the same, because in any time interval the magnitudes of their displacements will always be the same. So each mass will have an acceleration of magnitude a with the direction appropriate for each mass. Now we consider the forces acting on each mass. We draw free body diagrams! If the tension in the left string is T 1 then the forces on the 4.0kg mass are as shown in Fig. 5.10(a). The string tension T 1 pulls upward; gravity pulls downward with a force m 1 g. The forces acting on m 2 are shown in Fig. 5.10(b). We have more of them to think about; gravity pulls with a force m 2 g downward. The table pushes upward with a normal force N. It also exerts a frictional force on m 2 which opposes its motion. Since we think we know which way m 2 is going to go (left!), the friction force f k must point to the right. There are also forces from the strings. There is a force T 1 to the left from the tension in the first string and a force T 2 pointing to the right from the tension in the other string. (Note, since these are two different pieces of string, they can have different tensions.) The forces on m 3 are shown in Fig. 5.10(c). There is a string tension T 2 pulling up and gravity m 3 g pulling down. All right, lets write down some equations! By Newton s Second Law, the sum of the downward forces on m 1 should give m 1 a. (We agreed that its acceleration would be downward.) This gives: m 1 g T 1 = m 1 a (5.9) Moving on to mass m 2, the vertical forces must cancel, giving N = m 2 g. Newton tells us that the sum of the left pointing forces must give m 2 a (we decided that its acceleration would be of magnitude a, toward the left) and this gives: But since this becomes T 1 f k T 2 = m 2 a f k = µ k N = µ k m 2 g, T 1 µ k m 2 g T 2 = m 2 a. (5.10) Finally, the sum of the upward forces on m 3 must give m 3 a. So: T 2 m 3 g = m 3 a (5.11) Having done this work in writing down these wonderful equations we stand back, admire our work and ask if we can go on to solve them. We note that there are three unknowns (a, T 1 and T 2 ) and we have three equations. We can find a solution. The physics is done... only the algebra remains. We can do the algebra in the following way: If we just add Eqs. 5.9, 5.10 and 5.11 together (that is, add all the left hand sides together and the right hand sides together) we find that both T s cancel out. We get: m 1 g T 1 + T 1 µ k m 2 g T m 3 g = m 1 a + m 2 a + m 3 a

15 5.2. WORKED EXAMPLES 117 which simplifies to: Now we can easily find a: m 1 g µ k m 2 g m 3 g = (m 1 + m 2 + m 3 )a a = (m 1 µ k m 2 m 3 )g (m 1 + m 2 + m 3 ) = [(4.0kg) (0.35)(1.0kg) (2.0kg)](9.80 m ) s 2 (4.0kg + 1.0kg + 2.0kg) = (1.65kg)(9.80 m ) s 2 = 2.31 m s (7.0 kg) 2 So our complete answer to part (a) is: m 1 accelerates at 2.31 m s 2 downward; m 2 accelerates at 2.31 m s 2 to the left; m 3 accelerates at 2.31 m s 2 upward. (b) Finding the tensions in the strings is now easy; just use the equations we found in part (a). To get T 1, we can use Eq. 5.9, which gives us: T 1 = m 1 g m 1 a = m 1 (g a) = (4.0kg)(9.80 m s m s 2 ) = 30.0N. To get T 2 we can use Eq which gives us: T 2 = m 3 g + m 3 a = m 3 (g + a) = (2.0kg)(9.80 m s m s 2 ) = 24.2N. The tension in the string on the left is 30.0 N. The tension in the string on the right is 24.2 N. 7. A block is placed on a plane inclined at 35 relative to the horizontal. If the block slides down the plane with an acceleration of magnitude g/3, determine the coefficient of kinetic friction between block and plane. [Ser4 5-61] The forces acting on the block (which has mass m) as it slides down the inclined plane are shown in Fig The force of gravity has magnitude mg and points straight down; here it is split into components normal to the slope and down the slope, which have magnitudes mg cos θ and mg sinθ, respectively, with θ = 35. The surface exerts a normal force N and a force of kinetic friction, f k, which, since the block is moving down the slope, points up the slope. The block can only accelerate along the direction of the slope, so the forces perpendicular to the slope must add to zero. This gives us: N mg cosθ = 0 = N = mg cosθ The acceleration of the block down the slope was given to us as a = g/3. Then summing the forces which point along the slope, we have mg sinθ f k = ma = mg/3

