Nuno Vasconcelos UCSD

Size: px
Start display at page:

Download "Nuno Vasconcelos UCSD"

Transcription

1 Bayesan parameter estmaton Nuno Vasconcelos UCSD 1

2 Maxmum lkelhood parameter estmaton n three steps: 1 choose a parametrc model for probabltes to make ths clear we denote the vector of parameters by Θ P X ( x; Θ note that ths means that Θ s NOT a random varable 2 assemble D = {x 1,..., x n } of examples drawn ndependently 3 select the parameters that maxmze the probablty of the data Θ * = arg max Θ P X = arg max log P Θ ( D; Θ P X ( D; Θ P X (D;Θ s the lkelhood of parameter Θ wth respect to the data 2

3 Least squares there are nterestng connectons between ML estmaton and least squares methods e.g. n a regresson problem we have two random varables X and Y a dataset of examples D = {(x 1,y 1, (x n,y n } a parametrc model of the form y = f (x; Θ + ε where Θ s a parameter vector, and ε a random varable that accounts for nose e.g. ε ~ N(0,σ 2 3

4 Least squares assumng that the famly of models s known, e.g. K f ( x ; Θ = f = 0 x ths s really just a problem of parameter estmaton where the data s dstrbuted as P Z X ( 2 z, f ( x ; Θ X ( D x ; Θ = G f, σ note that X s always known, and the mean s a functon of x and Θ n the homework, you wll show that Θ * = [ T 1 T Γ Γ] Γ y 4

5 Least squares where Γ = 1 K 1 K x1 M K K x n concluson: least squares estmaton s really just ML estmaton under the assumpton of Gaussan nose ndependent d sample ε ~ N(0,σ 2 once agan, probablty blt makes the assumptons explct t 5

6 Least squares soluton due to the connecton to parameter estmaton we can also talk about the qualty of the least squares soluton n partcular, we know that t s unbased varance goes to zero as the number of ponts ncreases t s the BLUE estmator for f(x;θ under the statstcal formulaton we can also see how the optmal estmator changes wth assumptons ML estmaton can also lead to (homework weghted least squares mnmzaton of L p norms robust estmators 6

7 Bayesan parameter estmaton Bayesan parameter estmaton s an alternatve framework for parameter estmaton t turns out that the dvson between Bayesan and ML methods s qute fundamental t stems from a dfferent way of nterpretng probabltes frequentst vs Bayesan there s a long debate about whch s best ths debate goes to the core of what probabltes blt mean to understand t, we have to dstngush two components the defnton of probablty (ths does not change the assessment of probablty (ths changes let s start wth a bref revew of the part that does not change 7

8 Probablty probablty s a language to deal wth processes that are non-determnstc examples: f I flp a con 100 tmes, how many can I expect to see heads? what s the weather gong to be lke tomorrow? are my stocks gong to be up or down? am I n front of a classroom or s ths just a pcture of t? 8

9 Sample space the most mportant concept s that of a sample space our process defnes a set of events these are the outcomes or states of the process example: we roll a par of dce call the value on the up face at the n th toss x n note that possble events such as odd number on second throw two sxes x 1 = 2 and x 2 = 6 can all be expressed as combnatons x 2 6 of the sample space events x 1 9

10 Sample space s the lst of possble events that satsfes the followng propertes: fnest gran: all possble dstngushable events are lsted separately mutually exclusve: f one event happens the other does not (f x 1 = 5 t cannot be anythng else collectvely exhaustve: any possble outcome can be expressed as unons of sample space events x x 1 mutually exclusve property smplfes the calculaton of the probablty of complex events collectvely exhaustve means that there s no possble outcome to whch h we cannot assgn a probablty blt 10

11 Probablty measure probablty of an event: number expressng the chance that the event wll be the outcome of the process probablty measure: satsfes three axoms P(A 0 for any event A P(unversal event = 1 f A B =, then P(A+B = P(A + P(B all of ths has to do wth the defnton of probablty 1 s the same under Bayes and frequentst vews what changes s how probabltes are assessed x x 1 11

12 Frequentst vew under the frequentst vew probabltes are relatve frequences I throw my dce n tmes n m of those the sum s 5 I say that P ( sum = 5 = m n ths s ntmately connected wth the ML method t s the ML estmate for the probablty of a Bernoull process wth states ( 5, everythng else makes sense when we have a lot of observatons no bas; decreasng varance; converges to true probablty blt 12

13 Problems many nstances where we do not have a large number of observatons consder the problem of crossng a street ths s a decson problem wth two states Y = 0: I am gong to get hurt Y = 1: I wll make t safely optmal decson computable by Bayes decson rule collect some measurements that are nformatve e.g. (X = {sze, dstance, speed} of ncomng cars collect examples under both states and estmate all probabltes somehow ths does not sound lke a great dea! 13

14 Problems under the frequentst vew you need to repeat an experment a large number of tmes to estmate any probabltes yet, people are very good at estmatng probabltes for problems n whch t s mpossble to set up such experments for example: wll I de f I jon the army? wll Democrats or Republcans wn the next electon? s there a God? wll I graduate n two years? to the pont where they make lfe-changng decsons based on these probablty estmates (enlstng n the army, etc. 14

15 Subjectve probablty ths motvates an alternatve defnton of probabltes note that ths has to do more wth how probabltes are assessed than wth the probablty defnton tself we stll have a sample space, a probablty measure, etc however the probabltes are not equated to relatve counts ths s usually referred to as subjectve probablty probabltes are degrees of belef on the outcomes of the experment they are ndvdual (vary from person to person they are not ratos of expermental outcomes e.g. for very relgous person P(god exsts ~ 1 for casual churchgoer P(god exsts ~ 0.8 (e.g. accepts evoluton, etc. for non-relgous P(god exsts ~ 0 15

