Section 5: Summary. Section 6. General Fourier Series


 Cleopatra Parks
 2 years ago
 Views:
Transcription
1 Section 5: Summary Periodic functions, (so far only with period π, can be represented ug the the Fourier series. We can use symmetry properties of the function to spot that certain Fourier coefficients will be zero, and hence avoid performing the integral to evaluate them. Functions with zero mean have d = 0. Purely odd functions have a n = 0. Purely even functions have b n = 0. Segments of nonperiodic functions can be represented ug the Fourier series in the same way. The Fourier series representation just repeats outside the range on which it was built. Section 6 General Fourier Series The Fourier series for arbitrary period is presented. We compare three techniques for calculating a general range Fourier series: direct integration, ug a related series of delta functions, and ug the electrical data book. During the direct integration eample, some symmetry arguments for simplifying integrals are illustrated
2 General Range If we want to model a periodic signal with period other than π, or a section of a nonperiodic signal of length other than π we need a more general formula. To model a function f( over the range 0 to, substitute π = t, ( π d = dt in our Fourier formulae. a n = ( πn cos f( d 0 b n = ( πn f( d 0 d = f( d 0 f( = d + [ a n cos ( ( ] πn πn + b n The fraction π is often written as ω 0 and called the fundamental angular frequency. 77 General Range Eample Represent the signal f( = ( as a Fourier series with period, based on the range 0 to. a n = ( ( cos(πn( d = n π b n = (πn( d = 0 d = 0 0 ( d = 6 So the Fourier series is: f( = 6 cos(π π cos(π π cos(6π 9π... Note that this is an even function with period =. 78
3 General Range Eample Represent the signal f( = δ( / δ( 3/ as a Fourier series based on the range 0 to. f( b n = ( πn f( d 0 We are told that the period is, so consider the signal repeating with period. f( = = = 0 ( [ ( ( ] πn δ δ 3 d [ [ = ( nπ ( ( ] πn 6πn ( ( ] nπ 3nπ (sifting! This signal is purely ODD with zero mean. We therefore only need to calculate b n
4 b n = ( nπ This is zero when n is even. Tabulate ( nπ when n is odd. Thus ( nπ n n+ ( n+ ( n+3 n b n = 0, n even ( So the Fourier series is: f( = [ ( π ( n+3 ( 6π, n odd ( ] + 0π... More Integral Avoidance Notice how easy it is to calculate the Fourier series of a signal formed only of delta functions. By integrating the delta function series we can derive the Fourier series for square waves and triangle waves. t Integrate t Integrate t 8 8
5 Pick the Start of Period Carefully Three Methods If you wish to find the Fourier series of a waveform such as f( it is difficult to use formulae with limits such as a n = ( πn cos f( d 0 because it is not clear what to do about the delta functions at that coincide with the upper and lower limits of the integral. Instead, choose your period of length to start at a different point. For eample: a n = 3 cos ( πn f( d 83 f( There are three ways to find the Fourier series for f( between 0 and.. Use the general range Fourier formulae directly.. Differentiate the waveform twice to get a sequence of delta functions. Find a Fourier series for the delta functions, then integrate the series twice to get the Fourier series of the triangular wave. 3. ook up the Fourier series of a similar waveform in the Maths Data book and use a substitution of variables to find the series for the waveform we require. 8
6 Method : Direct Integration The triangular waveform is entirely ODD and has zero mean. Thus d = 0 and a n = 0. We only need to find b n. To do this we need an algebraic representation of the waveform., 0 < < f( =, < < 3, 3 < < n odd n= n even ( π/ ( π/ f( f( From this we can write down an epression for b n. b n = ( πn f( d 0 = ( ( πn d ( ( ( πn d ( + ( ( πn d ( Int ( Int ( Int (3 There is clearly a symmetry between the terms f( and ( πn. All terms with even n are zero, and all terms with odd n are equal to twice integral (. 86
