AERODYNAMIC STUDY OF A NEW CONFIGURATION OF SPOILER ON A MODEL WING IN LOW SUBSONIC WIND TUNNEL

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "AERODYNAMIC STUDY OF A NEW CONFIGURATION OF SPOILER ON A MODEL WING IN LOW SUBSONIC WIND TUNNEL"

Transcription

1 AERODYNAMIC STUDY OF A NEW CONFIGURATION OF SPOILER ON A MODEL WING IN LOW SUBSONIC WIND TUNNEL Asst.Prof.Dr.Eng. Mohammed Kheir-aldeen Abbas 1Dr.mohammed Eng. AMER QADER HAMEED Mechanical Engineering Department Alnahrain University Baghdad, Iraq ABSTRACT: AN EXPERIMENTAL WIND TUNNEL INVESTIGATION WAS UNDERTAKEN TO DETERMINE THE EFFECT OF GAPS BETWEEN SPOILER AND WING ON THE AERODYNAMIC CHARACTERISTICS OF CLARK Y-14 WING AT A REYNOLDS NUMBER OF X10 5.THE HEIGHTS OF SPOILER CHOSEN (10% C) AND (15% C) AT ANGLES OF ATTACK FROM -8 TO 18 O,AND FOR THE FIRST TIME IN IRAQ USE THREE-DIMENSION PRINTER TO PRODUCE THE CLARK Y-14 WING MODEL (30CM SPAN,9CM CORD).WING HAS ASPECT RATIO OF (30/9) AND A MAXIMUM THICKNESS OF (14 %C). ALSO CHOSEN TWO SPOILER POSITION (50%C) AND (70%C). AND USE TRY AND ERROR CHOSEN FIVE-GAPS( 0%C, 2.77%C, 3.33%C,3.88%C 6.66%C) THAT MEAN WHEN THE WING CORD EQUAL 9CM THE GAPS EQUAL (0,2.5,3,3.5AND 6MM).THE RESULTS SHOWS THAT THE MOST BENEFICIAL IS GAP=3.33%, SPOILER POSITION 50% AND HI=10%C IS IMPROVE AERODYNAMIC CHARACTERISTICS OF CLARK Y- 14 WING. INCREASE MAXIMUM LIFT (26.667%) AND INCREASE MAXIMUM LIFT TO DRAG RATIO TO (28.3%) COMPARED WITH CLEAN WING. THE RESULTS REVEAL THAT WE CAN USE SPOILER HIGH LIFT DEVICE WHEN SPOILER ANGLE=0 AND HIGH DRAG DEVICE WHEN EMPLOYED. AND FOR THE FIRST TIME IN AVIATION HISTORY USE SPOILER HIGH LIFT DEVICE AND HIGH DRAG DEVICE. KEYWORDS: RECTANGULAR WING, SPOILER, WIND TUNNEL TESTS, LIFT TO DRAG RATIO, HIGH LIFT DEVICE, HIGH DRAG DEVICE. 1 INTRODUCTION Spoilers are one type of devices that used to reduce the lift on the aircraft wing [1]. It is like flap structure of rectangular cross-section whose leading edge is hinged on upper surface of the wings (at any angle) disturbing the streamlined flow of air there by changing the amount of lift. The net force on aircraft in the vertical direction is equal to weight minus lift. Thus, when the spoilers are employed lift gets reduced as a result the net downward force acting on the wing increases [2]. Around the early (1930) is these terms were quickly dropped for the more common spoiler terminology, but it is unclear who first used the term.eliminating adverse yaw was an important driving factor in the first spoiler investigations of the (1930) and (1940). A number of studies were performed by NACA during this period aiming to gain a full understanding of spoiler devices for lateral aircraft control [3]. We can classify the application of spoiler to [5]. 1. Aircraft rolling control in flight 2. Speed brakes in flight 3. Lift reduces during the slowdown on the ground runs in landings or aborted Page 26

2 Take-off. Spoiler panels act in the same way as split flaps except that they are located on the wing upper surface in front of the flaps. The spoiler devices are depending upon the aileron device movement. The spoiler is employ only when the aileron moves upward, when the aileron moves downward, no deployment of the spoiler [6]. There are twospoiler types used in aircraft [2]. 1- Flight spoilers: it used to reduce lift and increase drag, without increasing speed to a very high rate this allows easier landing the aircraft. 2- Ground spoilers: also called lift dumpers deployed on landing. They slow down the aircraft by increasing the drag and also decrease the lift gradually. As a result, all the aircraft weight is moved from the wings to the undercarriage. This leads to ease of braking also reduces chances of skidding. 2 MATERIALS AND METHODS The experimental works were performed at The AEROLAB Educational Wind Tunnel (EWT) shown in fig.1 at power laboratory of Alnahrain University. The Tunnel is of Open Circuit test section, maximum speed is in excess of (64.8 m/s). Its contraction ratio of 8.3:1 and low turbulence level of 0.12% (average turbulence based on measurements taken at 13 different speeds), the tests were conducted at speed equal to 40 m/s corresponding to Reynolds numbers of x10 5.and for first time in Iraq use three dimensions printer to produce wing model Fig.4, And wing model with and without spoiler were tested at different angels of attack (α) ranged from (-8o) to (18o).The wing model used was a rectangular wing of a Clark y-14 airfoil the wing section manufactured from P.V.C reinforced shows in Figures. 4, 5 and had a max. Thickness of 14 % chord. And an aspect ratio (AR) of (30/9), the wing model used has 30cm span and 9cm chord. Model is mounted in the EWT by fastening it to the sting force Balance. The model positioning system (MPS) is a series of parallel arms mounted to a gearbox. The sting balance mounts to the top of the MPS vertical arms and provides a perfect perch for models. The model positioning systems allows for pitch angle adjustment from approximately +20 to -20 [7]. Fig.1. the Educational Wind Tunnel Page 27

3 Fig. 2.Geometry of the wing Clark y-14 airfoil Fig. 3. Clark y-14 airfoil wing with spoiler Fig.4 Use three dimensions printer to produce wing model. Fig.5 wing model after paint. EXPERIMENTAL STUDY TO THE EFFECT OF GAPS ON THE CLARK Y-14 AIRFOIL WING MODEL Page 28