16 118 CHAPTER 5. FORCES AND MOTION II Dir. of motion N f k mg sin q mg cos q 35 0 mg Figure 5.11: Forces on the block in Example 7. The force of kinetic friction is equal to µ k N, and using our expression for N we have f k = µ k N = µ k mg cos θ and putting this into the previous equation gives: mg sin θ µ k mg cosθ = mg/3. Fortunately, the mass m cancels from this equation; we get: g sinθ µ k g cos θ = g/3 And now the only unknown is µ k which we solve for: µ k g cosθ = g sinθ g 3 = g(sinθ 1 3 ) Here we see that g also cancels, although we always knew the value of g! We then get: µ k = (sinθ 1 3 ) cos θ = (sin ) cos35 = So the coefficient of kinetic friction between block and slope is A 2.0kg block is placed on top of a 5.0kg as shown in Fig The coefficient of kinetic friction between the 5.0 kg block and the surface is A horizontal force F is applied to the 5.0kg block. (a) Draw a free body diagram for each block. What force accelerates the 2.0 kg block? (b) Calculate the magnitude of the force necessary to pull both blocks to the right with an acceleration of 3.0 m s 2. (c) find the minimum coefficient of static friction between the blocks such that the 2.0kg block does not slip under an acceleration of 3.0 m s 2. [Ser4 5-73] (a) What forces act on each block? On the big block (with mass M = 5.0kg, let s say) we have the applied force F which pulls to the right. There is the force of gravity, Mg downward. The surface exerts a normal

17 5.2. WORKED EXAMPLES 119 m k = kg 5.0 kg F Figure 5.12: Figure for Example 8. M N1 m N2 f s F f s f k Mg N2 mg (a) (b) Figure 5.13: (a) Forces acting on the large block, M = 5.0 kg. (b) Forces acting on the small block, m = 2.0 kg. force N 1 upward. There is a friction force from the surface, which is directed to the left. The small mass will also exert forces on mass M; it exerts a normal force N 2 which is directed downward; we know this because M is pushing upward on m. Now, M is exerting a force of static friction f s on m which goes to the right; so m must exert a friction force f s on M which points to the left. These forces are diagrammed in Fig. 5.13(a). On the small block we have the force of gravity, mg downward. Mass M exerts an upward normal force N 2 on it, and also a force of static friction f s on it, pointing to the right. It is this force which accelerates m as it moves along with M (without slipping). These forces are diagrammed in Fig. 5.13(b). Notice how the forces between M and m, namely N 2 (normal) and f s, have the same magnitude but opposite directions, in accordance with Newton s Third Law. They are so called action reaction pairs. (b) The blocks will have a horizontal acceleration but no vertical motion, so that allows us to solve for some of the forces explained in part (a). The vertical forces on m must sum to zero, giving us: N 2 mg = 0 = N 2 = mg = (2.0kg)(9.80 m s 2 ) = 19.6N

18 120 CHAPTER 5. FORCES AND MOTION II and the vertical forces on M must sum to zero, giving us: N 1 N 2 Mg = 0 = N 1 = N 2 + Mg = 19.6N + (5.0kg)(9.80 m s 2 ) = 68.6N We are given that the acceleration of both blocks is 3.0 m s 2. Applying Newton s Second Law to mass m we find: Fx = f s = ma x = (2.0kg)(3.0 m s 2 ) = 6.0N While applying it to M gives Fx = F f k f s = Ma x = (5.0kg)(3.0 m s 2 ) = 15.0N We found f s above; we do know the force of kinetic friction (from M s sliding on the surface) because we know the coefficient of kinetic friction and the normal force N 1 : Now we can solve for F: f k = µ k N 1 = (0.20)(68.6N) = 13.7N F = 15.0N + f k + f s = 15.0N N + 6.0N = 34.7 N To pull the blocks together to the right with an acceleration 3.0 m s 2 we need an applied force of 34.7N. (c) As we ve seen, mass m accelerates because of the friction force f s (from M s surface) which acts on it. Forces of static friction have a maximum value; here we know that we must have f s µ s N 2 in order for m not to slip on M. Here, we have f s = 6.0N and N 2 = 19.6N. So the critical value of µ s for our example is µ s = f 2 N 2 = If µ s is less than this value, static friction cannot supply the force needed to accelerate m at 3.0 m s 2. So µ s = is the minimum value of the coefficient of static friction so that the upper block does not slip Uniform Circular Motion Revisited 9. A toy car moving at constant speed completes one lap around a circular track (a distance of 200m) in 25.0s. (a) What is the average speed? (b) If the mass of the car is 1.50kg, what is the magnitude of the central force that keeps it in a circle? [Ser4 6-1]

19 5.2. WORKED EXAMPLES 121 m r M Figure 5.14: Mass m moves; mass M hangs! (a) If a lap around the circular track is of length 200m then the (average) speed of the car is v = d t = 200m 25.0s = 8.00 m s (b) The car undergoes uniform circular motion, moving in a circle of radius r with speed v. The net force on the car points toward the center of the circle and has magnitude F cent = mv2 r Actually, we haven t found r yet. We are given the circumference of the circle, and from C = 2πr we find r = C 2π = 200m 2π = 31.8m So the net force on the car has magnitude F cent = mv2 r = (1.50kg)(8.00 m s )2 (31.8 m) = 3.02N The net force on the car has magnitude 3.02 N; its direction is always inward, keeping the car on a circular path. 10. A mass M on a frictionless table is attached to a hanging mass M by a cord through a hole in the table, as shown in Fig Find the speed with which m must move in order for M to stay at rest. [HRW5 6-57] Taking mass M to be at rest, we see that mass m must be moving in a circle of constant radius r. It is moving at (constant) speed v; so mass m undergoes uniform circular motion. So the net force on m points toward the center of the circle and has magnitude F cent = mv 2 /r. The free body diagram for m is shown in Fig. 5.15(a). The only force on m is the string