16 Problems n practce, why do we care about ths? under the noton of subjectve probablty, the entre ML framework makes lttle sense there s a magc number that s estmated from the world and determnes our belefs to evaluate my estmates I have to run experments over and over agan and measure quanttes lke bas and varance ths s not how people behave, when we make estmates we attach a degree of confdence to them, wthout further experments there s only one model (the ML model for the probablty of the data, no multple explanatons there s no way to specfy that some models are, a pror, better than others 16

17 Bayesan parameter estmaton the man dfference wth respect to ML s that n the Bayesan case Θ s a random varable basc concepts tranng set D = {x 1,..., x n } of examples drawn ndependently probablty densty for observatons gven parameter P X Θ ( x pror dstrbuton b t for parameter confguratons P Θ ( that encodes pror belefs about them goal: to compute the posteror dstrbuton PΘ X D ( D 17

18 Bayes vs ML there are a number of sgnfcant dfferences between Bayesan and ML estmates D 1 : ML produces a number, the best estmate to measure ts goodness we need to measure bas and varance ths can only be done wth repeated experments Bayes produces a complete characterzaton of the parameter from the sngle dataset n addton to the most probable estmate, we obtan a characterzaton of the uncertanty lower uncertanty hgher uncertanty 18

19 Bayes vs ML D 2 : optmal estmate under ML there s one best estmate under Bayes there s no best estmate only a random varable that takes dfferent values wth dfferent probabltes techncally speakng, t makes no sense to talk about the best estmate D 3 : predctons remember that we do not really care about the parameters themselves they are needed only n the sense that they allow us to buld models that can be used to make predctons (e.g. the BDR unlke ML, Bayes uses ALL nformaton n the tranng set to make predctons 19

20 Bayes vs ML let s consder the BDR under the 0-1 loss and an ndependent sample D = {x 1,..., x n } ML-BDR: pck f two steps: fnd * * * ( x = arg max P ( x ; * where plug nto the BDR X Y = arg max P X Y P ( Y ( D, all nformaton not captured by * s lost, not used at decson tme 20

21 Bayes vs ML note that we know that nformaton s lost e.g. we can t even know how good of an estmate * s unless we run multple experments and measure bas/varance Bayesan BDR under the Bayesan framework, everythng s condtoned on the tranng data denote T = {X 1,..., X n } the set of random varables from whch the tranng sample D = {x 1,..., x n n} s drawn B-BDR: pck f * ( x = arg max PX Y, ( x, D P ( the decson s condtoned d on the entre tranng set T Y 21

22 Bayesan BDR to compute the condtonal probabltes, we use the margnalzaton equaton P X Y, T ( x, D ( ( PX Θ, Y, T x,, D PΘ Y, T, D = d note 1: when the parameter value s known, x no longer depends on T, e.g. XΘ ~ N(,σ 2 we can, smplfy equaton above nto P ( x, D ( ( PX Θ, Y x, PΘ Y, T D = d X Y, T, note 2: once agan can be done n two steps (per class fnd P ΘT (D compute P XY,T (x, D and plug nto the BDR no tranng nformaton s lost 22

23 Bayesan BDR n summary pck f * note: ( x = arg max PX Y, where P T ( x, D P Y ( ( x, D P ( x, P ( D d X Y, T X Y, Θ Θ Y, T, = as before the bottom equaton s repeated for each class hence, we can drop the dependence on the class and consder the more general problem of estmatng P ( x D P ( x P ( D d X T X Θ Θ T = 23

24 The predctve dstrbuton the dstrbuton ( x D P ( x P ( D d P = X T X Θ Θ T s known as the predctve dstrbuton ths follows from the fact that t allows us to predct the value of x gven ALL the nformaton avalable n the tranng set note that t t can also be wrtten as P ( x D E P ( x [ T D] X T = Θ T X Θ = snce each parameter value defnes a model ths s an expectaton over all possble models each model s weghted by ts posteror probablty, gven tranng data 24

25 The predctve dstrbuton suppose that 2 P ( x ~ N(,1 and P ( D ~ N( µ σ X Θ Θ T, P T ( D π P X T 1 ( x D weght π 2 Θ weght π 1 weght π 2 π σ µ 2 µ µ 1 µ 2 µ µ 1 the predctve dstrbuton s an average of all these Gaussans P ( x D P ( x P ( D d X T X Θ Θ T = 1 1 x 25

26 The predctve dstrbuton Bayes vs ML ML: pck one model Bayes: average all models are Bayesan predctons very dfferent than those of ML? they can be, unless the pror s narrow P T ( D Θ P T ( D Θ max max Bayes ~ ML very dfferent 26

27 The predctve dstrbuton hence, ML can be seen as a specal case of Bayes when you are very confdent about the model pckng one s good enough n comng lectures we wll see that f the sample s qute large, the pror tends to be narrow ntutve: gven a lot of tranng data, there s lttle uncertanty about what the model s Bayes can make a dfference when there s lttle data we have already seen that ths s the mportant case snce the varance of ML tends to go down as the sample ncreases overall Bayes regularzes the ML estmate when ths s uncertan converges to ML when there s a lot of certanty 27

28 MAP approxmaton ths sounds good, why use ML at all? the man problem wth Bayes s that the ntegral P can be qute nasty ( x D P ( x P ( D d = X T X Θ Θ T n practce one s frequently forced to use approxmatons one possblty s to do somethng smlar to ML,.e. pck only one model ths can be made to account for the pror by pckng the model that has the largest posteror probablty gven the tranng data ( D MAP = arg max P Θ T 28