4 The EWT system is provided with electronic instrumentation which consists of three-component sting Force balance. In order to take measurements, these instruments require the provided data acquisition (DAC) system of LABVIEW software. The wing model designed by AutoCAD software and then used three-dimension printer to produce the Clark y-14 wing model.the heights of spoiler chosen (10% Cord) and (15% Cord) and chosen tow spoiler position of (50%Cord) and (70%Cord) these all dimensions chosen from references [8], [9] and [10] and used try and error experimentally to choose gaps (five-gaps)( 0%C, 2.77%C, 3.33%C,3.88%C 6.66%C). And wing cord equal 9cm then gaps equal (0,2.5,3,3.5and 6mm) and chosen special angle for spoiler (0,30,60,90) to study and check effect the gaps on spoiler work and choose best gap that get same effect or approach effect when gap equal zero. spoiler span constant length of 114.7mm[11] which based to half wing span and equal to (spoiler span/half wing span)=76.5% Spoiler made from stainless steel constant thickness (0.5mm). Fig. 6. Show the wing with spoiler inside test section. Fig. 6. Shows the wing with spoiler inside test section Fig.7 Wing model with spoiler and smoke. Page 29

5 Fig.8 wing model with spoiler at spoile angle=0 Fig.9 wing model in test section 3 RESULTS AND DISCUTION The gaps between spoiler and wing increase the lift coefficient of Clark y-14 airfoil wing compared with clean wing as shows in table.1 and Fig.10. Which shows lift coefficient against angle of attack, these results indicate the gaps worked like nozzle work in other word increase air velocity in the gap (compressed boundary layer) led to push any turbulent flow on upper surface of the wing to back the wing and worked to reduce separation of stream line on upper surface compare with clean wing, The addition of gap contributes to accelerate the flow on the upper surface of the wing all these reasons cause increases the lift, maximum lift coefficient, decrease stall angle slightly.from fig.10. And table.1 maximum lift coefficient can be get from x/c=0.5, HI=9mm gap=3mm. Table.1 % increase maximum lift and zero lift at spoiler angle=0 Spoiler height Gap (mm) Position%C lift increase% Zero lift increase% A.O.A (mm) Page 30

6 Fig.10 lift coefficient angle of attack with different case And shift lift coefficient curve to the left led to increase zero lift coefficient.the gaps produce more drag than the clean wing. That indicated increase lift led to increase drag this clear from this equation (1 and 2) [12]: D i = C l 2 AR e.. (1) D total = D p C l 2 AR e.. (2) D i : induce drag, e : aircraft efficiency factor(osward factor), D total : total drag, D p : parasite drag. From Fig.11. Shows drag coefficient against angle of attack clear the increase lift of the wing led to increase drag coefficient. Page 31

7 Fig.11. shows drag coefficient against angle of attack with different gaps, position and spoiler height Spoiler at x/c=0.5, HI=9mm gap=3mm. cause shift the polar curve to up because increase lift shows in figure 12. Fig.12. shows drag coefficient against angle of attack with different gaps, position and height spoiler From Fig.13. Indicated increase lift cause increase lift to drag ratio. Higher A.O.A the CD is much greater and more changes in A.O.A cause significant changes in drag. As stall occurs, a large increase in drag takes place. A factor Page 32

8 more important in aircraft performance considerations is the lift to drag ratio, L/D., the proportions of CL and CD can calculated for each specific A.O.A. The resulting plot of lift to drag ratio with A.O.A shows that L/D increases to some maximum then decreases at the higher CL and A.O.A. Note that the maximum lift to drag ratio, (L/D), occurs at one specific A.O.A and CL. If the aircraft has operated in steady flight at (L/D), the total drag is at a minimum. Any A.O.A lower or higher than that for (L/D) reduces the lift to drag ratio and consequently increases the total drag for a given aircraft lift. Many important items of aircraft performance obtained in flight at (L/D), typical performance conditions which occur at (L/D). maximum endurance of jet powered aircraft, maximum range of propeller driven aircraft, maximum climb angle for jet powered aircraft, maximum power-off glide range, jet or Prop The most immediately interesting of these items is the power-off glide range of an aircraft. By examine the forces acting on aircraft. That the airplane should be flown at (L/D) MAX. To we obtain the greatest glide distance. fig.12. clear the ( L/D ) MAX. Occur when x/c=0.5, HI=9mm gap=3mm. and increase maximum lift to drag ratio experimentally to (28.3%). Fig.13. L/D against angle of attack with different gaps, position and height spoiler Boundary layer calculate From equations (3), (4), (5) for flat plat we calculate boundary layer thickness.from equation (6) we should be calculate the critical distance which the flow transition from laminar to turbulent flow when Reynolds number = is critical Reynolds number at flat plat. When, ρ=1.2177, µ= therefore X critical=0.3705m, but wing cord =0.09m that mean the boundary layer is laminar on the wing. From equation (3) and x/c=0.5(x=0.045m) boundary layer thickness =0.599mm and when x/c=0.7 (x=0.063m) boundary layer thickness = mm Laminar B.L. thickness [13]. 5 x δ(lam) =.. (3) Re x Page 33

