# M344 - ADVANCED ENGINEERING MATHEMATICS Lecture 9: Orthogonal Functions and Trigonometric Fourier Series

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 M344 - ADVANCED ENGINEERING MATHEMATICS ecture 9: Orthogonal Functions and Trigonometric Fourier Series Before learning to solve partial differential equations, it is necessary to know how to approximate arbitrary functions by infinite series, using special families of functions This process is called Fourier approximation, and the families of functions we use are called orthogonal families Orthogonal Families of Functions Def An infinite collection of functions S = {Φ (t), Φ (t), Φ (t), } {Φ n (t)} n= is said to be an orthogonal set on the interval [, β] if Φ m (t)φ n (t)dt =, whenever m n () Suppose S = {Φ n (t)} n= is an orthogonal set on [, β], and we want to represent an arbitrary function f(t) by a series of the form f(t) = a n Φ n (t) = a Φ (t) + a Φ (t) + + a n Φ n (t) + () n= If we assume that this series converges to f(t) on t β, it is then easy to find the coefficients a m For any m =,,,, using equations () and (), ( β ) f(t)φ m (t)dt = a n Φ n (t) Φ m (t)dt = a n Φ n (t)φ m (t)dt n= = a m Φ m(t)dt; and therefore, a formula for the mth coefficient in the Fourier Series for f(t) is n= a m = f(t)φ m (t)dt Φ m(t)dt We are going to need to find Fourier approximations for arbitrary functions f(t) in terms of different sets of orthogonal functions In computing the coefficients by integration, life is sometimes simplified if we know that the function f satisfies certain properties

2 Review of Even and Odd Functions Def A function f(t) is called an even function if f( t) = f(t) for all t in the domain of f; it is called an odd function if f( t) = f(t) for all t in the domain of f If f and g are both odd functions, or both even functions, then the product f(t)g(t) is even; and if one is even and the other is odd then the product is odd Even functions are symmetric about the y-axis Some examples of even functions are constants, any even-degree polynomial like t or t 4 +3t 8, and cos(ωt) For any even function f(t)dt = f(t), f(t)dt Odd functions are symmetric about the origin Examples are odd-degree polynomials t, t 3 5t, and ωt) If g(t) is an odd function, g(t)dt = The two figures below, showing graphs of an even function f(x) = 35x 4 + x + and an odd function g(x) = x3 3x, illustrate the above properties 5 f(x)= 35x^4+x^+ 5 5 x g(x)=5*(x^3 3x) 5 5 x Figure : Even function f Figure : Odd function g Two functions, which you may not have seen before, should be added to this list They are the hyperbolic sine, sinh(t), and hyperbolic cosine, cosh(t) We will be using these functions when we solve partial differential equations They are defined as follows: sinh(t) = et e t, cosh(t) = et + e t Check that they satisfy the differentiation formulas d d sinh(t) = cosh(t), dt cosh(t) = sinh(t) dt One other property of these hyperbolic functions, that will be needed later, is that cosh(t) is never equal to, and sinh(t) = only if t = Example Show that sinh(t) is an odd function and cosh(t) is even To show that a function f is odd, we need to evaluate it at t and show that this is the same as the value of f at t: sinh( t) = e( t) e ( t) = e t e t = et e t = sinh(t)

3 To show that cosh(t) is even, we show cosh( t) = e( t) + e ( t) = e t + e t = cosh(t) Example Show that if f is an even function and g is odd, then the product f g is an odd function Again we need to show that the product function f g, evaluated at t, is equal to the negative of its value at t f g( t) f( t) g( t) = f(t) g(t) f g(t) Trigonometric Fourier Series We are now ready to study the approximation of functions in terms of the particular orthogonal set S = {, cos( πt ), πt), cos(πt), πt),, cos(), ), } The series for f, in terms of this set, is usually written in the form f(t) a + a n cos( ) + b n ) (3) n= It is called the Trigonometric Fourier Series for f(t) on the interval [, ] Note that each function in the set S has period ; that is Φ n (t + ) = Φ n (t) for all t; therefore, if f(t) is represented by its Trigonometric Fourier Series (3), it will be a periodic function with period Orthogonality of the set S To show that the set S = {Φ n (t)} n= {{, cos( πt ), πt πt ), cos( ) } is an orthogonal set on [, ], we need to show that Φ n(t)φ m (t)dt = whenever Φ n and Φ m are two different functions in S Showing that ) dt = and mπt ) cos( )dt = for any integers m and n is easy since in both cases the integrand is an odd function; that is, it is the product of an even function times an odd function Using the fact that cos( ) is an even function, and ) = for any integer n, cos( ) dt = cos( )dt = () )) = Showing that the product of two sine functions or two cosine functions integrates to zero is done using trig substitutions and is left to the exercises 3