20 122 CHAPTER 5. FORCES AND MOTION II T a cent T (a) (b) Mg Figure 5.15: (a) Force on mass m and the direction of its acceleration. (There are also vertical forces, gravity and the table s normal force, which cancel; these are not shown.) (b) Forces acting on hanging mass M. tension (pointing toward the center of the circle). This gives us: T = mv2 r Next consider the forces acting on M and its motion. The force diagram for M is shown in Fig. 5.15(b). Since mass M is at rest, the net force on it is zero, which gives: Combining these two results, we get: T = Mg Solving for v, we get: v 2 = Mgr m mv 2 = Mg r Mgr = v = m 11. A stuntman drives a car over the top of a hill, the cross section of which can be approximated by a circle of radius 250m, as in Fig What is the greatest speed at which he can drive without the car leaving the road at the top of the hill? [HRW5 6-58] We begin by thinking about the forces acting on the car and its acceleration when it is at the top of the hill. At the top of the hill, the car is moving in a circular path of radius r = 250m with some speed v. Then the car has a centripetal acceleration of magnitude v 2 /r which is directed downward. (For all we know, it may also have a tangential acceleration as well, but the

21 5.2. WORKED EXAMPLES m Figure 5.16: Car drives over the top of a hill in Example 11. N v mg Figure 5.17: Forces acting on the car in Example 11 when it is at the top of the hill. problem gives no information on it, and it won t be relevant for the problem.) By Newton s Second Law, the net (vertical) force on the car must have magnitude mv 2 /r and must be directed downward. The forces acting on the car are shown in Fig Then the force of gravity is mg downward. The road exerts a normal force of magnitude N upward. One may ask how we know the road s force goes upward. This is because there is no physical way in which a road can pull downward on a car driving over it. But it can push up. We combine the results from the last two paragraphs. The net downward force must equal mv 2 /r. This gives us: mg N = mv2 r however without knowing anything more, we can t solve for v in this equation because we don t know N (or, for that matter, m). We have not yet used the condition that the car is on the verge of leaving the road at the top of the hill. What does this condition give us? If we use the last equation to find the normal force: N = mg mv2 r we see that if we increase v there comes a point at which N must be negative in order for the car to stay on the road moving on its circular arc. But as discussed above, N can t be negative. But it can be zero, and it is for this speed that the car is on the verge of leaving the road at the top of the hill. The critical case has N = 0, and this gives us:. 0 = mg mv2 r = mv 2 = mg. r

22 124 CHAPTER 5. FORCES AND MOTION II r v a Figure 5.18: Coin moves with a rotating turntable Toward center N f s mg Figure 5.19: Forces acting on the coin in Example 12 Note that the mass m cancels out of this equation so we don t need to know m. We get: and finally v 2 = rg = (250m)(9.80 m s 2 ) = m2 s 2 v = 49.5 m s. The car may be driven as fast as 49.5 m s and it will stay on the road. 12. A coin placed 30.0cm from the center of a rotating, horizontal turntable slips when its speed is 50.0 cm. (a) What provides the central force when the coin is s stationary relative to the turntable? (b) What is the coefficient of static friction between the coin and turntable? [Ser4 6-13] (a) See Fig for a fine illustration of the problem. As the coin executes uniform circular motion (before it slips) it is accelerating toward the center of the turntable! So there must be a force (or forces) on the coin causing it to do this. This force can only come from its contact interaction with the turntable, i.e. from friction. Here, since we are dealing with the case where the coin is not sliding with respect to the surface, it is the force of static friction. Furthermore, the force of static friction is directed toward the center of the turntable. (b) A view of the forces acting on the coin is given in Fig If the mass of the coin is m then gravity exerts a force mg downward, the turntable exerts a normal force N upward

23 5.2. WORKED EXAMPLES 125 and there is a force of static friction, which as we discussed in part (a) must point toward the center of the turntable. The acceleration of the coin points toward the center of the circle and has magnitude v 2 /r, (r being the distance of the coin from the center). So the vertical forces must cancel, giving us N = mg. The net force points inward and has magnitude mv 2 /r, so that f s = mv 2 /r. Now for the conditions at which the coin starts to slip, the force of static friction has reached its maximum value, i.e. f s = µ s N but here we can use our results to substitute for f s and for N. This give us: which lets us solve for µ: mv 2 r = µ s mg µ s = v2 rg = (50.0 cm s )2 (30.0cm)(9.80 m ) = (0.500 m s )2 (0.300m)(9.80 m = ) s 2 s 2 So the coefficient of static friction for the turntable and coin is µ s = We were never given the mass of the coin, but we did not need it because it cancelled out of our equations just before the final answer. 13. A Ferris wheel rotates four times each minute; it has a diameter of 18.0m. (a) What is the centripetal acceleration of a rider? What force does the seat exert on a 40.0 kg rider (b) at the lowest point of the ride and (c) at the highest point of the ride? (d) What force (magnitude and direction) does the seat exert on a rider when the rider is halfway between top and bottom? [Ser4 6-51] (a) First, calculate some numbers which we know are important for circular motion! The wheel turns around 4 times in one minute, so the time for one turn must be T = 1.0min 4 = 60.0s 4 = 15s. Also, since the radius of the wheel is R = D/2 = 18.0m/2 = 9.0m, the circumference of the wheel is C = 2πR = 2π(9.0m) = 57m and then the speed of a rider is v = C T = 57m 15s = 3.8 m s. The rider moves at constant speed in a circular path of radius R. So the rider s acceleration is always directed toward the center of the circle and it has magnitude a cent = v2 R = (3.8 m s )2 (9.0m) = 1.6 m s 2