9 The stability of a laminar B.L. is determined by the value of the local Re For turbulent flow this thickness can be derived from prandtl s seventh root law for a velocity profile [13]. δ(trb) = x 5.. (4) Re x In addition, local Reynolds number is: Re = ρvx μ.. (5) For critical distance, which the flow can be, transition from laminar to turbulent is given by: x cri = Re μ ρv.. (6) But the best gap chosen from previous experimental test at x/c=0.5, gap=3mm, HI=9mm ( spoiler position 50%, gap=3.33% and spoiler height 10%) we see the gap=3mm is larger than boundary layer thickness that means the flow in the gap increase and worked like nozzle work and the boundary layer compressed, increase flow in the gap led to push the any turbulent flow on upper surface of the wing to back the wing (add energy to the B.L.) and reduce separation on upper of the wing. 4 CONCLUSIONS an experimental wind tunnel investigation was undertaken to determine the effect gaps between wing and spoiler on the aerodynamic characteristics of Clark y-14 airfoil wing at a Reynolds number of x10 5 at (40m/s).this gaps improve performance of Clark y-14 airfoil wing compare with clean wing,the gaps increase lift coefficient decrease stall angle slightly and increase drag coefficient,the most beneficial gap is at spoiler position 50%, gap=3.33% and spoiler height 10%) which increase maximum lift (26.66%) and increase zero lift ( %) And increase maximum lift to drag ratio to (28.3%) compared with clean wing. The results reveal that we can and for the first time in aviation history use spoiler high lift device when spoiler angle=0 and high drag device when opened REFERENCES [1] Theodore A. Talay Introduction to the aerodynamics of flight national aeronautics and space administration [2] Shruti Nair, Shreya Nair Aircraft Braking System Dept. of Mechanical and Automation Engineering, Indira Gandhi Delhi Technical.Nov April 2014 [3] Christopher Donald Harley aerodynamic performance of low from factor spoilers Doctor of Philosophy-2010 [4] R.A.Stuckey Identification of Nonlinear model Parameter-spoiler Aerodynamics of the F-111C aircraft Doctor of Philosophy university of Sydney-1995 [5] Ronald Slingerland Aerodynamic Design of transport aircraft [6] AMCS Edward W. Biel, USN, AMHC (AW) Gary L. Humrichouser, USN, and AMHC Bruce A. Ervin, USN Aviation Structural Mechanic (H & S) 3 & 2 Navedtra [7] Aero lab Educational Wind Tunnel (EWT) Operations Manual, available online at March [8] Geoffrey P.brown steady and unsteady potential flow methods july-1971 [9] Blair G. McLachlan and K. Karamcheti An Experimental Study of Airfoil-Spoiler Aerodynamics 1984 [10] M. D. Dobson An Investigation of the Pressure Distributions on a 45 Degree Swept Half Wing Including the Effects of Upper Surface Spoilers 1971 [11]John We Puulson, Jr wind tunnel investigation of a fowler flap and spoiler for an advanced general aviation wing NASA-June-1976 [12] H. H. HURT, JR. aerodynamics for naval aviators university of southern California January [13]John D. Anderson Jr. fundamentals of aerodynamics 2001 Page 34

10 Page 35

Brainstorming and Barnstorming: Basics of Flight

Brainstorming and Barnstorming: Basics of Flight Brainstorming and Barnstorming: Basics of Flight Flight History First flight: The Wright Flyer 1903 Break Speed of Sound: Bell X-1A 1947 Land on Moon: Apollo 11 1969 Circumnavigate Earth on one tank of

More information

NACA Nomenclature NACA 2421. NACA Airfoils. Definitions: Airfoil Geometry

NACA Nomenclature NACA 2421. NACA Airfoils. Definitions: Airfoil Geometry 0.40 m 0.21 m 0.02 m NACA Airfoils 6-Feb-08 AE 315 Lesson 10: Airfoil nomenclature and properties 1 Definitions: Airfoil Geometry z Mean camber line Chord line x Chord x=0 x=c Leading edge Trailing edge

More information

Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids

Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction In this lab the characteristics of airfoil lift, drag,

More information

Aerodynamics. Getting to the Point. Written for the Notre Dame Pilot Initiative By the Pilots of the University of Notre Dame

Aerodynamics. Getting to the Point. Written for the Notre Dame Pilot Initiative By the Pilots of the University of Notre Dame Aerodynamics Getting to the Point Orville Wright Wilbur Wright Written for the Notre Dame Pilot Initiative By the Pilots of the University of Notre Dame Teaching the Science, Inspiring the Art, Producing

More information

A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic

A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic AiMT Advances in Military Technology Vol. 8, No. 1, June 2013 Aerodynamic Characteristics of Multi-Element Iced Airfoil CFD Simulation A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty

More information

16.885J/ESD.35J - Sept J/ESD.35J Aircraft Systems Engineering. Aerodynamics Primer. Prof. Earll Murman

16.885J/ESD.35J - Sept J/ESD.35J Aircraft Systems Engineering. Aerodynamics Primer. Prof. Earll Murman 16.885J/ESD.35J Aircraft Systems Engineering Aerodynamics Primer Prof. Earll Murman Topics Geometry jargon Standard atmosphere Airflow variables Forces acting on aircraft Aerodynamic coefficients Lift

More information

8 High Lift Systems and Maximum Lift Coefficients

8 High Lift Systems and Maximum Lift Coefficients 8-1 8 High Lift Systems and Maximum Lift Coefficients In Section 7 the wing was examined with flaps retracted (clean wing). According to the assumptions from Section 5, the wing is, however, supposed to

More information

Educational Module on Introductory Aerodynamics

Educational Module on Introductory Aerodynamics Educational Module on Introductory Aerodynamics Kentucky Wing Design Competition: A partnership between the Kentucky Institute for Aerospace Education and the University of Kentucky Sponsored by the NASA

More information

Wing Design: Major Decisions. Wing Area / Wing Loading Span / Aspect Ratio Planform Shape Airfoils Flaps and Other High Lift Devices Twist

Wing Design: Major Decisions. Wing Area / Wing Loading Span / Aspect Ratio Planform Shape Airfoils Flaps and Other High Lift Devices Twist Wing Design: Major Decisions Wing Area / Wing Loading Span / Aspect Ratio Planform Shape Airfoils Flaps and Other High Lift Devices Twist Wing Design Parameters First Level Span Area Thickness Detail Design

More information

AERODYNAMICS OF WING TIP SAILS

AERODYNAMICS OF WING TIP SAILS Journal of Engineering Science and Technology Vol. 1, No. 1 (2006) 89-98 School of Engineering, Taylor s College AERODYNAMICS OF WING TIP SAILS MUSHTAK AL-ATABI School of Engineering, Taylor s College

More information

Translation of the French DGAC leaflet on stalls

Translation of the French DGAC leaflet on stalls Translation of the French DGAC leaflet on stalls ******** For drawings, refer to the original leaflet. 1 The recovery procedure This procedure is applicable on all aircraft types if in conformity with

More information

Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412

Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412 , July 2-4, 2014, London, U.K. Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412 Arvind Prabhakar, Ayush Ohri Abstract Winglets are angled extensions or vertical projections

More information

Principles of glider flight

Principles of glider flight Principles of glider flight [ Lift, drag & glide performance ] Richard Lancaster R.Lancaster@carrotworks.com ASK-21 illustrations Copyright 1983 Alexander Schleicher GmbH & Co. All other content Copyright

More information

If we let the vertical tail lift coefficient depend on a vertical tail lift curve slope and a rudder deflection we can write it as:

If we let the vertical tail lift coefficient depend on a vertical tail lift curve slope and a rudder deflection we can write it as: Roll and Yaw Moments and Stability Yaw Moment Equation The yaw moment is the moment about the z body axis and is positive if it moves the nose of the plane to the right. The big contributor to the yaw

More information

High-Lift Systems. High Lift Systems -- Introduction. Flap Geometry. Outline of this Chapter

High-Lift Systems. High Lift Systems -- Introduction. Flap Geometry. Outline of this Chapter High-Lift Systems Outline of this Chapter The chapter is divided into four sections. The introduction describes the motivation for high lift systems, and the basic concepts underlying flap and slat systems.