7 When n is even b n = 0 and when n is odd b n = 8 ( nπ n π cos ( ( nπ nπ But as we know n is odd, the cos( term is always zero and we can write [ ( nπ ] = ( 0, n even b n = ( 8 n+ n π (, n odd Giving a final Fourier series for f( = 8 π ( π + ( π3 9 ( π5 5 ( n If we want to write this algebraically, we need to limit n to only odd values. et n = m with m taking integer values from to. f( = 8 π m= ( m (m ( π(m 87 Method : Delta Functions First we differentiate the waveform twice. / / f( f ( f ( area=8/ f ( is a purely odd function with zero mean so we only need to calculate b n. f ( = 8 δ ( 8 δ ( 3 88
8 To find the Fourier series for f (: b n = ( πn f( d 0 = 6 0 ( [ ( ( ] πn δ δ 3 d = 6 [ = ( ( ] πn 6πn 0, n even 3 ( ( n+3, n odd So the Fourier series for f ( = [ ( ( ( 3 π 6π 0π + (sifting! ]... We can also write this (note that m = n. f ( = 3 ( ( m+ π(m m= Now we integrate twice, each time setting the constant of integration to zero so we get a waveform with zero mean in each case. f ( = 3 f ( = 6 π m= m= f( = 8 π m= ( π(m ( m+ cos ( π(m ( m m ( π(m (m ( m Which we can write out as follows f( = ( 8 π π + ( π3 ( π
9 Method 3: Maths Databook Only works if something like the desired function is in the maths data book! If we set = t and = T then f = g. f( g(t In this case we want f( as above, and the nearest available series is g(t. T t f( = 8 π = 8 π ([n ]ω 0 (n ( n ( π(n (n ( n Which we can write out, as with the other methods, as follows f( = ( 8 π π + ( π3 9 ( π g(t = 8 π ( n+([n ]ω 0t (n where ω 0 = π/t. 9 9
10 Section 6: Summary Section 7 a n = ( πn cos 0 b n = ( πn 0 d = f( d 0 f( = d + [ a n cos f( d f( d ( ( ] πn πn + b n You can sometimes combine multiple integrals ug symmetry properties. Sometimes it is faster to calculate a related Fourier series of delta functions and integrate. Don t forget the Fourier serieses given in the maths data book. 93 Convergence & Half Range Serieses The rule for predicting the convergence of the Fourier series from the shape of the function is introduced. This is used with the Fourier series for general period to calculate serieses, valid over limited ranges, with improved convergence properties. Four different serieses are calculated to model the same simple function in order to illustrate this. The usefulness of Matlab and Octave for numerical calculation, and the use of Matlab for symbolic algebra are introduced. 9
1. the function must be periodic; 3. it must have only a finite number of maxima and minima within one periodic;
Fourier Series 1 Dirichlet conditions The particular conditions that a function f(x must fulfil in order that it may be expanded as a Fourier series are known as the Dirichlet conditions, and may be summarized
More informationFourier Analysis Last Modified 9/5/06
Measurement Lab Fourier Analysis Last Modified 9/5/06 Any timevarying signal can be constructed by adding together sine waves of appropriate frequency, amplitude, and phase. Fourier analysis is a technique
More informationRecap on Fourier series
Civil Engineering Mathematics Autumn 11 J. Mestel, M. Ottobre, A. Walton Recap on Fourier series A function f(x is called periodic if f(x = f(x + for all x. A continuous periodic function can be represented
More informationContinuous Time Signals (Part  I) Fourier series
Continuous Time Signals (Part  I) Fourier series (a) Basics 1. Which of the following signals is/are periodic? (a) s(t) = cos t + cos 3t + cos 5t (b) s(t) = exp(j8 πt) (c) s(t) = exp( 7t) sin 1πt (d)
More informationSolving 1 and 2 Step Equations
Section 2 1: Solving 1 and 2 Step Equations Epressions The last chapter in this book contained epressions. The net type of algebraic statement that we will eamine is an equation. At the start of this section
More informationIntroduction to Fourier Series
Introduction to Fourier Series We ve seen one eample so far of series of functions. The Taylor Series of a function is a series of polynomials and can be used to approimate a function at a point. Another
More informationFourier Series Expansion
Fourier Series Expansion Deepesh K P There are many types of series expansions for functions. The Maclaurin series, Taylor series, Laurent series are some such expansions. But these expansions become valid
More informationME231 Measurements Laboratory Spring Fourier Series. Edmundo Corona c
ME23 Measurements Laboratory Spring 23 Fourier Series Edmundo Corona c If you listen to music you may have noticed that you can tell what instruments are used in a given song or symphony. In some cases,