29 MAP approxmaton ths can usually be computed snce arg max P ( D MAP P Θ T = D T Θ ( D ( = arg max P P and corresponds to approxmatng the pror by a delta functon centered at ts maxmum Θ ( D PΘ T ( D P T Θ MAP MAP 29

30 MAP approxmaton n ths case P X T the BDR becomes pck f * ( x D = PX Θ ( x δ ( MAP d d = P ( x X Θ ( x = arg max PX Y MAP ( MAP x ; ( ( D, P ( MAP where = arg max PT Y, Θ Θ Y P Y when compared to the ML ths has the advantage of stll accountng for the pror (although only approxmately 30

31 MAP vs ML ML-BDR pck f * * ( x = arg max P ( x ; where Bayes MAP-BDR pck f * ( x where * = MAP X Y arg max = arg max P X Y P X Y = arg max P P ( Y ( D, ( MAP x ; P ( T Y, Θ Y ( D, P ( the dfference s non-neglgble only when the dataset s small there are better alternatve approxmatons Θ Y 31

32 The Laplace approxmaton ths s a method for approxmatng any dstrbuton P X (x conssts of approxmatng P X (x by a Gaussan centered at ts peak let s assume that 1 Z ( x g( x P X = where g(x s an unormalzed dstrbuton (g(x > 0, for all x and Z the normalzaton constant Z = g ( x dx we make a Taylor seres approxmaton of g(x at ts maxmum x 0 32

33 Laplace approxmaton the Taylor expanson s log g( x = log g( x c ( o x x K (the frst-order term s zero because x 0 s a maxmum wth 2 c = x 2 log g( x x= x 0 x 0 P X (x and we approxmate g(x by an unormalzed Gaussan { ( 2 } c x x g' ( x = g( xo exp 2 and then compute the normalzaton constant 0 Z = g( x o 2π c 33

34 Laplace approxmaton ths can obvously be extended to the multvarate case the approxmaton s T log g( x = log g( xo ( x x ( 2 0 A x x0 wth A the Hessan of g(x at x 0 A j = 2 x x j log g( x and the normalzaton constant Z = g( x o ( 2 d 2π A 1 x= x 0 n physcs ths s also called a saddle-pont approxmaton 34

35 Laplace approxmaton note that the approxmaton can be made for the predctve dstrbuton ( x D = G( x, x Α P X T *, X T or for the parameter posteror n whch case ( D G(, A P Θ T = MAP, Θ T P ( x D P ( x G(, A d X T X Θ MAP, Θ T = ths s clearly superor to the MAP approxmaton ( x D = P Θ ( x δ ( d P X T X Θ MAP 35

36 Other methods there are two other man alternatves, when ths s not enough varatonal approxmatons samplng methods (Markov Chan Monte Carlo varatonal approxmatons consst of boundng the ntractable functon searchng for the best bound samplng methods consst desgnng a Markov chan that has the desred dstrbuton as ts equlbrum dstrbuton sample from ths chan samplng methods converge to the true dstrbuton but convergence s slow and hard to detect 36

37 37

What is Candidate Sampling

What is Candidate Sampling What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble

More information

CS 2750 Machine Learning. Lecture 3. Density estimation. CS 2750 Machine Learning. Announcements

CS 2750 Machine Learning. Lecture 3. Density estimation. CS 2750 Machine Learning. Announcements Lecture 3 Densty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 5329 Sennott Square Next lecture: Matlab tutoral Announcements Rules for attendng the class: Regstered for credt Regstered for audt (only f there

More information

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ). REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or

More information

Recurrence. 1 Definitions and main statements

Recurrence. 1 Definitions and main statements Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.

More information

An Alternative Way to Measure Private Equity Performance

An Alternative Way to Measure Private Equity Performance An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate

More information

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12 14 The Ch-squared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed

More information

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo

More information

The Greedy Method. Introduction. 0/1 Knapsack Problem

The Greedy Method. Introduction. 0/1 Knapsack Problem The Greedy Method Introducton We have completed data structures. We now are gong to look at algorthm desgn methods. Often we are lookng at optmzaton problems whose performance s exponental. For an optmzaton

More information

Mean Molecular Weight

Mean Molecular Weight Mean Molecular Weght The thermodynamc relatons between P, ρ, and T, as well as the calculaton of stellar opacty requres knowledge of the system s mean molecular weght defned as the mass per unt mole of

More information

Extending Probabilistic Dynamic Epistemic Logic

Extending Probabilistic Dynamic Epistemic Logic Extendng Probablstc Dynamc Epstemc Logc Joshua Sack May 29, 2008 Probablty Space Defnton A probablty space s a tuple (S, A, µ), where 1 S s a set called the sample space. 2 A P(S) s a σ-algebra: a set

More information

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered

More information

How To Calculate The Accountng Perod Of Nequalty

How To Calculate The Accountng Perod Of Nequalty Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.