More information

Principles of Flight. There are four major forces acting on an aircraft: Gravity Lift Drag Thrust. lift. thrust. drag. gravity

Principles of Flight. There are four major forces acting on an aircraft: Gravity Lift Drag Thrust. lift. thrust. drag. gravity Principles of Flight There are four major forces acting on an aircraft: Gravity Lift Drag Thrust Gravity Gravity is the downward force that keeps the airplane on the ground or pulls the airplane toward

More information

HOW BOARDS AND RUDDERS WORK

HOW BOARDS AND RUDDERS WORK HOW BOARDS AND RUDDERS WORK Lift theory By B. Kohler Copyright 2006 by B. Kohler K-designs HOW BOARDS & RUDDERS WORK Our boats become faster and faster and a better understanding of how a sail, rudder,

More information

The Airplane and Basic Aerodynamics Robert French Version 0.2 3/11/03

The Airplane and Basic Aerodynamics Robert French Version 0.2 3/11/03 Robert French Version 0.2 3/11/03 Gleim sections 1.1-10, 2.3 Aircraft Parts Figure 1: A Piper Saratoga II TC low-wing airplane The fuselage is the central body of the airplane that contains the crew, passengers,

More information

WIND TUNNEL INVESTIGATION OF THE WING LOAD CONTROL USING SELF-SUPPLYING FLUIDIC DEVICES

WIND TUNNEL INVESTIGATION OF THE WING LOAD CONTROL USING SELF-SUPPLYING FLUIDIC DEVICES Journal of KONES Powertrain and Transport, Vol. 21, No. 2 2014 WIND TUNNEL INVESTIGATION OF THE WING LOAD CONTROL USING SELF-SUPPLYING FLUIDIC DEVICES Andrzej Krzysiak Institute of Aviation (IoA) Krakowska

More information

Chapter 4 Aerodynamics of Flight

Chapter 4 Aerodynamics of Flight Chapter 4 Aerodynamics of Flight Forces Acting on the Aircraft Thrust, drag, lift, and weight are forces that act upon all aircraft in flight. Understanding how these forces work and knowing how to control

More information

Remember that the drag force acting on an aircraft

Remember that the drag force acting on an aircraft Minimum rag peed Prof. r. Mustafa avcar chool of ivil Aviation Anadolu University Eskisehir, Turkey mcavcar@anadolu.edu.tr Remember that the drag force acting on an aircraft ρ = V (1) where is the drag

More information

AUTOMOTIVE WING WITH ACTIVE CONTROL OF FLOW

AUTOMOTIVE WING WITH ACTIVE CONTROL OF FLOW U.P.B. Sci. Bull., Series D, Vol. 76, Iss. 4, 2014 ISSN 1454-2358 AUTOMOTIVE WING WITH ACTIVE CONTROL OF FLOW Angel HUMINIC 1, Gabriela HUMINIC 1 In this paper, is studied the aerodynamic behavior of an

More information

Design and Structural Analysis of the Ribs and Spars of Swept Back Wing

Design and Structural Analysis of the Ribs and Spars of Swept Back Wing Design and Structural Analysis of the Ribs and Spars of Swept Back Wing Mohamed Hamdan A 1, Nithiyakalyani S 2 1,2 Assistant Professor, Aeronautical Engineering & Srinivasan Engineering College, Perambalur,

More information

Introduction to Aerospace Engineering Formulas

Introduction to Aerospace Engineering Formulas Introduction to Aerospace Engineering Formulas Aerodynamics Formulas. Definitions p = The air pressure. (P a = N/m 2 ) ρ = The air density. (kg/m 3 ) g = The gravitational constant. (Value at sea level

More information

Chapter 4 Estimation of wing loading and thrust loading (Lectures 9 to 18)

Chapter 4 Estimation of wing loading and thrust loading (Lectures 9 to 18) Chapter 4 Estimation of wing loading and thrust loading (Lectures 9 to 18) Keywords : Choice of wing loading based on considerations of landing field length, prescribed flight speed, absolute ceiling,

More information

Chapter 5 Directional static stability and control - 3 Lecture 18 Topics

Chapter 5 Directional static stability and control - 3 Lecture 18 Topics Chapter 5 Directional static stability and control - 3 Lecture 18 Topics 5.8.3 Control in asymmetric power, steady flight after engine failure and minimum control speed Example 5.3 5.8.4 Control for spin

More information

10/7/ :27 PM Page 1

10/7/ :27 PM Page 1 Name: 1 (3201)- The four forces acting on an airplane in flight are A- lift, weight, thrust, and drag. B- lift, weight, gravity, and thrust. C- lift, gravity, power, and friction. 2 (3201.1)- Which statement

More information

Propeller Fundamentals. A propeller is an interface between an engine and an aircraft. It creates thrust for flying an aircraft.

Propeller Fundamentals. A propeller is an interface between an engine and an aircraft. It creates thrust for flying an aircraft. 28 1 Propeller Fundamentals A propeller is an interface between an engine and an aircraft. It creates thrust for flying an aircraft. 2 Propeller blade 4-bladed propeller 3-bladed propeller 3 All propulsors

More information

Gold Seal Online Ground School

Gold Seal Online Ground School Aerodynamics Lesson Review Axes, Motion, and Control Surfaces Gold Seal Online Ground School www.uavgroundschool.com An airplane is controlled around three axes: the longitudinal axis, the lateral axis,

More information

DESIGN OF AIRFOILS FOR WIND TURBINE BLADES ABSTRACT

DESIGN OF AIRFOILS FOR WIND TURBINE BLADES ABSTRACT DESIGN OF AIRFOILS FOR WIND TURBINE BLADES V. PAREZANOVIC, B. RASUO*, M. ADZIC** University of Belgrade, Belgrade, Serbia, vparez@yahoo.com *University of Belgrade, Belgrade, Serbia, brasuo@mas.bg.ac.yu