More informationFourier Series for Periodic Functions. Lecture #8 5CT3,4,6,7. BME 333 Biomedical Signals and Systems  J.Schesser
Fourier Series for Periodic Functions Lecture #8 5C3,4,6,7 Fourier Series for Periodic Functions Up to now we have solved the problem of approximating a function f(t) by f a (t) within an interval. However,
More informationLecture VI. Review of even and odd functions Definition 1 A function f(x) is called an even function if. f( x) = f(x)
ecture VI Abstract Before learning to solve partial differential equations, it is necessary to know how to approximate arbitrary functions by infinite series, using special families of functions This process
More information3 Trigonometric Fourier Series
3 Trigonometric Fourier Series Ordinary language is totally unsuited for epressing what physics really asserts, since the words of everyday life are not sufficiently abstract. Only mathematics and mathematical
More informationM344  ADVANCED ENGINEERING MATHEMATICS Lecture 9: Orthogonal Functions and Trigonometric Fourier Series
M344  ADVANCED ENGINEERING MATHEMATICS ecture 9: Orthogonal Functions and Trigonometric Fourier Series Before learning to solve partial differential equations, it is necessary to know how to approximate
More informationFourier Series and Integrals
Fourier Series and Integrals Fourier Series et f(x) be a piecewise linear function on [,] (This means that f(x) may possess a finite number of finite discontinuities on the interval). Then f(x) can be
More information1 Review of complex numbers
1 Review of complex numbers 1.1 Complex numbers: algebra The set C of complex numbers is formed by adding a square root i of 1 to the set of real numbers: i = 1. Every complex number can be written uniquely
More informationMATH 461: Fourier Series and Boundary Value Problems
MATH 461: Fourier Series and Boundary Value Problems Chapter III: Fourier Series Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2015 fasshauer@iit.edu MATH 461 Chapter
More informationEECS 206 Solutions to Midterm Exam 2 July 12, Problems 1 to 10 are multiplechoice. Each has 7 points. No partial credit will be given.
EECS 06 Solutions to Midterm Exam July, 00 Instructions: Answer on this questionnaire Print your name Sign the pledge below Closed book and notes One 8 / x sheet of paper allowed Calculators allowed Read
More informationThis is the 23 rd lecture on DSP and our topic for today and a few more lectures to come will be analog filter design. (Refer Slide Time: 01:1301:14)
Digital Signal Processing Prof. S.C. Dutta Roy Department of Electrical Electronics Indian Institute of Technology, Delhi Lecture  23 Analog Filter Design This is the 23 rd lecture on DSP and our topic
More informationChapter 6. Power Spectrum. 6.1 Outline
Chapter 6 Power Spectrum The power spectrum answers the question How much of the signal is at a frequency ω?. We have seen that periodic signals give peaks at a fundamental and its harmonics; quasiperiodic
More information(x) = lim. x 0 x. (2.1)
Differentiation. Derivative of function Let us fi an arbitrarily chosen point in the domain of the function y = f(). Increasing this fied value by we obtain the value of independent variable +. The value
More informationObjectives. By the time the student is finished with this section of the workbook, he/she should be able
QUADRATIC FUNCTIONS Completing the Square..95 The Quadratic Formula....99 The Discriminant... 0 Equations in Quadratic Form.. 04 The Standard Form of a Parabola...06 Working with the Standard Form of a
More informationFourier cosine and sine series even odd
Fourier cosine and sine series Evaluation of the coefficients in the Fourier series of a function f is considerably simler is the function is even or odd. A function is even if f ( x) = f (x) Examle: x
More informationAn introduction to generalized vector spaces and Fourier analysis. by M. Croft
1 An introduction to generalized vector spaces and Fourier analysis. by M. Croft FOURIER ANALYSIS : Introduction Reading: Brophy p. 5863 This lab is u lab on Fourier analysis and consists of VI parts.
More informationQuadratic Functions. Copyright Cengage Learning. All rights reserved.