4 In the next lecture we will have a theorem stating which functions f(t) have convergent Fourier Series For these functions, the coefficient of Φ n (t) in the series is equal to R β f(t)φn(t)dt R β Φ n (t)dt For the trigonometric Fourier Series this implies that for n, a n = f(t) cos( )dt )) dt, b n = f(t) )dt ( )) dt You are going to show in the exercises that )) dt = ( )) dt = for any n ; therefore, the formulas for the coefficients a n and b n are a n = f(t) cos( )dt, b n = f(t) )dt When n =, the coefficient of Φ (t) = in the Fourier Series is R R f(t)dt dt ; and since dt =, if we use the formula for a n to compute the constant coefficient, it must be divided by Note that the Fourier Series in equation (3) starts with the term a / It is also helpful to recognize that the constant a / must be the average value of the function f(t) on the interval [, ] This is true since each of the sine and cosine functions has average value zero (Remember from Calculus that the average value of a function f(t) on the b interval a t b is defined as b a a f(t)dt In the next lecture we will summarize properties of the Trigonometric Fourier Series, and state for which functions f(t) these series converge; but first we can do a simple example Example 3 Find a trigonometric Fourier Series for the piecewise continuous function { if t < f(t) = if t First, notice that f is an odd function, and therefore the coefficients a n = f(t) cos( )dt are all zero since they are the integral of the product of an even function times an odd function Note that the coefficients b n are integrals of even functions, so that = b n = f(t) )dt = )dt = ( )( )( cos() + cos()) = f(t) )dt The Fourier Series for f(t) can therefore be written in the form 4 f(t) ) = 4 ( πt ) 3πt + ) + π 3 n=,3, { if n is even if n is odd 4 5πt ) + 5 Choosing a particular value, =, an approximation to f(t) was obtained by taking terms in the sum out to n = A graph of this finite approximation is shown in Figure (3) It shows clearly that the Fourier Series is a periodic function, of period = ) 4

5 Fourier series, using first nonzero terms t 5 Figure 3: Practice Problems: Determine whether each function below is even, odd, or neither (a) + t Ans: even (d) + cosh(t) Ans: even (b) t) + 6t Ans: odd (e) + t 3 Ans: neither (c) e t Ans: neither Use the trig identity cos(a) cos(b) = A B) + cos(a + B)) to show that if m n, then mπt cos( ) cos( )dt = Hint: the integrand is an even function 3 Use the trig identity A) B) = A B) cos(a + B)) to show that if m n, then mπt ) )dt = 4 Show that )) dt = ( )) dt = for any integer n > Hint: use the trig formulas cos (x) = +cos(x) and sin (x) = cos(x) 5 * et f(t) = t for t, and assume that f(t) is periodic of period (a) Draw a graph of this function on 3 t 3 (b) Find a formula for the coefficients of the Fourier Series for f(t) (c) Using all terms out to n = 3, sketch a graph of the Fourier Series approximation to f(t) on the interval [ 3, 3] 6 * Approximating a function f(t) by a Maclaurin series f (n) () n! t n is equivalent to using the set of functions S = {, t, t, t 3, } Is this set of functions orthogonal on [, ]? Either prove that it is, or find two integers m n such that tm t n dt 7 * There is a set S = {P (t), P (t), P (t), } of polynomials, called the egendre polynomials, which forms an orthogonal set on the interval [, ] For each integer n =,,,, P n (t) is a polynomial of degree n ook up egendre polynomials on the web, or in a text book, and find the formulas for P (t), P (t),, P 5 (t) Also find a recursion formula that allows you to use P n (t) and P n (t) to determine P n (t) 5