More information

Model Rocket Aerodynamics

Model Rocket Aerodynamics Model Rocket Aerodynamics Some Terminology Free stream the flow far away from a moving body Mach number fraction of the local speed of sound v free stream velocity (m/s) M free stream Mach number ρ air

More information

Design and Analysis Aircraft Nose and Nose Landing Gear

Design and Analysis Aircraft Nose and Nose Landing Gear The International Journal Of Engineering And Science (IJES) Volume 4 Issue 10 Pages PP -74-80 2015 ISSN (e): 2319 1813 ISSN (p): 2319 1805 Design and Analysis Aircraft Nose and Nose Landing Gear 1 Rajesh

More information

The Purpose and Function of Airplane Parts

The Purpose and Function of Airplane Parts The Purpose and Function of Airplane Parts Warm-Up Questions CPS Questions 1-2 Lesson Overview How the fuselage and wing shape correspond to an aircraft s mission The types, purpose, and function of airfoil

More information

Lab 1a Wind Tunnel Testing Principles & Lift and Drag Coefficients on an Airfoil

Lab 1a Wind Tunnel Testing Principles & Lift and Drag Coefficients on an Airfoil Lab 1a Wind Tunnel Testing Principles & Lift and Drag Coefficients on an Airfoil OBJECTIVES - Calibrate the RPM/wind speed relation of the wind tunnel. - Measure the drag and lift coefficients of an airfoil

More information

Chapter 6 Lateral static stability and control - 2 Lecture 20 Topics

Chapter 6 Lateral static stability and control - 2 Lecture 20 Topics Staility and control Chapter 6 Lateral static staility and control - Lecture Topics 6.1 Roll control 6.1.1 Aileron, diferential aileron and spoiler aileron 6.1. Rolling moment due to aileron 6.1.3 Damping

More information

ME 425: AERODYNAMICS

ME 425: AERODYNAMICS ME 45: AEROYNAMICS - r. A.B.M. Toufique Hasan Associate Professor epartment of Mechanical Engineering, BUET Lecture # 4 9 September, 06 http://teacher.buet.ac.bd/toufiquehasan/courses.php ME 45: Aerodynamics

More information

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22 BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

More information

2. Simple Performance Estimation

2. Simple Performance Estimation 2. Simple Performance Estimation 2.1 Important Performance Parameters UAV performance parameters of interest may include stall speed, climb rate, maximum altitude, range, maximum speed, maximum sustained

More information

Study the Influence of a Gap between the Wing and Slotted Flap over the Aerodynamic Characteristics of Ultra-Light Aircraft Wing Airfoil

Study the Influence of a Gap between the Wing and Slotted Flap over the Aerodynamic Characteristics of Ultra-Light Aircraft Wing Airfoil Journal of Mechanics Engineering and Automation 5 (2015) 278-285 doi: 10.17265/2159-5275/2015.05.002 D DAVID PUBLISHING Study the Influence of a Gap between the Wing and Slotted Flap over the Aerodynamic

More information

AERODYNAMIC PERFORMANCE

AERODYNAMIC PERFORMANCE AERODYNAMIC PERFORMANCE OF LOW FORM FACTOR SPOILERS A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences 2010 Christopher

More information

NACA 2415- FINDING LIFT COEFFICIENT USING CFD, THEORETICAL AND JAVAFOIL

NACA 2415- FINDING LIFT COEFFICIENT USING CFD, THEORETICAL AND JAVAFOIL NACA 2415- FINDING LIFT COEFFICIENT USING CFD, THEORETICAL AND JAVAFOIL Sarfaraj Nawaz Shaha 1, M. Sadiq A. Pachapuri 2 1 P.G. Student, MTech Design Engineering, KLE Dr. M S Sheshgiri College of Engineering

More information

The Influence of Aerodynamics on the Design of High-Performance Road Vehicles

The Influence of Aerodynamics on the Design of High-Performance Road Vehicles The Influence of Aerodynamics on the Design of High-Performance Road Vehicles Guido Buresti Department of Aerospace Engineering University of Pisa (Italy) 1 CONTENTS ELEMENTS OF AERODYNAMICS AERODYNAMICS

More information

Speeds frequently used in General Aviation

Speeds frequently used in General Aviation Speeds frequently used in General Aviation V A V FE V LE V LO design maneuvering speed (stalling speed at the maximum legal G-force, and hence the maximum speed at which abrupt, full deflection, elevator

More information

Introduction to Flight

Introduction to Flight Introduction to Flight Sixth Edition John D. Anderson, Jr. Curator for Aerodynamics, National Air and Space Museum Smithsonian Institution Professor Emeritus University of Maryland Boston Burr Ridge, IL

More information

The Influence of Aerodynamics on the Design of High-Performance Road Vehicles

The Influence of Aerodynamics on the Design of High-Performance Road Vehicles The Influence of Aerodynamics on the Design of High-Performance Road Vehicles Guido Buresti Department of Aerospace Engineering University of Pisa (Italy) 1 CONTENTS ELEMENTS OF AERODYNAMICS AERODYNAMICS

More information

ESTIMATING R/C MODEL AERODYNAMICS AND PERFORMANCE

ESTIMATING R/C MODEL AERODYNAMICS AND PERFORMANCE ESTIMATING R/C MODEL AERODYNAMICS AND PERFORMANCE Adapted from Dr. Leland M. Nicolai s Write-up (Technical Fellow, Lockheed Martin Aeronautical Company) by Dr. Murat Vural (Illinois Institute of Technology)

More information

Chapter 6 Lateral static stability and control - 3 Lecture 21 Topics

Chapter 6 Lateral static stability and control - 3 Lecture 21 Topics Chapter 6 Lateral static stability and control - 3 Lecture 21 Topics 6.11 General discussions on control surface 6.11.1 Aerodynamic balancing 6.11.2 Set back hinge or over hang balance 6.11.3 Horn balanace

More information

AN INVESTIGATION INTO WING IN GROUND EFFECT AIRFOIL GEOMETRY

AN INVESTIGATION INTO WING IN GROUND EFFECT AIRFOIL GEOMETRY AN INVESTIGATION INTO WING IN GROUND EFFECT AIRFOIL GEOMETRY Nomenclature N.Moore, Professor P A.Wilson, A J.Peters (*) School of Engineering Sciences, University of Southampton, SO17 1BJ, UK (*) QinetiQ