More information

CHAPTER 14 MORE ABOUT REGRESSION

CHAPTER 14 MORE ABOUT REGRESSION CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp

More information

Prediction of Disability Frequencies in Life Insurance

Prediction of Disability Frequencies in Life Insurance Predcton of Dsablty Frequences n Lfe Insurance Bernhard Köng Fran Weber Maro V. Wüthrch October 28, 2011 Abstract For the predcton of dsablty frequences, not only the observed, but also the ncurred but

More information

How To Find The Dsablty Frequency Of A Clam

How To Find The Dsablty Frequency Of A Clam 1 Predcton of Dsablty Frequences n Lfe Insurance Bernhard Köng 1, Fran Weber 1, Maro V. Wüthrch 2 Abstract: For the predcton of dsablty frequences, not only the observed, but also the ncurred but not yet

More information

Realistic Image Synthesis

Realistic Image Synthesis Realstc Image Synthess - Combned Samplng and Path Tracng - Phlpp Slusallek Karol Myszkowsk Vncent Pegoraro Overvew: Today Combned Samplng (Multple Importance Samplng) Renderng and Measurng Equaton Random

More information

1. Measuring association using correlation and regression

1. Measuring association using correlation and regression How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a

More information

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of

More information

Sketching Sampled Data Streams

Sketching Sampled Data Streams Sketchng Sampled Data Streams Florn Rusu, Aln Dobra CISE Department Unversty of Florda Ganesvlle, FL, USA frusu@cse.ufl.edu adobra@cse.ufl.edu Abstract Samplng s used as a unversal method to reduce the

More information

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..

More information

1. Fundamentals of probability theory 2. Emergence of communication traffic 3. Stochastic & Markovian Processes (SP & MP)

1. Fundamentals of probability theory 2. Emergence of communication traffic 3. Stochastic & Markovian Processes (SP & MP) 6.3 / -- Communcaton Networks II (Görg) SS20 -- www.comnets.un-bremen.de Communcaton Networks II Contents. Fundamentals of probablty theory 2. Emergence of communcaton traffc 3. Stochastc & Markovan Processes

More information

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by 6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng

More information

Calculation of Sampling Weights

Calculation of Sampling Weights Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a two-stage stratfed cluster desgn. 1 The frst stage conssted of a sample

More information

The OC Curve of Attribute Acceptance Plans

The OC Curve of Attribute Acceptance Plans The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4

More information

Logistic Regression. Steve Kroon

Logistic Regression. Steve Kroon Logstc Regresson Steve Kroon Course notes sectons: 24.3-24.4 Dsclamer: these notes do not explctly ndcate whether values are vectors or scalars, but expects the reader to dscern ths from the context. Scenaro

More information

L10: Linear discriminants analysis

L10: Linear discriminants analysis L0: Lnear dscrmnants analyss Lnear dscrmnant analyss, two classes Lnear dscrmnant analyss, C classes LDA vs. PCA Lmtatons of LDA Varants of LDA Other dmensonalty reducton methods CSCE 666 Pattern Analyss

More information

Forecasting the Direction and Strength of Stock Market Movement

Forecasting the Direction and Strength of Stock Market Movement Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye cjngwe@stanford.edu mchen5@stanford.edu nanye@stanford.edu Abstract - Stock market s one of the most complcated systems

More information

Characterization of Assembly. Variation Analysis Methods. A Thesis. Presented to the. Department of Mechanical Engineering. Brigham Young University

Characterization of Assembly. Variation Analysis Methods. A Thesis. Presented to the. Department of Mechanical Engineering. Brigham Young University Characterzaton of Assembly Varaton Analyss Methods A Thess Presented to the Department of Mechancal Engneerng Brgham Young Unversty In Partal Fulfllment of the Requrements for the Degree Master of Scence

More information

v a 1 b 1 i, a 2 b 2 i,..., a n b n i.

v a 1 b 1 i, a 2 b 2 i,..., a n b n i. SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 455 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces we have studed thus far n the text are real vector spaces snce the scalars are

More information

Evaluating credit risk models: A critique and a new proposal

Evaluating credit risk models: A critique and a new proposal Evaluatng credt rsk models: A crtque and a new proposal Hergen Frerchs* Gunter Löffler Unversty of Frankfurt (Man) February 14, 2001 Abstract Evaluatng the qualty of credt portfolo rsk models s an mportant

More information

Can Auto Liability Insurance Purchases Signal Risk Attitude?

Can Auto Liability Insurance Purchases Signal Risk Attitude? Internatonal Journal of Busness and Economcs, 2011, Vol. 10, No. 2, 159-164 Can Auto Lablty Insurance Purchases Sgnal Rsk Atttude? Chu-Shu L Department of Internatonal Busness, Asa Unversty, Tawan Sheng-Chang

More information

Latent Class Regression. Statistics for Psychosocial Research II: Structural Models December 4 and 6, 2006

Latent Class Regression. Statistics for Psychosocial Research II: Structural Models December 4 and 6, 2006 Latent Class Regresson Statstcs for Psychosocal Research II: Structural Models December 4 and 6, 2006 Latent Class Regresson (LCR) What s t and when do we use t? Recall the standard latent class model

More information

Luby s Alg. for Maximal Independent Sets using Pairwise Independence

Luby s Alg. for Maximal Independent Sets using Pairwise Independence Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent

More information

Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008

Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008 Rsk-based Fatgue Estmate of Deep Water Rsers -- Course Project for EM388F: Fracture Mechancs, Sprng 2008 Chen Sh Department of Cvl, Archtectural, and Envronmental Engneerng The Unversty of Texas at Austn

More information

Approximating Cross-validatory Predictive Evaluation in Bayesian Latent Variables Models with Integrated IS and WAIC

Approximating Cross-validatory Predictive Evaluation in Bayesian Latent Variables Models with Integrated IS and WAIC Approxmatng Cross-valdatory Predctve Evaluaton n Bayesan Latent Varables Models wth Integrated IS and WAIC Longha L Department of Mathematcs and Statstcs Unversty of Saskatchewan Saskatoon, SK, CANADA

More information

Implementation of Deutsch's Algorithm Using Mathcad

Implementation of Deutsch's Algorithm Using Mathcad Implementaton of Deutsch's Algorthm Usng Mathcad Frank Roux The followng s a Mathcad mplementaton of Davd Deutsch's quantum computer prototype as presented on pages - n "Machnes, Logc and Quantum Physcs"