### Lecture VI. Review of even and odd functions Definition 1 A function f(x) is called an even function if. f( x) = f(x)

ecture VI Abstract Before learning to solve partial differential equations, it is necessary to know how to approximate arbitrary functions by infinite series, using special families of functions This process

### Fourier Series. Chapter Some Properties of Functions Goal Preliminary Remarks

Chapter 3 Fourier Series 3.1 Some Properties of Functions 3.1.1 Goal We review some results about functions which play an important role in the development of the theory of Fourier series. These results

### Engineering Mathematics II

PSUT Engineering Mathematics II Fourier Series and Transforms Dr. Mohammad Sababheh 4/14/2009 11.1 Fourier Series 2 Fourier Series and Transforms Contents 11.1 Fourier Series... 3 Periodic Functions...

### CHAPTER 3. Fourier Series

`A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 4 A COLLECTION OF HANDOUTS ON PARTIAL DIFFERENTIAL

### Maths 361 Fourier Series Notes 2

Today s topics: Even and odd functions Real trigonometric Fourier series Section 1. : Odd and even functions Consider a function f : [, ] R. Maths 361 Fourier Series Notes f is odd if f( x) = f(x) for

### CHAPTER 2 FOURIER SERIES

CHAPTER 2 FOURIER SERIES PERIODIC FUNCTIONS A function is said to have a period T if for all x,, where T is a positive constant. The least value of T>0 is called the period of. EXAMPLES We know that =

### MATH 461: Fourier Series and Boundary Value Problems

MATH 461: Fourier Series and Boundary Value Problems Chapter III: Fourier Series Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2015 fasshauer@iit.edu MATH 461 Chapter

### Advanced Engineering Mathematics Prof. Jitendra Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Advanced Engineering Mathematics Prof. Jitendra Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Lecture No. # 28 Fourier Series (Contd.) Welcome back to the lecture on Fourier

### Fourier Series Chapter 3 of Coleman

Fourier Series Chapter 3 of Coleman Dr. Doreen De eon Math 18, Spring 14 1 Introduction Section 3.1 of Coleman The Fourier series takes its name from Joseph Fourier (1768-183), who made important contributions

### 5 Indefinite integral

5 Indefinite integral The most of the mathematical operations have inverse operations: the inverse operation of addition is subtraction, the inverse operation of multiplication is division, the inverse

### Lecture 3: Fourier Series: pointwise and uniform convergence.

Lecture 3: Fourier Series: pointwise and uniform convergence. 1. Introduction. At the end of the second lecture we saw that we had for each function f L ([, π]) a Fourier series f a + (a k cos kx + b k

### Precalculus Workshop - Functions

Introduction to Functions A function f : D C is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set C. D is called the domain of f. C is called the codomain of f.

### 1. the function must be periodic; 3. it must have only a finite number of maxima and minima within one periodic;

Fourier Series 1 Dirichlet conditions The particular conditions that a function f(x must fulfil in order that it may be expanded as a Fourier series are known as the Dirichlet conditions, and may be summarized

### Introduction to Fourier Series

Introduction to Fourier Series MA 16021 October 15, 2014 Even and odd functions Definition A function f(x) is said to be even if f( x) = f(x). The function f(x) is said to be odd if f( x) = f(x). Graphically,

### Lecture 5 : Continuous Functions Definition 1 We say the function f is continuous at a number a if

Lecture 5 : Continuous Functions Definition We say the function f is continuous at a number a if f(x) = f(a). (i.e. we can make the value of f(x) as close as we like to f(a) by taking x sufficiently close

### An Introduction to Separation of Variables with Fourier Series Math 391w, Spring 2010 Tim McCrossen Professor Haessig

An Introduction to Separation of Variables with Fourier Series Math 391w, Spring 2010 Tim McCrossen Professor Haessig Abstract: This paper aims to give students who have not yet taken a course in partial