More information

Flap Optimization for Take-off and Landing

Flap Optimization for Take-off and Landing Proceedings of the 10th Brazilian Congress of Thermal Sciences and Engineering -- ENCIT 2004 Braz. Soc. of Mechanical Sciences and Engineering -- ABCM, Rio de Janeiro, Brazil, Nov. 29 -- Dec. 03, 2004

More information

Performance. 15. Takeoff and Landing

Performance. 15. Takeoff and Landing Performance 15. Takeoff and Landing The takeoff distance consists of two parts, the ground run, and the distance from where the vehicle leaves the ground to until it reaches 50 ft (or 15 m). The sum of

More information

APP Aircraft Performance Program Demo Notes Using Cessna 172 as an Example

APP Aircraft Performance Program Demo Notes Using Cessna 172 as an Example APP Aircraft Performance Program Demo Notes Using Cessna 172 as an Example Prepared by DARcorporation 1. Program Layout & Organization APP Consists of 8 Modules, 5 Input Modules and 2 Calculation Modules.

More information

AERODYNAMICS. High Gross Weight Low Rotor RPM High Density Altitude Steep or Abrupt Turns T urbulent Air High Airspeed

AERODYNAMICS. High Gross Weight Low Rotor RPM High Density Altitude Steep or Abrupt Turns T urbulent Air High Airspeed AIRFLOW DURING A HOVER IGE v.s. OGE POWER REQUIREMENT The maximum flow velocity in IGE is lower due to ground disruption of the airflow. Additionally, the rotor tip vortices formed are smaller resulting

More information

CFD results for TU-154M in landing configuration for an asymmetrical loss in wing length.

CFD results for TU-154M in landing configuration for an asymmetrical loss in wing length. length. PAGE [1] CFD results for TU-154M in landing configuration for an asymmetrical loss in wing length. Summary: In CFD work produced by G. Kowaleczko (GK) and sent to the author of this report in 2013

More information

WIND ENERGY - BASIC PRINCIPLES

WIND ENERGY - BASIC PRINCIPLES Module.1- WIND ENERGY - BASIC PRINCIPLES Gerhard J. Gerdes Workshop on Renewable Energies November 14-5, 005 Nadi, Republic of the Fiji Islands Contents calculate the power in the wind power coefficient

More information

Experimental Evaluation of Cruise Flap Deflection on Total Aircraft Drag using the NLF(1)-0215F. C. Zavatson

Experimental Evaluation of Cruise Flap Deflection on Total Aircraft Drag using the NLF(1)-0215F. C. Zavatson Experimental Evaluation of Cruise Flap Deflection on Total Aircraft Drag using the NLF(1)-0215F C. Zavatson 3-16-2013 Table of Contents Introduction... 3 Objective and Testing Approach... 3 The Test Aircraft...

More information

Basics of vehicle aerodynamics

Basics of vehicle aerodynamics Basics of vehicle aerodynamics Prof. Tamás Lajos Budapest University of Technology and Economics Department of Fluid Mechanics University of Rome La Sapienza 2002 Influence of flow characteristics on the

More information

Aerodynamic Properties of Avian Flight as a Function of Wing Shape. Andrew March Charles Bradley Advisor: Ephrahim Garcia

Aerodynamic Properties of Avian Flight as a Function of Wing Shape. Andrew March Charles Bradley Advisor: Ephrahim Garcia Aerodynamic Properties of Avian Flight as a Function of Wing Shape Andrew March Charles Bradley Advisor: Ephrahim Garcia Biomimetics The Fusion of Biology and Engineering Natural Selection as an optimization

More information

Aerodynamics. Weight- Is the force based upon the mass of the object and the force of gravity acting upon it.

Aerodynamics. Weight- Is the force based upon the mass of the object and the force of gravity acting upon it. Aerodynamics Newton s first law of motion states The velocity of a body remains constant unless the body is acted upon by an external force. In other words, if there is no net force on a body the velocity

More information

Model Airplane Flight School

Model Airplane Flight School Model Airplane Flight School Mercer County Radio Control Society And Mercer County Library System C. David Vale, Director Copyright 2008 by the Mercer County Radio Control Society, All Rights Reserved

More information

Computational Aerodynamic Analysis on Store Separation from Aircraft using Pylon

Computational Aerodynamic Analysis on Store Separation from Aircraft using Pylon International Journal of Engineering Science Invention (IJESI) ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 www.ijesi.org ǁ PP.27-31 Computational Aerodynamic Analysis on Store Separation from Aircraft

More information

Aerodynamic Development of a Solar Car

Aerodynamic Development of a Solar Car Aerodynamic Development of a Solar Car Devanshu Singla 1 1 Department of Mechanical Engineering, Aakash Tayal 2 2 Department of Mechanical Engineering, Rajat Sharma 3 3 (Department of Mechanical Engineering,

More information

10/22/2013 4:24 PM Page 1

10/22/2013 4:24 PM Page 1 Name: Instructor Key 1- The four forces acting on an airplane in flight are *A- lift, weight, thrust, and drag. B- lift, weight, gravity, and thrust. C- lift, gravity, power, and friction. Expl- Lift,

More information

Circulation Control NASA activities

Circulation Control NASA activities National Aeronautics and Space Administration Circulation Control NASA activities Dr. Gregory S. Jones Dr. William E. Millholen II Research Engineers NASA Langley Research Center Active High Lift and Impact

More information

QUT Digital Repository: http://eprints.qut.edu.au/

QUT Digital Repository: http://eprints.qut.edu.au/ QUT Digital Repository: http://eprints.qut.edu.au/ El-Atm, Billy and Kelson, Neil A. and Gudimetla, Prasad V. (2008) A finite element analysis of the hydrodynamic performance of 3- and 4-Fin surfboard

More information

Introduction to Fluid Mechanics. Chapter 9 External Incompressible Viscous Flow. Pritchard

Introduction to Fluid Mechanics. Chapter 9 External Incompressible Viscous Flow. Pritchard Introduction to Fluid Mechanics Chapter 9 External Incompressible Viscous Flow Main Topics The Boundary-Layer Concept Boundary-Layer Thicknesses Laminar Flat-Plate Boundary Layer: Exact Solution Momentum