24 126 CHAPTER 5. FORCES AND MOTION II F seat a F seat a Mg Mg (a) (b) Figure 5.20: Forces acting on the Ferris wheel rider (a) at the lowest point of the ride and (b) at the highest point of the ride. The centripetal acceleration of the rider is 1.6 m s 2. (b) Consider what is happening when rider is at the lowest point of the ride. His acceleration is upward (toward the center of the circle!) and has magnitude 1.6 m s 2. What are the forces acting on the rider (who has mass M, let s say) at this point? These are shown in Fig. 5.20(a). Gravity pulls down on the rider with a force of magnitude Mg, and the seat pushes upward on the rider with a force F seat. (Usually seats can t pull downward; also, the force of the seat can t have any sideways component because here the net force must point upward). Since the net force points upward and has magnitude F cent = Mv 2 /R, Newton s Second Law gives us: F seat Mg = Mv2 R Since M = 40.0kg, we get: F seat = Mg + Mv2 R = (40.0kg)(9.80 m ) + (40.0kg)(3.8 m s )2 s 2 (9.0 m) = 460N The seat pushes upward on the rider with a force of magnitude 460N. We might say that when the rider at the lowest point, the rider has an apparent weight of 460 N, since that is the force of the surface on which the rider rests. Here, the apparent weight is greater than the true weight Mg of the rider. (c) When the rider is at the highest point of the wheel, his acceleration is downward. The forces acting on the rider are shown in Fig. 5.20(b); these are the same forces as in part (a) but now the net force points downward and has magnitude F cent = Mv 2 /R. Adding up the downward forces, Newton s Second Law now gives us: which now gives us Mg F seat = Mv2 R F seat = Mg Mv2 R = (40.0kg)(9.80 m ) (40.0kg)(3.8 m s )2 s 2 (9.0 m) = 330N.

25 5.2. WORKED EXAMPLES 127 F seat a Figure 5.21: Forces on the rider when he is halfway between top and bottom. The seat pushes upward on the rider with a force of magnitude 330N. We would say that at the top of the ride, the apparent weight of the rider is 330N. This time the apparent weight is less than the true weight of the rider. (d) When the rider is halfway between top and bottom, the net force on him still points toward the center of the circle (and has magnitude Mv 2 /R), but in this case the direction is horizontal, as indicated in Fig (In this picture the rider is on the right side of the Ferris wheel, as we look at it face on.) The forces acting on the rider are also shown in this picture. The force of gravity, Mg can only pull downward. The only other force on the rider, namely that of the seat does not push straight upward in this case. We know that it can t, because the sum of the two forces must point horizontally (to the right). The force of the seat must also have a horizontal component; it must point as shown in Fig Without being overly formal about the mathematics we can see that the vertical component of F seat must be Mg so as to cancel the force of gravity. The vertical component of F seat must have magnitude Mg F seat, vert = Mg = (40.0kg)(9.80 m s 2 ) = 392N The horizontal component of F seat must equal Mv 2 /R since as we ve seen, that is the net force on the rider. So: F seat, horiz = Mv2 R = (40.0kg)(3.8 m s )2 (9.0 m) Now we can find the magnitude of the force of the seat: F seat = F 2 2 seat, vert + F seat, horiz = (392N) 2 + (64N) 2 = 397N = 64N and this force is directed at an angle θ above the horizontal, where θ is given by ( ) ( ) θ = tan 1 Fseat, vert 392N = tan 1 = 81 F seat, horiz 64N The force of the seat has magnitude 397N and is directed at 81 above the horizontal.