More information

MARKET SHARE CONSTRAINTS AND THE LOSS FUNCTION IN CHOICE BASED CONJOINT ANALYSIS

MARKET SHARE CONSTRAINTS AND THE LOSS FUNCTION IN CHOICE BASED CONJOINT ANALYSIS MARKET SHARE CONSTRAINTS AND THE LOSS FUNCTION IN CHOICE BASED CONJOINT ANALYSIS Tmothy J. Glbrde Assstant Professor of Marketng 315 Mendoza College of Busness Unversty of Notre Dame Notre Dame, IN 46556

More information

Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification

Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification Lecture 4: More classfers and classes C4B Machne Learnng Hlary 20 A. Zsserman Logstc regresson Loss functons revsted Adaboost Loss functons revsted Optmzaton Multple class classfcaton Logstc Regresson

More information

Regression Models for a Binary Response Using EXCEL and JMP

Regression Models for a Binary Response Using EXCEL and JMP SEMATECH 997 Statstcal Methods Symposum Austn Regresson Models for a Bnary Response Usng EXCEL and JMP Davd C. Trndade, Ph.D. STAT-TECH Consultng and Tranng n Appled Statstcs San Jose, CA Topcs Practcal

More information

Quantization Effects in Digital Filters

Quantization Effects in Digital Filters Quantzaton Effects n Dgtal Flters Dstrbuton of Truncaton Errors In two's complement representaton an exact number would have nfntely many bts (n general). When we lmt the number of bts to some fnte value

More information

NPAR TESTS. One-Sample Chi-Square Test. Cell Specification. Observed Frequencies 1O i 6. Expected Frequencies 1EXP i 6

NPAR TESTS. One-Sample Chi-Square Test. Cell Specification. Observed Frequencies 1O i 6. Expected Frequencies 1EXP i 6 PAR TESTS If a WEIGHT varable s specfed, t s used to replcate a case as many tmes as ndcated by the weght value rounded to the nearest nteger. If the workspace requrements are exceeded and samplng has

More information

A Probabilistic Theory of Coherence

A Probabilistic Theory of Coherence A Probablstc Theory of Coherence BRANDEN FITELSON. The Coherence Measure C Let E be a set of n propostons E,..., E n. We seek a probablstc measure C(E) of the degree of coherence of E. Intutvely, we want

More information

Lecture 5,6 Linear Methods for Classification. Summary

Lecture 5,6 Linear Methods for Classification. Summary Lecture 5,6 Lnear Methods for Classfcaton Rce ELEC 697 Farnaz Koushanfar Fall 2006 Summary Bayes Classfers Lnear Classfers Lnear regresson of an ndcator matrx Lnear dscrmnant analyss (LDA) Logstc regresson

More information

1 Example 1: Axis-aligned rectangles

1 Example 1: Axis-aligned rectangles COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton

More information

Statistical Methods to Develop Rating Models

Statistical Methods to Develop Rating Models Statstcal Methods to Develop Ratng Models [Evelyn Hayden and Danel Porath, Österrechsche Natonalbank and Unversty of Appled Scences at Manz] Source: The Basel II Rsk Parameters Estmaton, Valdaton, and

More information

GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM

GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM BARRIOT Jean-Perre, SARRAILH Mchel BGI/CNES 18.av.E.Beln 31401 TOULOUSE Cedex 4 (France) Emal: jean-perre.barrot@cnes.fr 1/Introducton The

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada wellng@cs.toronto.edu Abstract Ths s a note to explan support vector machnes.

More information

How To Understand The Results Of The German Meris Cloud And Water Vapour Product

How To Understand The Results Of The German Meris Cloud And Water Vapour Product Ttel: Project: Doc. No.: MERIS level 3 cloud and water vapour products MAPP MAPP-ATBD-ClWVL3 Issue: 1 Revson: 0 Date: 9.12.1998 Functon Name Organsaton Sgnature Date Author: Bennartz FUB Preusker FUB Schüller

More information

Implied (risk neutral) probabilities, betting odds and prediction markets

Implied (risk neutral) probabilities, betting odds and prediction markets Impled (rsk neutral) probabltes, bettng odds and predcton markets Fabrzo Caccafesta (Unversty of Rome "Tor Vergata") ABSTRACT - We show that the well known euvalence between the "fundamental theorem of

More information

CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol

CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK Sample Stablty Protocol Background The Cholesterol Reference Method Laboratory Network (CRMLN) developed certfcaton protocols for total cholesterol, HDL

More information

DEFINING %COMPLETE IN MICROSOFT PROJECT

DEFINING %COMPLETE IN MICROSOFT PROJECT CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMI-SP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,

More information

Estimation of Dispersion Parameters in GLMs with and without Random Effects

Estimation of Dispersion Parameters in GLMs with and without Random Effects Mathematcal Statstcs Stockholm Unversty Estmaton of Dsperson Parameters n GLMs wth and wthout Random Effects Meng Ruoyan Examensarbete 2004:5 Postal address: Mathematcal Statstcs Dept. of Mathematcs Stockholm

More information

Brigid Mullany, Ph.D University of North Carolina, Charlotte

Brigid Mullany, Ph.D University of North Carolina, Charlotte Evaluaton And Comparson Of The Dfferent Standards Used To Defne The Postonal Accuracy And Repeatablty Of Numercally Controlled Machnng Center Axes Brgd Mullany, Ph.D Unversty of North Carolna, Charlotte

More information

STATISTICAL DATA ANALYSIS IN EXCEL

STATISTICAL DATA ANALYSIS IN EXCEL Mcroarray Center STATISTICAL DATA ANALYSIS IN EXCEL Lecture 6 Some Advanced Topcs Dr. Petr Nazarov 14-01-013 petr.nazarov@crp-sante.lu Statstcal data analyss n Ecel. 6. Some advanced topcs Correcton for