More information

Pressure Measurements

Pressure Measurements Pressure Measurements Measurable pressures Absolute pressure Gage pressure Differential pressure Atmospheric/barometric pressure Static pressure Total Pressure Pressure Measurement Mechanical Pressure

More information

Form And Function What Is Angle of Attack? By Ed Kolano

Form And Function What Is Angle of Attack? By Ed Kolano Form And Function What Is Angle of Attack? By Ed Kolano To new pilots with a military inclination, angle of attack might be another way to describe a military flanking maneuver. But the context here is

More information

9210-228 Level 7 Post Graduate Diploma in Mechanical Engineering Aerospace engineering

9210-228 Level 7 Post Graduate Diploma in Mechanical Engineering Aerospace engineering 9210-228 Level 7 Post Graduate Diploma in Mechanical Engineering Aerospace engineering You should have the following for this examination one answer book non-programmable calculator pen, pencil, drawing

More information

CHAPTER 1. Fundamental Mathematics

CHAPTER 1. Fundamental Mathematics Volume 9 Performance (JAR Ref 032) Table of Contents CHAPTER 1 Fundamental Mathematics Introduction...1-1 Equations...1-1 The Principle of an Equation...1-1 Transposing Equations...1-1 Adding and Subtracting...1-1

More information

Darling Downs Soaring Club Inc

Darling Downs Soaring Club Inc Darling Downs Soaring Club Inc Training Supplement Use of Flaps Flaps This is a general briefing on flaps in gliders and should be read in conjunction with the aircraft flight manual for the type you are

More information

HIGH LIFT DEVICES. High Lift Device (I)

HIGH LIFT DEVICES. High Lift Device (I) HIGH LIFT DEVICES When an aircraft is landing or taking off, specially high values of lift coefficient are required in order to maintain flight at the desired low speeds. L 1 V 2 2 SC L Increasing the

More information

ExpressJet Airlines Pilot Job Knowledge Test Outline

ExpressJet Airlines Pilot Job Knowledge Test Outline ExpressJet Airlines Pilot Job Knowledge Test Outline The job knowledge test administered as part of the pilot interview process consists of questions in four major knowledge areas essential to piloting

More information

Aircraft Design. Lecture 9: Stability and Control. G. Dimitriadis. Introduction to Aircraft Design

Aircraft Design. Lecture 9: Stability and Control. G. Dimitriadis. Introduction to Aircraft Design Aircraft Design Lecture 9: Stability and Control G. Dimitriadis Stability and Control Aircraft stability deals with the ability to keep an aircraft in the air in the chosen flight attitude. Aircraft control

More information

A Simple Model for Ski Jump Flight Mechanics Used as a Tool for Teaching Aircraft Gliding Flight

A Simple Model for Ski Jump Flight Mechanics Used as a Tool for Teaching Aircraft Gliding Flight e-περιοδικό Επιστήμης & Τεχνολογίας 33 A Simple Model for Ski Jump Flight Mechanics Used as a Tool for Teaching Aircraft Gliding Flight Vassilios McInnes Spathopoulos Department of Aircraft Technology

More information

CHAPTER 1 - PRINCIPLES OF FLIGHT

CHAPTER 1 - PRINCIPLES OF FLIGHT CHAPTER 1 - PRINCIPLES OF FLIGHT Reilly Burke 2005 INTRODUCTION There are certain laws of nature or physics that apply to any object that is lifted from the Earth and moved through the air. To analyze

More information

APPENDIX 3-B Airplane Upset Recovery Briefing. Briefing. Figure 3-B.1

APPENDIX 3-B Airplane Upset Recovery Briefing. Briefing. Figure 3-B.1 APPENDIX 3-B Airplane Upset Recovery Briefing Industry Solutions for Large Swept-Wing Turbofan Airplanes Typically Seating More Than 100 Passengers Briefing Figure 3-B.1 Revision 1_August 2004 Airplane

More information

F-104 Flight Controls

F-104 Flight Controls Information regarding the Lockheed F-104 Starfighter F-104 Flight Controls An article published in the Zipper Magazine #46 June-2001 Author: Country: Website: Email: Theo N.M.M. Stoelinga The Netherlands

More information

NACA airfoil geometrical construction

NACA airfoil geometrical construction The NACA airfoil series The early NACA airfoil series, the 4-digit, 5-digit, and modified 4-/5-digit, were generated using analytical equations that describe the camber (curvature) of the mean-line (geometric

More information

AUTOMOTIVE COMPUTATIONAL FLUID DYNAMICS SIMULATION OF A CAR USING ANSYS

AUTOMOTIVE COMPUTATIONAL FLUID DYNAMICS SIMULATION OF A CAR USING ANSYS International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 2, March-April 2016, pp. 91 104, Article ID: IJMET_07_02_013 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=2

More information

MEMS PLASMA-AKTUATOREN ZUR ANWENDUNG AUF KLEINDROHNEN

MEMS PLASMA-AKTUATOREN ZUR ANWENDUNG AUF KLEINDROHNEN MEMS PLASMA-AKTUATOREN ZUR ANWENDUNG AUF KLEINDROHNEN Berkant Göksel Voltastr. 1 13355 Berlin www.elektrofluidsysteme.de Phased Plasma Actuators Workshop zum Thema Unbemannte Flugzeuge EADS Military Air

More information

CHAPTER 1: GLIDER FAMILIARIZATION

CHAPTER 1: GLIDER FAMILIARIZATION CHAPTER 1: GLIDER FAMILIARIZATION The glider (also referred to as a sailplane) is the piece of equipment that enables your transformation into a soaring pilot. In this chapter, you will learn about its

More information

Effect of Propeller on Airplane Dynamics

Effect of Propeller on Airplane Dynamics Effect of Propeller on Airplane Dynamics The propeller creates considerable unfavorable forces that need to be trimmed out to keep the airplane flying in a desirable manner. Many airplanes are rigged to

More information

The aerodynamic center

The aerodynamic center The aerodynamic center In this chapter, we re going to focus on the aerodynamic center, and its effect on the moment coefficient C m. 1 Force and moment coefficients 1.1 Aerodynamic forces Let s investigate

More information

Programme Discussions Wissenschaftstag Braunschweig 2015 Laminarität für zukünftige Verkehrsflugzeuge

Programme Discussions Wissenschaftstag Braunschweig 2015 Laminarität für zukünftige Verkehrsflugzeuge Programme Discussions Wissenschaftstag Braunschweig 2015 Kevin Nicholls, EIVW Prepared by Heinz Hansen TOP-LDA Leader, ETEA Presented by Bernhard Schlipf, ESCRWG Laminarität für zukünftige Verkehrsflugzeuge

More information

Some specific examples of vortex generator applications are shown in the accompanying photographs.