26 128 CHAPTER 5. FORCES AND MOTION II R r r=2r Figure 5.22: Satellite orbits the Earth in Example Newton s Law of Gravity (Optional for Calculus Based) 14. A satellite of mass 300kg is in a circular orbit around the Earth at an altitude equal to the Earth s mean radius (See Fig ) Find (a) the satellite s orbital speed, (b) the period of its revolution, and (c) the gravitational force acting on it. Use: R Earth = m and M Earth = kg. [Ser4 6-6] (a) (Comment: This was the way the problem was originally stated. I will find the answers in a different order!) We are told that the height of satellite above the surface of the Earth is equal to the Earth s radius. This means that the radius of the satellite s orbit is equal to twice the radius of the Earth. Since the mean radius of the Earth is R = m, then the orbit radius is r = 2R = 2( m) = m. The satellite is always at this distance from the center of the Earth; Newton s law of gravitation tells us the force which the Earth exerts on the satellite: F grav = G m satm Earth r 2 = ( 11 N m ) (300kg)( kg) kg 2 ( m) 2 = N This force is always directed toward the center of the Earth. Since this is the only force which acts on the satellite, it is also the (net) centripetal force on it: F cent = mv2 r We can now find the speed of the satellite. It is: = N v 2 = rf cent m = ( m)( N) = m2 s (300 kg) 2

27 5.2. WORKED EXAMPLES 129 which gives v = m s. So the satellite s orbital speed is m s. (b) Recall that the speed of an object in uniform circular motion is related to the period and radius by: v = 2πr T From this we get the period of the satellite s orbit: The period of the satellite is 3.96hr. T = 2πr v = 2π( m) ( m s ) = s = 3.96hr (c) The answer to this part has been found already! The gravitational force acting on the satellite is N.

28 130 CHAPTER 5. FORCES AND MOTION II

### Physics-1 Recitation-3

Physics-1 Recitation-3 The Laws of Motion 1) The displacement of a 2 kg particle is given by x = At 3/2. In here, A is 6.0 m/s 3/2. Find the net force acting on the particle. (Note that the force is time

### Lesson 04: Newton s laws of motion

www.scimsacademy.com Lesson 04: Newton s laws of motion If you are not familiar with the basics of calculus and vectors, please read our freely available lessons on these topics, before reading this lesson.

### Chapter 4. Forces I. 4.1 The Important Stuff Newton s First Law Newton s Second Law

Chapter 4 Forces I 4.1 The Important Stuff 4.1.1 Newton s First Law With Newton s Laws we begin the study of how motion occurs in the real world. The study of the causes of motion is called dynamics, or

### Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

### PHYS101 The Laws of Motion Spring 2014

The Laws of Motion 1. An object of mass m 1 = 55.00 kg placed on a frictionless, horizontal table is connected to a string that passes over a pulley and then is fastened to a hanging object of mass m 2

### CHAPTER 3 NEWTON S LAWS OF MOTION

CHAPTER 3 NEWTON S LAWS OF MOTION NEWTON S LAWS OF MOTION 45 3.1 FORCE Forces are calssified as contact forces or gravitational forces. The forces that result from the physical contact between the objects

### F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

### Ground Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. Dr Tay Seng Chuan

PC1221 Fundamentals of Physics I Lectures 9 and 10 he Laws of Motion Dr ay Seng Chuan 1 Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while lecture

### Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

### Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

### Physics 2101, First Exam, Fall 2007

Physics 2101, First Exam, Fall 2007 September 4, 2007 Please turn OFF your cell phone and MP3 player! Write down your name and section number in the scantron form. Make sure to mark your answers in the

### VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

### BROCK UNIVERSITY. PHYS 1P21/1P91 Solutions to Mid-term test 26 October 2013 Instructor: S. D Agostino

BROCK UNIVERSITY PHYS 1P21/1P91 Solutions to Mid-term test 26 October 2013 Instructor: S. D Agostino 1. [10 marks] Clearly indicate whether each statement is TRUE or FALSE. Then provide a clear, brief,

### PH2213 : Examples from Chapter 4 : Newton s Laws of Motion. Key Concepts

PH2213 : Examples from Chapter 4 : Newton s Laws of Motion Key Concepts Newton s First and Second Laws (basically Σ F = m a ) allow us to relate the forces acting on an object (left-hand side) to the motion

### Rotational Mechanics - 1

Rotational Mechanics - 1 The Radian The radian is a unit of angular measure. The radian can be defined as the arc length s along a circle divided by the radius r. s r Comparing degrees and radians 360

### College Physics 140 Chapter 4: Force and Newton s Laws of Motion

College Physics 140 Chapter 4: Force and Newton s Laws of Motion We will be investigating what makes you move (forces) and how that accelerates objects. Chapter 4: Forces and Newton s Laws of Motion Forces

### Physics 201 Homework 5

Physics 201 Homework 5 Feb 6, 2013 1. The (non-conservative) force propelling a 1500-kilogram car up a mountain -1.21 10 6 joules road does 4.70 10 6 joules of work on the car. The car starts from rest

### PHY121 #8 Midterm I 3.06.2013

PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

### Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7

Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.8-4.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal

### C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

### Name: Date: PRACTICE QUESTIONS PHYSICS 201 FALL 2009 EXAM 2

Name: Date: PRACTICE QUESTIONS PHYSICS 201 FALL 2009 EXAM 2 1. A force accelerates a body of mass M. The same force applied to a second body produces three times the acceleration. What is the mass of the

### Homework 4. problems: 5.61, 5.67, 6.63, 13.21

Homework 4 problems: 5.6, 5.67, 6.6,. Problem 5.6 An object of mass M is held in place by an applied force F. and a pulley system as shown in the figure. he pulleys are massless and frictionless. Find

### Mechanics 1. Revision Notes

Mechanics 1 Revision Notes July 2012 MECHANICS 1... 2 1. Mathematical Models in Mechanics... 2 Assumptions and approximations often used to simplify the mathematics involved:... 2 2. Vectors in Mechanics....