Quadratic Functions 4 Copyright Cengage Learning. All rights reserved. Solving by the Quadratic Formula 2 Example 1 Using the quadratic formula Solve the following quadratic equations. Round your answers
More informationFourier Transforms The Fourier Transform Properties of the Fourier Transform Some Special Fourier Transform Pairs 27
24 Contents Fourier Transforms 24.1 The Fourier Transform 2 24.2 Properties of the Fourier Transform 14 24.3 Some Special Fourier Transform Pairs 27 Learning outcomes In this Workbook you will learn about
More information1 The Dirichlet Problem. 2 The Poisson kernel. Math 857 Fall 2015
Math 857 Fall 2015 1 The Dirichlet Problem Before continuing to Fourier integrals, we consider first an application of Fourier series. Let Ω R 2 be open and connected (region). Recall from complex analysis
More informationFourier Series & Fourier Transforms
Fourier Series & Fourier Transforms nicholas.harrison@imperial.ac.uk 19th October 003 Synopsis ecture 1 : Review of trigonometric identities Fourier Series Analysing the square wave ecture : The Fourier
More informationIntroduction to Fourier Series
Introduction to Fourier Series MA 16021 October 15, 2014 Even and odd functions Definition A function f(x) is said to be even if f( x) = f(x). The function f(x) is said to be odd if f( x) = f(x). Graphically,
More informationGRE MATH REVIEW #5. 1. Variable: A letter that represents an unknown number.
GRE MATH REVIEW #5 Eponents and Radicals Many numbers can be epressed as the product of a number multiplied by itself a number of times. For eample, 16 can be epressed as. Another way to write this is
More information2 Background: Fourier Series Analysis and Synthesis
GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL and COMPUTER ENGINEERING ECE 2025 Spring 2001 Lab #11: Design with Fourier Series Date: 3 6 April 2001 This is the official Lab #11 description. The
More informationThe University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #1. Spirou et Fantasio
The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #1 Date: October 14, 2016 Course: EE 445S Evans Name: Spirou et Fantasio Last, First The exam is scheduled to last
More informationANALYSIS AND APPLICATIONS OF LAPLACE /FOURIER TRANSFORMATIONS IN ELECTRIC CIRCUIT
www.arpapress.com/volumes/vol12issue2/ijrras_12_2_22.pdf ANALYSIS AND APPLICATIONS OF LAPLACE /FOURIER TRANSFORMATIONS IN ELECTRIC CIRCUIT M. C. Anumaka Department of Electrical Electronics Engineering,
More informationSection P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities
Section P.9 Notes Page P.9 Linear Inequalities and Absolute Value Inequalities Sometimes the answer to certain math problems is not just a single answer. Sometimes a range of answers might be the answer.
More informationFourier Series. 1. Introduction. 2. Square Wave
531 Fourier Series Tools Used in Lab 31 Fourier Series: Square Wave Fourier Series: Triangle Wave Fourier Series: Gibbs Effect Fourier Series: Coefficients How does a Fourier series converge to a function?
More informationLIMIT COMPUTATION: FORMULAS AND TECHNIQUES, INCLUDING L HÔPITAL S RULE
LIMIT COMPUTATION: FORMULAS AND TECHNIQUES, INCLUDING L HÔPITAL S RULE MATH 153, SECTION 55 (VIPUL NAIK) Corresponding material in the book: Sections 11.4, 11.5, 11.6. What students should already know:
More information1. Periodic Fourier series. The Fourier expansion of a 2πperiodic function f is:
CONVERGENCE OF FOURIER SERIES 1. Periodic Fourier series. The Fourier expansion of a 2πperiodic function f is: with coefficients given by: a n = 1 π f(x) a 0 2 + a n cos(nx) + b n sin(nx), n 1 f(x) cos(nx)dx
More informationMath Help and Additional Practice Websites
Name: Math Help and Additional Practice Websites http://www.coolmath.com www.aplusmath.com/ http://www.mathplayground.com/games.html http://www.ixl.com/math/grade7 http://www.softschools.com/grades/6th_and_7th.jsp
More informationFourier Analysis. Be able to follow derivations of Fourier Series coefficients, relations between Fourier Series and Fourier Integrals etc.