More information

Traffic State Estimation in the Traffic Management Center of Berlin

Traffic State Estimation in the Traffic Management Center of Berlin Traffc State Estmaton n the Traffc Management Center of Berln Authors: Peter Vortsch, PTV AG, Stumpfstrasse, D-763 Karlsruhe, Germany phone ++49/72/965/35, emal peter.vortsch@ptv.de Peter Möhl, PTV AG,

More information

Title Language Model for Information Retrieval

Title Language Model for Information Retrieval Ttle Language Model for Informaton Retreval Rong Jn Language Technologes Insttute School of Computer Scence Carnege Mellon Unversty Alex G. Hauptmann Computer Scence Department School of Computer Scence

More information

Exhaustive Regression. An Exploration of Regression-Based Data Mining Techniques Using Super Computation

Exhaustive Regression. An Exploration of Regression-Based Data Mining Techniques Using Super Computation Exhaustve Regresson An Exploraton of Regresson-Based Data Mnng Technques Usng Super Computaton Antony Daves, Ph.D. Assocate Professor of Economcs Duquesne Unversty Pttsburgh, PA 58 Research Fellow The

More information

Optimal Bidding Strategies for Generation Companies in a Day-Ahead Electricity Market with Risk Management Taken into Account

Optimal Bidding Strategies for Generation Companies in a Day-Ahead Electricity Market with Risk Management Taken into Account Amercan J. of Engneerng and Appled Scences (): 8-6, 009 ISSN 94-700 009 Scence Publcatons Optmal Bddng Strateges for Generaton Companes n a Day-Ahead Electrcty Market wth Rsk Management Taken nto Account

More information

CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES

CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES In ths chapter, we wll learn how to descrbe the relatonshp between two quanttatve varables. Remember (from Chapter 2) that the terms quanttatve varable

More information

Single and multiple stage classifiers implementing logistic discrimination

Single and multiple stage classifiers implementing logistic discrimination Sngle and multple stage classfers mplementng logstc dscrmnaton Hélo Radke Bttencourt 1 Dens Alter de Olvera Moraes 2 Vctor Haertel 2 1 Pontfíca Unversdade Católca do Ro Grande do Sul - PUCRS Av. Ipranga,

More information

Production. 2. Y is closed A set is closed if it contains its boundary. We need this for the solution existence in the profit maximization problem.

Production. 2. Y is closed A set is closed if it contains its boundary. We need this for the solution existence in the profit maximization problem. Producer Theory Producton ASSUMPTION 2.1 Propertes of the Producton Set The producton set Y satsfes the followng propertes 1. Y s non-empty If Y s empty, we have nothng to talk about 2. Y s closed A set

More information

Bayesian Cluster Ensembles

Bayesian Cluster Ensembles Bayesan Cluster Ensembles Hongjun Wang 1, Hanhua Shan 2 and Arndam Banerjee 2 1 Informaton Research Insttute, Southwest Jaotong Unversty, Chengdu, Schuan, 610031, Chna 2 Department of Computer Scence &

More information

Applied Research Laboratory. Decision Theory and Receiver Design

Applied Research Laboratory. Decision Theory and Receiver Design Decson Theor and Recever Desgn Sgnal Detecton and Performance Estmaton Sgnal Processor Decde Sgnal s resent or Sgnal s not resent Nose Nose Sgnal? Problem: How should receved sgnals be rocessed n order

More information

Hedging Interest-Rate Risk with Duration

Hedging Interest-Rate Risk with Duration FIXED-INCOME SECURITIES Chapter 5 Hedgng Interest-Rate Rsk wth Duraton Outlne Prcng and Hedgng Prcng certan cash-flows Interest rate rsk Hedgng prncples Duraton-Based Hedgng Technques Defnton of duraton

More information

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange

More information

SIMPLE LINEAR CORRELATION

SIMPLE LINEAR CORRELATION SIMPLE LINEAR CORRELATION Smple lnear correlaton s a measure of the degree to whch two varables vary together, or a measure of the ntensty of the assocaton between two varables. Correlaton often s abused.

More information

) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance

) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance Calbraton Method Instances of the Cell class (one nstance for each FMS cell) contan ADC raw data and methods assocated wth each partcular FMS cell. The calbraton method ncludes event selecton (Class Cell

More information

Machine Learning and Data Mining Lecture Notes

Machine Learning and Data Mining Lecture Notes Machne Learnng and Data Mnng Lecture Notes CSC 411/D11 Computer Scence Department Unversty of Toronto Verson: February 6, 2012 Copyrght c 2010 Aaron Hertzmann and Davd Fleet CONTENTS Contents Conventons

More information

Credit Limit Optimization (CLO) for Credit Cards

Credit Limit Optimization (CLO) for Credit Cards Credt Lmt Optmzaton (CLO) for Credt Cards Vay S. Desa CSCC IX, Ednburgh September 8, 2005 Copyrght 2003, SAS Insttute Inc. All rghts reserved. SAS Propretary Agenda Background Tradtonal approaches to credt

More information

Support vector domain description

Support vector domain description Pattern Recognton Letters 20 (1999) 1191±1199 www.elsever.nl/locate/patrec Support vector doman descrpton Davd M.J. Tax *,1, Robert P.W. Dun Pattern Recognton Group, Faculty of Appled Scence, Delft Unversty

More information

Fisher Markets and Convex Programs

Fisher Markets and Convex Programs Fsher Markets and Convex Programs Nkhl R. Devanur 1 Introducton Convex programmng dualty s usually stated n ts most general form, wth convex objectve functons and convex constrants. (The book by Boyd and