### What is a force? Identifying forces. What is the connection between force and motion? How are forces related when two objects interact?

Chapter 4: Forces What is a force? Identifying forces. What is the connection between force and motion? How are forces related when two objects interact? Application different forces (field forces, contact

### HW#4b Page 1 of 6. I ll use m = 100 kg, for parts b-c: accelerates upwards, downwards at 5 m/s 2 A) Scale reading is the same as person s weight (mg).

HW#4b Page 1 of 6 Problem 1. A 100 kg person stands on a scale. a.) What would be the scale readout? b.) If the person stands on the scale in an elevator accelerating upwards at 5 m/s, what is the scale

### Spinning Stuff Review

Spinning Stuff Review 1. A wheel (radius = 0.20 m) is mounted on a frictionless, horizontal axis. A light cord wrapped around the wheel supports a 0.50-kg object, as shown in the figure below. When released

### THE NATURE OF FORCES Forces can be divided into two categories: contact forces and non-contact forces.

SESSION 2: NEWTON S LAWS Key Concepts In this session we Examine different types of forces Review and apply Newton's Laws of motion Use Newton's Law of Universal Gravitation to solve problems X-planation

### Solutions to Homework Set #10 Phys2414 Fall 2005

Solution Set #0 Solutions to Homework Set #0 Phys244 Fall 2005 Note: The numbers in the boxes correspond to those that are generated by WebAssign. The numbers on your individual assignment will vary. Any

### University Physics 226N/231N Old Dominion University. Newton s Laws and Forces Examples

University Physics 226N/231N Old Dominion University Newton s Laws and Forces Examples Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2012-odu Wednesday, September

### Newton s Laws of Motion

Newton s Laws of Motion FIZ101E Kazım Yavuz Ekşi My contact details: Name: Kazım Yavuz Ekşi Email: eksi@itu.edu.tr Notice: Only emails from your ITU account are responded. Office hour: Wednesday 10.00-12.00

### Application of Newton s Second Law Challenge Problem Solutions

Problem 1: Painter on a Platform Application of Newton s Second Law Challenge Problem Solutions A painter of mass m 1 stands on a platform of mass m 2 and pulls himself up by two ropes that run over massless

### 2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was

### Forces. Isaac Newton was the first to discover that the laws that govern motions on the Earth also applied to celestial bodies.

Forces Now we will discuss the part of mechanics known as dynamics. We will introduce Newton s three laws of motion which are at the heart of classical mechanics. We must note that Newton s laws describe

### Chapter 5: Circular Motion

Page 1 Chapter 5: Circular Motion Rotating Objects: Wheels, moon, earth, CDs, DVDs etc. Rigid bodies. Description of circular motion. Angular Position, Angular Displacement θ r s Angle (in radians) θ =

### v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

### End-of-Chapter Exercises

End-of-Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. Figure 11.20 shows four different cases involving a

### Ch 6 Forces. Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79

Ch 6 Forces Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79 Friction When is friction present in ordinary life? - car brakes - driving around a turn - walking - rubbing your hands together

### Version 001 Quest 3 Forces tubman (20131) 1

Version 001 Quest 3 Forces tubman (20131) 1 This print-out should have 19 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. l B Conceptual

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The following four forces act on a 4.00 kg object: 1) F 1 = 300 N east F 2 = 700 N north

### Mechanics Lecture Notes. 1 Notes for lectures 12 and 13: Motion in a circle

Mechanics Lecture Notes Notes for lectures 2 and 3: Motion in a circle. Introduction The important result in this lecture concerns the force required to keep a particle moving on a circular path: if the

### Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

### physics 111N forces & Newton s laws of motion

physics 111N forces & Newton s laws of motion forces (examples) a push is a force a pull is a force gravity exerts a force between all massive objects (without contact) (the force of attraction from the

### 5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will

### Solution Derivations for Capa #11

Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform

### AP Physics - Chapter 8 Practice Test

AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on

### PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

### PHY1 Review for Exam 5

Topics 1. Uniform circular Motion a. Centripetal acceleration b. Centripetal force c. Horizontal motion d. ertical motion e. Circular motion with an angle 2. Universal gravitation a. Gravitational force

### Centripetal Force. 1. Introduction

1. Introduction Centripetal Force When an object travels in a circle, even at constant speed, it is undergoing acceleration. In this case the acceleration acts not to increase or decrease the magnitude

### B Answer: neither of these. Mass A is accelerating, so the net force on A must be non-zero Likewise for mass B.

CTA-1. An Atwood's machine is a pulley with two masses connected by a string as shown. The mass of object A, m A, is twice the mass of object B, m B. The tension T in the string on the left, above mass

### Concept Review. Physics 1

Concept Review Physics 1 Speed and Velocity Speed is a measure of how much distance is covered divided by the time it takes. Sometimes it is referred to as the rate of motion. Common units for speed or

### Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

### AP Physics Newton's Laws Practice Test

AP Physics Newton's Laws Practice Test Answers: A,D,C,D,C,E,D,B,A,B,C,C,A,A 15. (b) both are 2.8 m/s 2 (c) 22.4 N (d) 1 s, 2.8 m/s 16. (a) 12.5 N, 3.54 m/s 2 (b) 5.3 kg 1. Two blocks are pushed along a

### PH 221-1D Spring Force and Motion II. Lecture Chapter 6 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

PH 221-1D Spring 2013 Force and Motion II Lecture 12-13 Chapter 6 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) Chapter 6 Force and Motion II In this chapter we will cover the following

### Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.

Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

### Lecture 15. Torque. Center of Gravity. Rotational Equilibrium. Cutnell+Johnson:

Lecture 15 Torque Center of Gravity Rotational Equilibrium Cutnell+Johnson: 9.1-9.3 Last time we saw that describing circular motion and linear motion is very similar. For linear motion, we have position

### 1 of 7 10/2/2009 1:13 PM

1 of 7 10/2/2009 1:13 PM Chapter 6 Homework Due: 9:00am on Monday, September 28, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

### Physics 101 Exam 1 NAME 2/7

Physics 101 Exam 1 NAME 2/7 1 In the situation below, a person pulls a string attached to block A, which is in turn attached to another, heavier block B via a second string (a) Which block has the larger

### Physics 201 Homework 8

Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

### Lecture 9. Friction in a viscous medium Drag Force Quantified

Lecture 9 Goals Describe Friction in Air (Ch. 6) Differentiate between Newton s 1 st, 2 nd and 3 rd Laws Use Newton s 3 rd Law in problem solving Assignment: HW4, (Chap. 6 & 7, due 10/5) 1 st Exam Thurs.,

### Rotational Dynamics. Luis Anchordoqui

Rotational Dynamics Angular Quantities In purely rotational motion, all points on the object move in circles around the axis of rotation ( O ). The radius of the circle is r. All points on a straight line

### Example (1): Motion of a block on a frictionless incline plane

Firm knowledge of vector analysis and kinematics is essential to describe the dynamics of physical systems chosen for analysis through ewton s second law. Following problem solving strategy will allow

### SOLUTIONS TO PROBLEM SET 4

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01X Fall Term 2002 SOLUTIONS TO PROBLEM SET 4 1 Young & Friedman 5 26 A box of bananas weighing 40.0 N rests on a horizontal surface.

### Work, Kinetic Energy and Potential Energy

Chapter 6 Work, Kinetic Energy and Potential Energy 6.1 The Important Stuff 6.1.1 Kinetic Energy For an object with mass m and speed v, the kinetic energy is defined as K = 1 2 mv2 (6.1) Kinetic energy

### B) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B

Practice Test 1 1) Abby throws a ball straight up and times it. She sees that the ball goes by the top of a flagpole after 0.60 s and reaches the level of the top of the pole after a total elapsed time

### Chapter 6 Circular Motion, Orbits and Gravity

Chapter 6 Circular Motion, Orbits and Gravity Topics: The kinematics of uniform circular motion The dynamics of uniform circular motion Circular orbits of satellites Newton s law of gravity Sample question:

### Physics Midterm Review Packet January 2010

Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:

### Linear Centripetal Tangential speed acceleration acceleration A) Rω Rω 2 Rα B) Rω Rα Rω 2 C) Rω 2 Rα Rω D) Rω Rω 2 Rω E) Rω 2 Rα Rω 2 Ans: A

1. Two points, A and B, are on a disk that rotates about an axis. Point A is closer to the axis than point B. Which of the following is not true? A) Point B has the greater speed. B) Point A has the lesser

### CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

### Chapter 6. Circular Motion, Orbits, and Gravity. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition

Chapter 6 Circular Motion, Orbits, and Gravity PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition 6 Circular Motion, Orbits, and Gravity Slide 6-2 Slide 6-3 Slide 6-4 Slide 6-5

### Forces & Newton s Laws. Teacher Packet

AP * PHYSICS B Forces & Newton s Laws eacher Packet AP* is a trademark of the College Entrance Examination Board. he College Entrance Examination Board was not involved in the production of this material.

### Newton s Law of Motion

chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating

### 6: Applications of Newton's Laws

6: Applications of Newton's Laws Friction opposes motion due to surfaces sticking together Kinetic Friction: surfaces are moving relative to each other a.k.a. Sliding Friction Static Friction: surfaces

### 1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All of the movies A B C. PHYS 11: Chap. 2, Pg 2

1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All of the movies A B C PHYS 11: Chap. 2, Pg 2 1 1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All three A B PHYS 11: Chap. 2, Pg 3 C 1) more than

### Physics 211 Week 12. Simple Harmonic Motion: Equation of Motion

Physics 11 Week 1 Simple Harmonic Motion: Equation of Motion A mass M rests on a frictionless table and is connected to a spring of spring constant k. The other end of the spring is fixed to a vertical

### Rotation, Angular Momentum

This test covers rotational motion, rotational kinematics, rotational energy, moments of inertia, torque, cross-products, angular momentum and conservation of angular momentum, with some problems requiring

### 3.1 (I) What net force must be exerted on a 7.0-kg sack of potatoes to give it an acceleration of 3.5 m/sec 2? Solution.