Self Learn Module Fourier Analysis Contents Fourier Series for functions of period 2π Fourier Series for functions of period L Fourier Integrals Complex Fourier Integrals Fourier analysis of standing wave
More informationAssignment 5 Math 101 Spring 2009
Assignment 5 Math 11 Spring 9 1. Find an equation of the tangent line(s) to the given curve at the given point. (a) x 6 sin t, y t + t, (, ). (b) x cos t + cos t, y sin t + sin t, ( 1, 1). Solution. (a)
More informationFOURIER SERIES, GENERALIZED FUNCTIONS, LAPLACE TRANSFORM. 1. A (generalized) function f(t) of period 2L has a Fourier series of the form
FOURIER SERIES, GENERAIZED FUNCTIONS, APACE TRANSFORM 1 Fourier Series 1.1 General facts 1. A (generalized) function f(t) of period has a Fourier series of the form or f(t) a + a 1 cos πt + a cos πt +
More informationCore Maths C1. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the
More informationIntroduction to Fourier Series
Introduction to Fourier Series A function f(x) is called periodic with period T if f(x+t)=f(x) for all numbers x. The most familiar examples of periodic functions are the trigonometric functions sin and
More informationFourier Series. 1. Fullrange Fourier Series. ) + b n sin L. [ a n cos L )
Fourier Series These summary notes should be used in conjunction with, and should not be a replacement for, your lecture notes. You should be familiar with the following definitions. A function f is periodic
More informationLESSON 1 PRIME NUMBERS AND FACTORISATION
LESSON 1 PRIME NUMBERS AND FACTORISATION 1.1 FACTORS: The natural numbers are the numbers 1,, 3, 4,. The integers are the naturals numbers together with 0 and the negative integers. That is the integers
More informationSection 1.1 Linear Equations: Slope and Equations of Lines
Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of
More informationFourier series and transforms
Chapter 5 Fourier series and transforms Physical wavefields are often constructed from superpositions of complex exponential traveling waves, e i(kx ω(k)t). (5.) Here the wavenumber k ranges over a set
More information1 foot (ft) = 12 inches (in) 1 yard (yd) = 3 feet (ft) 1 mile (mi) = 5280 feet (ft) Replace 1 with 1 ft/12 in. 1ft
2 MODULE 6. GEOMETRY AND UNIT CONVERSION 6a Applications The most common units of length in the American system are inch, foot, yard, and mile. Converting from one unit of length to another is a requisite
More informationSample Induction Proofs
Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Sample Induction Proofs Below are model solutions to some of the practice problems on the induction worksheets. The solutions given
More informationStep 1 MATHS. To achieve Step 1 in Maths students must master the following skills and competencies: Number. Shape. Algebra
MATHS Step 1 To achieve Step 1 in Maths students must master the following skills and competencies: Number Add and subtract positive decimal numbers Add and subtract negative numbers in context Order decimal
More informationFourier Series. Chapter Some Properties of Functions Goal Preliminary Remarks
Chapter 3 Fourier Series 3.1 Some Properties of Functions 3.1.1 Goal We review some results about functions which play an important role in the development of the theory of Fourier series. These results
More information0.3 EXPONENTS AND RADICALS
60040_000.qd //05 :00 PM Page 0 SECTION 0. Eponents and Radicals 00. EXPONENTS AND RADICALS Evaluate epressions involving eponents or radicals. Simplify epressions with eponents. Find the domains of
More informationPicture Perfect: The Mathematics of JPEG Compression
Picture Perfect: The Mathematics of JPEG Compression May 19, 2011 1 2 3 in 2D Sampling and the DCT in 2D 2D Compression Images Outline A typical color image might be 600 by 800 pixels. Images Outline A
More informationLaboratory Assignment 4. Fourier Sound Synthesis
Laboratory Assignment 4 Fourier Sound Synthesis PURPOSE This lab investigates how to use a computer to evaluate the Fourier series for periodic signals and to synthesize audio signals from Fourier series
More informationFIR Filter Design. FIR Filters and the zdomain. The zdomain model of a general FIR filter is shown in Figure 1. Figure 1
FIR Filters and the Domain FIR Filter Design The domain model of a general FIR filter is shown in Figure. Figure Each  box indicates a further delay of one sampling period. For example, the input to
More informationIB Maths SL Sequence and Series Practice Problems Mr. W Name
IB Maths SL Sequence and Series Practice Problems Mr. W Name Remember to show all necessary reasoning! Separate paper is probably best. 3b 3d is optional! 1. In an arithmetic sequence, u 1 = and u 3 =
More informationAdd and subtract 1digit and 2digit numbers to 20, including zero. Measure and begin to record length, mass, volume and time
Year 1 Maths  Key Objectives Count to and across 100 from any number Count, read and write numbers to 100 in numerals Read and write mathematical symbols: +,  and = Identify "one more" and "one less"
More informationTaylor Series and Asymptotic Expansions
Taylor Series and Asymptotic Epansions The importance of power series as a convenient representation, as an approimation tool, as a tool for solving differential equations and so on, is pretty obvious.