More information

The Mathematical Derivation of Least Squares

The Mathematical Derivation of Least Squares Pscholog 885 Prof. Federco The Mathematcal Dervaton of Least Squares Back when the powers that e forced ou to learn matr algera and calculus, I et ou all asked ourself the age-old queston: When the hell

More information

Analysis of Premium Liabilities for Australian Lines of Business

Analysis of Premium Liabilities for Australian Lines of Business Summary of Analyss of Premum Labltes for Australan Lnes of Busness Emly Tao Honours Research Paper, The Unversty of Melbourne Emly Tao Acknowledgements I am grateful to the Australan Prudental Regulaton

More information

Data Broadcast on a Multi-System Heterogeneous Overlayed Wireless Network *

Data Broadcast on a Multi-System Heterogeneous Overlayed Wireless Network * JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 24, 819-840 (2008) Data Broadcast on a Mult-System Heterogeneous Overlayed Wreless Network * Department of Computer Scence Natonal Chao Tung Unversty Hsnchu,

More information

Portfolio Loss Distribution

Portfolio Loss Distribution Portfolo Loss Dstrbuton Rsky assets n loan ortfolo hghly llqud assets hold-to-maturty n the bank s balance sheet Outstandngs The orton of the bank asset that has already been extended to borrowers. Commtment

More information

BERNSTEIN POLYNOMIALS

BERNSTEIN POLYNOMIALS On-Lne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful

More information

Inverse Modeling of Tight Gas Reservoirs

Inverse Modeling of Tight Gas Reservoirs Inverse Modelng of Tght Gas Reservors Der Fakultät für Geowssenschaften, Geotechnk und Bergbau der Technschen Unverstät Bergakademe Freberg engerechte Dssertaton Zur Erlangung des akademschen Grades Doktor-Ingeneur

More information

Lecture 2: Single Layer Perceptrons Kevin Swingler

Lecture 2: Single Layer Perceptrons Kevin Swingler Lecture 2: Sngle Layer Perceptrons Kevn Sngler kms@cs.str.ac.uk Recap: McCulloch-Ptts Neuron Ths vastly smplfed model of real neurons s also knon as a Threshold Logc Unt: W 2 A Y 3 n W n. A set of synapses

More information

An Interest-Oriented Network Evolution Mechanism for Online Communities

An Interest-Oriented Network Evolution Mechanism for Online Communities An Interest-Orented Network Evoluton Mechansm for Onlne Communtes Cahong Sun and Xaopng Yang School of Informaton, Renmn Unversty of Chna, Bejng 100872, P.R. Chna {chsun,yang}@ruc.edu.cn Abstract. Onlne

More information

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis The Development of Web Log Mnng Based on Improve-K-Means Clusterng Analyss TngZhong Wang * College of Informaton Technology, Luoyang Normal Unversty, Luoyang, 471022, Chna wangtngzhong2@sna.cn Abstract.

More information

Risk Model of Long-Term Production Scheduling in Open Pit Gold Mining

Risk Model of Long-Term Production Scheduling in Open Pit Gold Mining Rsk Model of Long-Term Producton Schedulng n Open Pt Gold Mnng R Halatchev 1 and P Lever 2 ABSTRACT Open pt gold mnng s an mportant sector of the Australan mnng ndustry. It uses large amounts of nvestments,

More information

Lecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression.

Lecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression. Lecture 3: Annuty Goals: Learn contnuous annuty and perpetuty. Study annutes whose payments form a geometrc progresson or a arthmetc progresson. Dscuss yeld rates. Introduce Amortzaton Suggested Textbook

More information

HÜCKEL MOLECULAR ORBITAL THEORY

HÜCKEL MOLECULAR ORBITAL THEORY 1 HÜCKEL MOLECULAR ORBITAL THEORY In general, the vast maorty polyatomc molecules can be thought of as consstng of a collecton of two electron bonds between pars of atoms. So the qualtatve pcture of σ

More information

A Lyapunov Optimization Approach to Repeated Stochastic Games

A Lyapunov Optimization Approach to Repeated Stochastic Games PROC. ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING, OCT. 2013 1 A Lyapunov Optmzaton Approach to Repeated Stochastc Games Mchael J. Neely Unversty of Southern Calforna http://www-bcf.usc.edu/

More information

Traffic-light a stress test for life insurance provisions

Traffic-light a stress test for life insurance provisions MEMORANDUM Date 006-09-7 Authors Bengt von Bahr, Göran Ronge Traffc-lght a stress test for lfe nsurance provsons Fnansnspetonen P.O. Box 6750 SE-113 85 Stocholm [Sveavägen 167] Tel +46 8 787 80 00 Fax

More information

Chapter XX More advanced approaches to the analysis of survey data. Gad Nathan Hebrew University Jerusalem, Israel. Abstract

Chapter XX More advanced approaches to the analysis of survey data. Gad Nathan Hebrew University Jerusalem, Israel. Abstract Household Sample Surveys n Developng and Transton Countres Chapter More advanced approaches to the analyss of survey data Gad Nathan Hebrew Unversty Jerusalem, Israel Abstract In the present chapter, we

More information

Staff Paper. Farm Savings Accounts: Examining Income Variability, Eligibility, and Benefits. Brent Gloy, Eddy LaDue, and Charles Cuykendall

Staff Paper. Farm Savings Accounts: Examining Income Variability, Eligibility, and Benefits. Brent Gloy, Eddy LaDue, and Charles Cuykendall SP 2005-02 August 2005 Staff Paper Department of Appled Economcs and Management Cornell Unversty, Ithaca, New York 14853-7801 USA Farm Savngs Accounts: Examnng Income Varablty, Elgblty, and Benefts Brent