Ch.3 PROBLEMS Sections 3.1 and 3.2 3.1 (I) What net force must be exerted on a 7.0-kg sack of potatoes to give it an acceleration of 3.5 m/sec 2? Solution. a = f m kg m f = ma = 7kg 3.5 m sec 2 = 24.5

### Potential and Kinetic Energy: The Roller Coaster Lab Student Advanced Version

Potential and Kinetic Energy: The Roller Coaster Lab Student Advanced Version Key Concepts: Energy is the ability of a system or object to perform work. It exists in various forms. Potential Energy is

### MOTION AND FORCE: DYNAMICS

MOTION AND FORCE: DYNAMICS We ve been dealing with the fact that objects move. Velocity, acceleration, projectile motion, etc. WHY do they move? Forces act upon them, that s why! The connection between

### Physics 9 Fall 2009 Homework 2 - Solutions

Physics 9 Fall 009 Homework - s 1. Chapter 7 - Exercise 5. An electric dipole is formed from ±1.0 nc charges spread.0 mm apart. The dipole is at the origin, oriented along the y axis. What is the electric

### Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath

Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath 1. The exam will last from 8:00 am to 11:00 am. Use a # 2 pencil to make entries on the answer sheet. Enter the following id information

### Center of Mass/Momentum

Center of Mass/Momentum 1. 2. An L-shaped piece, represented by the shaded area on the figure, is cut from a metal plate of uniform thickness. The point that corresponds to the center of mass of the L-shaped

### Unit 4 Practice Test: Rotational Motion

Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle

### Chapter 5 Problems. = 9ˆ i + 0 ˆ j F 2 F 1. = 8cos62 ˆ i + 8sin62 ˆ j. = (9 8cos62 ) i ˆ + (8sin62 ) ˆ j = i ˆ ˆ j =

Chapter 5 Problems 5.1 Only two horizontal forces act on a 3.0 kg body. One force is 9.0N, acting due east, and the other is 8.0N act 62 degrees North of west. What is the magnitude of the body s acceleration?

### University Physics 226N/231N Old Dominion University. Getting Loopy and Friction

University Physics 226N/231N Old Dominion University Getting Loopy and Friction Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2012-odu Friday, September 28 2012 Happy

### circular motion & gravitation physics 111N

circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would

### Work. Work = Force distance (the force must be parallel to movement) OR Work = (Force)(cos θ)(distance)

Work Work = Force distance (the force must be parallel to movement) OR Work = (Force)(cos θ)(distance) When you are determining the force parallel to the movement you can do this manually and keep track

### Physics 11 Chapter 4 HW Solutions

Physics 11 Chapter 4 HW Solutions Chapter 4 Conceptual Question: 5, 8, 10, 18 Problems: 3, 3, 35, 48, 50, 54, 61, 65, 66, 68 Q4.5. Reason: No. If you know all of the forces than you know the direction

### Vectors and the Inclined Plane

Vectors and the Inclined Plane Introduction: This experiment is designed to familiarize you with the concept of force as a vector quantity. The inclined plane will be used to demonstrate how one force

### PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013

PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be

### PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

### Physics 11 Fall 2012 Practice Problems 6 - Solutions

Physics 11 Fall 01 Practice Problems 6 - s 1. Two points are on a disk that is turning about a fixed axis perpendicular to the disk and through its center at increasing angular velocity. One point is on

### Newton s Laws Pre-Test

Newton s Laws Pre-Test 1.) Consider the following two statements and then select the option below that is correct. (i) It is possible for an object move in the absence of forces acting on the object. (ii)

### 04-1. Newton s First Law Newton s first law states: Sections Covered in the Text: Chapters 4 and 8 F = ( F 1 ) 2 + ( F 2 ) 2.

Force and Motion Sections Covered in the Text: Chapters 4 and 8 Thus far we have studied some attributes of motion. But the cause of the motion, namely force, we have essentially ignored. It is true that

### Newton s Third Law. object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1

Newton s Third Law! If two objects interact, the force exerted by object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1!! Note on notation: is

### Physics 131: Test/Exam Problems: Rotations

Physics 131: Test/Exam Problems: Rotations 1) A uniform one-meter bar has a mass of 10 kg. One end of the bar is hinged to a building, and the other end is suspended by a cable that makes an angle of 45

### PHYS-2020: General Physics II Course Lecture Notes Section VII

PHYS-2020: General Physics II Course Lecture Notes Section VII Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and

### Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

### Newton s Laws of Motion

Physics Newton s Laws of Motion Newton s Laws of Motion 4.1 Objectives Explain Newton s first law of motion. Explain Newton s second law of motion. Explain Newton s third law of motion. Solve problems