More information23.7. An Application of Fourier Series. Introduction. Prerequisites. Learning Outcomes
An Application of Fourier Series 23.7 Introduction In this Section we look at a typical application of Fourier series. The problem we study is that of a differential equation with a periodic (but nonsinusoidal)
More informationChapter 8. Introduction to Alternating Current and Voltage. Objectives
Chapter 8 Introduction to Alternating Current and Voltage Objectives Identify a sinusoidal waveform and measure its characteristics Describe how sine waves are generated Determine the various voltage and
More informationExamination paper for Solutions to Matematikk 4M and 4N
Department of Mathematical Sciences Examination paper for Solutions to Matematikk 4M and 4N Academic contact during examination: Trygve K. Karper Phone: 99 63 9 5 Examination date:. mai 04 Examination
More informationWrite seven terms of the Fourier series given the following coefficients. 1. a 0 4, a 1 3, a 2 2, a 3 1; b 1 4, b 2 3, b 3 2
36 Chapter 37 Infinite Series Eercise 5 Fourier Series Write seven terms of the Fourier series given the following coefficients.. a 4, a 3, a, a 3 ; b 4, b 3, b 3. a.6, a 5., a 3., a 3.4; b 7.5, b 5.3,
More information8.7 Mathematical Induction
8.7. MATHEMATICAL INDUCTION 8135 8.7 Mathematical Induction Objective Prove a statement by mathematical induction Many mathematical facts are established by first observing a pattern, then making a conjecture
More informationSine and Cosine Series; Odd and Even Functions
Sine and Cosine Series; Odd and Even Functions A sine series on the interval [, ] is a trigonometric series of the form k = 1 b k sin πkx. All of the terms in a series of this type have values vanishing
More informationG. GRAPHING FUNCTIONS
G. GRAPHING FUNCTIONS To get a quick insight int o how the graph of a function looks, it is very helpful to know how certain simple operations on the graph are related to the way the function epression
More information11. Fourier series. sin mx cos nx dx = 0 for any m, n, sin 2 mx dx = π.
. Fourier series Summry of the bsic ides The following is quick summry of the introductory tretment of Fourier series in MATH. We consider function f with period π, tht is, stisfying f(x + π) = f(x) for
More informationOutline. FIR Filter Characteristics Linear Phase Windowing Method Frequency Sampling Method Equiripple Optimal Method Design Examples
FIR Filter Design Outline FIR Filter Characteristics Linear Phase Windowing Method Frequency Sampling Method Equiripple Optimal Method Design Examples FIR Filter Characteristics FIR difference equation
More informationFig. 2 shows a simple step waveform in which switching time of power devices are not considered and assuming the switch is ideal.
CHAPTER 3: ANAYSIS OF THREEEE INERTER In this chapter an analysis of threelevel converter is presented by considering the output voltage waveform in order to determine the switching angle of power devices.
More informationAB2.14: Heat Equation: Solution by Fourier Series
AB2.14: Heat Equation: Solution by Fourier Series Consider the boundary value problem for the onedimensional heat equation describing the temperature variation in a bar with the zerotemperature ends:
More informationPeriodic signals and representations
ECE 3640 Lecture 4 Fourier series: expansions of periodic functions. Objective: To build upon the ideas from the previous lecture to learn about Fourier series, which are series representations of periodic
More informationCh 7 Alg 2 Note Sheet Key
Ch Alg Note Sheet Key Chapter : Radical Functions and Rational Eponents The Why of Eponents Multiplication gave us a short way to write repeated addition: + + +. The counts the number of terms. Eponents
More informationSinusoidal Pulse width modulation
Sinusoidal Pulse width modulation The switches in the voltage source inverter (See Fig can be turned on and off as required In the simplest approach, the top switch is turned on If turned on and off only
More informationThe Fourier Transform
The Fourier Transorm Fourier Series Fourier Transorm The Basic Theorems and Applications Sampling Bracewell, R. The Fourier Transorm and Its Applications, 3rd ed. New York: McGrawHill, 2. Eric W. Weisstein.
More informationMATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.
MATHEMATICAL INDUCTION MIGUEL A LERMA (Last updated: February 8, 003) Mathematical Induction This is a powerful method to prove properties of positive integers Principle of Mathematical Induction Let P
More informationf x a 0 n 1 a 0 a 1 cos x a 2 cos 2x a 3 cos 3x b 1 sin x b 2 sin 2x b 3 sin 3x a n cos nx b n sin nx n 1 f x dx y
Fourier Series When the French mathematician Joseph Fourier (768 83) was tring to solve a problem in heat conduction, he needed to epress a function f as an infinite series of sine and cosine functions:
More informationTrigonometry (Chapter 6) Sample Test #1 First, a couple of things to help out:
First, a couple of things to help out: Page 1 of 20 More Formulas (memorize these): Law of Sines: sin sin sin Law of Cosines: 2 cos 2 cos 2 cos Area of a Triangle: 1 2 sin 1 2 sin 1 2 sin 1 2 Solve the
More informationANALYTICAL MATHEMATICS FOR APPLICATIONS 2016 LECTURE NOTES Series
ANALYTICAL MATHEMATICS FOR APPLICATIONS 206 LECTURE NOTES 8 ISSUED 24 APRIL 206 A series is a formal sum. Series a + a 2 + a 3 + + + where { } is a sequence of real numbers. Here formal means that we don
More informationHarmonic Formulas for Filtering Applications
Harmonic Formulas for Filtering Applications Trigonometric Series Harmonic Analysis The history of the trigonometric series, for all practical purposes, came of age in 1822 with Joseph De Fourier s book
More informationCurve Fitting. Next: Numerical Differentiation and Integration Up: Numerical Analysis for Chemical Previous: Optimization.
Next: Numerical Differentiation and Integration Up: Numerical Analysis for Chemical Previous: Optimization Subsections LeastSquares Regression Linear Regression General Linear LeastSquares Nonlinear
More informationM3 PRECALCULUS PACKET 1 FOR UNIT 5 SECTIONS 5.1 TO = to see another form of this identity.
M3 PRECALCULUS PACKET FOR UNIT 5 SECTIONS 5. TO 5.3 5. USING FUNDAMENTAL IDENTITIES 5. Part : Pythagorean Identities. Recall the Pythagorean Identity sin θ cos θ + =. a. Subtract cos θ from both sides
More informationGenerating Functions
Generating Functions If you take f(x =/( x x 2 and expand it as a power series by long division, say, then you get f(x =/( x x 2 =+x+2x 2 +x +5x 4 +8x 5 +x 6 +. It certainly seems as though the coefficient
More informationSolutions to Sample Midterm 2 Math 121, Fall 2004
Solutions to Sample Midterm Math, Fall 4. Use Fourier series to find the solution u(x, y) of the following boundary value problem for Laplace s equation in the semiinfinite strip < x : u x + u
More informationFOURIER SERIES INSTRUCTOR: DR. GÜLDEN KÖKTÜRK
FOURIER SERIES INSTRUCTOR: DR. GÜLDEN KÖKTÜRK Contact Information Phone: 412 71 65 Email: gulden.kokturk@deu.edu.tr Web page: gulden.kokturk.com Office Hours for This Module April, 59: Wendesday 34,
More informationChapter 2 Limits Functions and Sequences sequence sequence Example
Chapter Limits In the net few chapters we shall investigate several concepts from calculus, all of which are based on the notion of a limit. In the normal sequence of mathematics courses that students
More informationFourier Analysis and its applications
Fourier Analysis and its applications Fourier analysis originated from the study of heat conduction: Jean Baptiste Joseph Fourier (17681830) Fourier analysis enables a function (signal) to be decomposed
More informationALGEBRA. Find the nth term, justifying its form by referring to the context in which it was generated
ALGEBRA Pupils should be taught to: Find the nth term, justifying its form by referring to the context in which it was generated As outcomes, Year 7 pupils should, for example: Generate sequences from
More informationCore Maths C2. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...