More information

Vasicek s Model of Distribution of Losses in a Large, Homogeneous Portfolio

Vasicek s Model of Distribution of Losses in a Large, Homogeneous Portfolio Vascek s Model of Dstrbuton of Losses n a Large, Homogeneous Portfolo Stephen M Schaefer London Busness School Credt Rsk Electve Summer 2012 Vascek s Model Important method for calculatng dstrbuton of

More information

How To Solve A Problem In A Powerline (Powerline) With A Powerbook (Powerbook)

How To Solve A Problem In A Powerline (Powerline) With A Powerbook (Powerbook) MIT 8.996: Topc n TCS: Internet Research Problems Sprng 2002 Lecture 7 March 20, 2002 Lecturer: Bran Dean Global Load Balancng Scrbe: John Kogel, Ben Leong In today s lecture, we dscuss global load balancng

More information

Stress test for measuring insurance risks in non-life insurance

Stress test for measuring insurance risks in non-life insurance PROMEMORIA Datum June 01 Fnansnspektonen Författare Bengt von Bahr, Younes Elonq and Erk Elvers Stress test for measurng nsurance rsks n non-lfe nsurance Summary Ths memo descrbes stress testng of nsurance

More information

1 De nitions and Censoring

1 De nitions and Censoring De ntons and Censorng. Survval Analyss We begn by consderng smple analyses but we wll lead up to and take a look at regresson on explanatory factors., as n lnear regresson part A. The mportant d erence

More information

Forecasting the Demand of Emergency Supplies: Based on the CBR Theory and BP Neural Network

Forecasting the Demand of Emergency Supplies: Based on the CBR Theory and BP Neural Network 700 Proceedngs of the 8th Internatonal Conference on Innovaton & Management Forecastng the Demand of Emergency Supples: Based on the CBR Theory and BP Neural Network Fu Deqang, Lu Yun, L Changbng School

More information

AN APPOINTMENT ORDER OUTPATIENT SCHEDULING SYSTEM THAT IMPROVES OUTPATIENT EXPERIENCE

AN APPOINTMENT ORDER OUTPATIENT SCHEDULING SYSTEM THAT IMPROVES OUTPATIENT EXPERIENCE AN APPOINTMENT ORDER OUTPATIENT SCHEDULING SYSTEM THAT IMPROVES OUTPATIENT EXPERIENCE Yu-L Huang Industral Engneerng Department New Mexco State Unversty Las Cruces, New Mexco 88003, U.S.A. Abstract Patent

More information

Method for assessment of companies' credit rating (AJPES S.BON model) Short description of the methodology

Method for assessment of companies' credit rating (AJPES S.BON model) Short description of the methodology Method for assessment of companes' credt ratng (AJPES S.BON model) Short descrpton of the methodology Ljubljana, May 2011 ABSTRACT Assessng Slovenan companes' credt ratng scores usng the AJPES S.BON model

More information

NON-CONSTANT SUM RED-AND-BLACK GAMES WITH BET-DEPENDENT WIN PROBABILITY FUNCTION LAURA PONTIGGIA, University of the Sciences in Philadelphia

NON-CONSTANT SUM RED-AND-BLACK GAMES WITH BET-DEPENDENT WIN PROBABILITY FUNCTION LAURA PONTIGGIA, University of the Sciences in Philadelphia To appear n Journal o Appled Probablty June 2007 O-COSTAT SUM RED-AD-BLACK GAMES WITH BET-DEPEDET WI PROBABILITY FUCTIO LAURA POTIGGIA, Unversty o the Scences n Phladelpha Abstract In ths paper we nvestgate

More information

How To Know The Components Of Mean Squared Error Of Herarchcal Estmator S

How To Know The Components Of Mean Squared Error Of Herarchcal Estmator S S C H E D A E I N F O R M A T I C A E VOLUME 0 0 On Mean Squared Error of Herarchcal Estmator Stans law Brodowsk Faculty of Physcs, Astronomy, and Appled Computer Scence, Jagellonan Unversty, Reymonta

More information

Face Verification Problem. Face Recognition Problem. Application: Access Control. Biometric Authentication. Face Verification (1:1 matching)

Face Verification Problem. Face Recognition Problem. Application: Access Control. Biometric Authentication. Face Verification (1:1 matching) Face Recognton Problem Face Verfcaton Problem Face Verfcaton (1:1 matchng) Querymage face query Face Recognton (1:N matchng) database Applcaton: Access Control www.vsage.com www.vsoncs.com Bometrc Authentcaton

More information

When do data mining results violate privacy? Individual Privacy: Protect the record

When do data mining results violate privacy? Individual Privacy: Protect the record When do data mnng results volate prvacy? Chrs Clfton March 17, 2004 Ths s jont work wth Jashun Jn and Murat Kantarcıoğlu Indvdual Prvacy: Protect the record Indvdual tem n database must not be dsclosed

More information

Efficient Reinforcement Learning in Factored MDPs

Efficient Reinforcement Learning in Factored MDPs Effcent Renforcement Learnng n Factored MDPs Mchael Kearns AT&T Labs mkearns@research.att.com Daphne Koller Stanford Unversty koller@cs.stanford.edu Abstract We present a provably effcent and near-optmal

More information

A Model of Private Equity Fund Compensation

A Model of Private Equity Fund Compensation A Model of Prvate Equty Fund Compensaton Wonho Wlson Cho Andrew Metrck Ayako Yasuda KAIST Yale School of Management Unversty of Calforna at Davs June 26, 2011 Abstract: Ths paper analyzes the economcs

More information