Some specific examples of vortex generator applications are shown in the accompanying photographs. VORTEX GENERATORS Original idea from Donald E. Stein Vortex generators have been utilized on most of commercial aircraft. If observed carefully, one can see vortex generators installed at specific locations

More information

Aerodynamics of Flight

Aerodynamics of Flight From the Library at www.uavgroundschool.com Chapter 5 Aerodynamics of Flight Forces Acting on the Aircraft Thrust, drag, lift, and weight are forces that act upon all aircraft in flight. Understanding

More information

BASIC AERODYNAMICS Lift Drag

BASIC AERODYNAMICS Lift Drag BASIC AERODYNAMICS The forces that affect a parachute are invisible, but not incomprehensible. Learn what makes a parachute fly well and you will know what makes it fly badly. There are two basic ways

More information

Dynamic Response of NACA 0018 for Car Spoiler using CFRP Material

Dynamic Response of NACA 0018 for Car Spoiler using CFRP Material Research Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet G. Naveen

More information

Development and Design of a Form- Adaptive Trailing Edge for Wind Turbine Blades

Development and Design of a Form- Adaptive Trailing Edge for Wind Turbine Blades Development and Design of a Form- Adaptive Trailing Edge for Wind Turbine Blades Master Thesis Alireza Taheri REMENA Batch 5 Matriculation Number - 33105532 Institut Thermische Energietechnik 10.02.2015

More information

CFD Analysis on Airfoil at High Angles of Attack

CFD Analysis on Airfoil at High Angles of Attack CFD Analysis on Airfoil at High Angles of Attack Dr.P.PrabhakaraRao¹ & Sri Sampath.V² Department of Mechanical Engineering,Kakatiya Institute of Technology& Science Warangal-506015 1 chantifft@rediffmail.com,

More information

AOE 3134 Complete Aircraft Equations

AOE 3134 Complete Aircraft Equations AOE 3134 Complete Aircraft Equations The requirements for balance and stability that we found for the flying wing carry over directly to a complete aircraft. In particular we require the zero-lift pitch

More information

Hypersonic Aerodynamics of Aerospace Vehicle Design: Basic Approach and Study

Hypersonic Aerodynamics of Aerospace Vehicle Design: Basic Approach and Study Advances in Aerospace Science and Applications. ISSN 2277-3223 Volume 3, Number 3 (2013), pp. 209-214 Research India Publications http://www.ripublication.com/aasa.htm Hypersonic Aerodynamics of Aerospace

More information

Aerospace Engineering 3521: Flight Dynamics. Prof. Eric Feron Homework 6 due October 20, 2014

Aerospace Engineering 3521: Flight Dynamics. Prof. Eric Feron Homework 6 due October 20, 2014 Aerospace Engineering 3521: Flight Dynamics Prof. Eric Feron Homework 6 due October 20, 2014 1 Problem 1: Lateral-directional stability of Navion With the help of Chapter 2 of Nelson s textbook, we established

More information

Cessna Skyhawk II / 100. Performance Assessment

Cessna Skyhawk II / 100. Performance Assessment Cessna Skyhawk II / 100 Performance Assessment Prepared by John McIver B.Eng.(Aero) Temporal Images 23rd January 2003 http://www.temporal.com.au Cessna Skyhawk II/100 (172) Performance Assessment 1. Introduction

More information

DIRECCION DE PERSONAL AERONAUTICO DPTO. DE INSTRUCCION PREGUNTAS Y OPCIONES POR TEMA

DIRECCION DE PERSONAL AERONAUTICO DPTO. DE INSTRUCCION PREGUNTAS Y OPCIONES POR TEMA MT DIREION DE PERSONL ERONUTIO DPTO. DE INSTRUION PREGUNTS Y OPIONES POR TEM Pag.: 1 TEM: 0114 TP - (HP. 03) ERODYNMIS OD_PREG: PREGUNT: RPT: 8324 When are inboard ailerons normally used? OPION : Low-speed

More information

Aerodynamic Department Institute of Aviation. Adam Dziubiński CFD group FLUENT

Aerodynamic Department Institute of Aviation. Adam Dziubiński CFD group FLUENT Adam Dziubiński CFD group IoA FLUENT Content Fluent CFD software 1. Short description of main features of Fluent 2. Examples of usage in CESAR Analysis of flow around an airfoil with a flap: VZLU + ILL4xx

More information

Lab 8 Notes Basic Aircraft Design Rules 6 Apr 06

Lab 8 Notes Basic Aircraft Design Rules 6 Apr 06 Lab 8 Notes Basic Aircraft Design Rules 6 Apr 06 Nomenclature x, y longitudinal, spanwise positions S reference area (wing area) b wing span c average wing chord ( = S/b ) AR wing aspect ratio C L lift

More information

Forces on a Model Rocket

Forces on a Model Rocket Forces on a Model Rocket This pamphlet was developed using information for the Glenn Learning Technologies Project. For more information, visit their web site at: http://www.grc.nasa.gov/www/k-12/aboutltp/educationaltechnologyapplications.html

More information

AERODYNAMIC ANALYSIS OF BLADE 1.5 KW OF DUAL ROTOR HORIZONTAL AXIS WIND TURBINE

AERODYNAMIC ANALYSIS OF BLADE 1.5 KW OF DUAL ROTOR HORIZONTAL AXIS WIND TURBINE AERODYNAMIC ANALYSIS OF BLADE 1.5 KW OF DUAL ROTOR HORIZONTAL AXIS WIND TURBINE HITENDRA KURMI Research scholar, School of Energy and Environmental Managment,UTD, RGPV Bhopal,MP,INDIA htr.ptl@gmail.com

More information

The Use of VSAero CFD Tool in the UAV Aerodynamic Project

The Use of VSAero CFD Tool in the UAV Aerodynamic Project DIASP Meeting #6 Turin 4-5 February 2003 The Use of VSAero CFD Tool in the UAV Aerodynamic Project Alberto PORTO Massimiliano FONTANA Porto Ricerca FDS Giulio ROMEO - Enrico CESTINO Giacomo FRULLA Politecnico

More information