More informationSIMPLIFYING SQUARE ROOTS EXAMPLES
SIMPLIFYING SQUARE ROOTS EXAMPLES 1. Definition of a simplified form for a square root The square root of a positive integer is in simplest form if the radicand has no perfect square factor other than
More informationFACTORING QUADRATICS 8.1.1 and 8.1.2
FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.
More informationDiagonal, Symmetric and Triangular Matrices
Contents 1 Diagonal, Symmetric Triangular Matrices 2 Diagonal Matrices 2.1 Products, Powers Inverses of Diagonal Matrices 2.1.1 Theorem (Powers of Matrices) 2.2 Multiplying Matrices on the Left Right by
More informationExample 1 Example 2 Example 3. The set of the ages of the children in my family { 27, 24, 21, 19 } The set of Counting Numbers
Section 0 1A: The Real Number System We often look at a set as a collection of objects with a common connection. We use brackets like { } to show the set and we put the objects in the set inside the brackets
More informationMATH 105: PRACTICE PROBLEMS FOR SERIES: SPRING Problems
MATH 05: PRACTICE PROBLEMS FOR SERIES: SPRING 20 INSTRUCTOR: STEVEN MILLER (SJM@WILLIAMS.EDU).. Sequences and Series.. Problems Question : Let a n =. Does the series +n+n 2 n= a n converge or diverge?
More information8.3. Solution by Gauss Elimination. Introduction. Prerequisites. Learning Outcomes
Solution by Gauss Elimination 8.3 Introduction Engineers often need to solve large systems of linear equations; for example in determining the forces in a large framework or finding currents in a complicated
More informationPhysics 1120: Waves Solutions
Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Waves Solutions 1. A wire of length 4.35 m and mass 137 g is under a tension of 125 N. What is the speed of a wave in this wire? If the tension
More informationAnswers to Basic Algebra Review
Answers to Basic Algebra Review 1. 1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract
More informationFourier Analysis. A cosine wave is just a sine wave shifted in phase by 90 o (φ=90 o ). degrees
Fourier Analysis Fourier analysis follows from Fourier s theorem, which states that every function can be completely expressed as a sum of sines and cosines of various amplitudes and frequencies. This
More informationContinued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
More informationEven, odd functions. Main properties of even, odd functions. Sine and cosine series. Evenperiodic, oddperiodic extensions of functions.
Sine and Cosine Series (Sect..4. Even, odd functions. Main properties of even, odd functions. Sine and cosine series. Evenperiodic, oddperiodic etensions of functions. Even, odd functions. Definition
More informationMath 317 HW #5 Solutions
Math 317 HW #5 Solutions 1. Exercise 2.4.2. (a) Prove that the sequence defined by x 1 = 3 and converges. x n+1 = 1 4 x n Proof. I intend to use the Monotone Convergence Theorem, so my goal is to show
More informationThe Geometric Series
The Geometric Series Professor Jeff Stuart Pacific Lutheran University c 8 The Geometric Series Finite Number of Summands The geometric series is a sum in which each summand is obtained as a common multiple
More informationMathematics 96 (3581) CA (Class Addendum) 3: Inverse Properties Mt. San Jacinto College Menifee Valley Campus Spring 2013
Mathematics 96 (358) CA (Class Addendum) 3: Inverse Properties Mt. San Jacinto College Menifee Valley Campus Spring 203 Name This class handout is worth a maimum of five (5) points. It is due no later
More informationHFCC Math Lab Beginning Algebra 13 TRANSLATING ENGLISH INTO ALGEBRA: WORDS, PHRASE, SENTENCES
HFCC Math Lab Beginning Algebra 1 TRANSLATING ENGLISH INTO ALGEBRA: WORDS, PHRASE, SENTENCES Before being able to solve word problems in algebra, you must be able to change words, phrases, and sentences
More information