Week 5 Vladimir Dobrushkin 5. Fourier Series In this section, we present a remarkable result that gives the matehmatical explanation for how cellular phones work: Fourier series. It was discovered in the

### Fourier Series. 1. Full-range Fourier Series. ) + b n sin L. [ a n cos L )

Fourier Series These summary notes should be used in conjunction with, and should not be a replacement for, your lecture notes. You should be familiar with the following definitions. A function f is periodic

### Fourier Series Expansion

Fourier Series Expansion Deepesh K P There are many types of series expansions for functions. The Maclaurin series, Taylor series, Laurent series are some such expansions. But these expansions become valid

### Chapter 7 Outline Math 236 Spring 2001

Chapter 7 Outline Math 236 Spring 2001 Note 1: Be sure to read the Disclaimer on Chapter Outlines! I cannot be responsible for misfortunes that may happen to you if you do not. Note 2: Section 7.9 will

### Recap on Fourier series

Civil Engineering Mathematics Autumn 11 J. Mestel, M. Ottobre, A. Walton Recap on Fourier series A function f(x is called -periodic if f(x = f(x + for all x. A continuous periodic function can be represented

### Fourier Series. Some Properties of Functions. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Fourier Series Today 1 / 19

Fourier Series Some Properties of Functions Philippe B. Laval KSU Today Philippe B. Laval (KSU) Fourier Series Today 1 / 19 Introduction We review some results about functions which play an important role

### Chapter 5: Trigonometric Functions of Real Numbers

Chapter 5: Trigonometric Functions of Real Numbers 5.1 The Unit Circle The unit circle is the circle of radius 1 centered at the origin. Its equation is x + y = 1 Example: The point P (x, 1 ) is on the

### How to roughly sketch a sinusoidal graph

34 CHAPTER 17. SINUSOIDAL FUNCTIONS Definition 17.1.1 (The Sinusoidal Function). Let A,, C and D be fixed constants, where A and are both positive. Then we can form the new function ( ) π y = A sin (x

### Lecture5. Fourier Series

Lecture5. Fourier Series In 1807 the French mathematician Joseph Fourier (1768-1830) submitted a paper to the Academy of Sciences in Paris. In it he presented a mathematical treatment of problems involving

### FOURIER SERIES, GENERALIZED FUNCTIONS, LAPLACE TRANSFORM. 1. A (generalized) function f(t) of period 2L has a Fourier series of the form

FOURIER SERIES, GENERAIZED FUNCTIONS, APACE TRANSFORM 1 Fourier Series 1.1 General facts 1. A (generalized) function f(t) of period has a Fourier series of the form or f(t) a + a 1 cos πt + a cos πt +

### Fourier Series. A Fourier series is an infinite series of the form. a + b n cos(nωx) +

Fourier Series A Fourier series is an infinite series of the form a b n cos(nωx) c n sin(nωx). Virtually any periodic function that arises in applications can be represented as the sum of a Fourier series.

### Math 115 Spring 2014 Written Homework 10-SOLUTIONS Due Friday, April 25

Math 115 Spring 014 Written Homework 10-SOLUTIONS Due Friday, April 5 1. Use the following graph of y = g(x to answer the questions below (this is NOT the graph of a rational function: (a State the domain

### y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx

Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.

### 14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style

Basic Concepts of Integration 14.1 Introduction When a function f(x) is known we can differentiate it to obtain its derivative df. The reverse dx process is to obtain the function f(x) from knowledge of

### 16 Convergence of Fourier Series

16 Convergence of Fourier Series 16.1 Pointwise convergence of Fourier series Definition: Piecewise smooth functions For f defined on interval [a, b], f is piecewise smooth on [a, b] if there is a partition

### Fourier Series Representations

Fourier Series Representations Introduction Before we discuss the technical aspects of Fourier series representations, it might be well to discuss the broader question of why they are needed We ll begin

### 6.6 The Inverse Trigonometric Functions. Outline

6.6 The Inverse Trigonometric Functions Tom Lewis Fall Semester 2015 Outline The inverse sine function The inverse cosine function The inverse tangent function The other inverse trig functions Miscellaneous

### Fourier Series. 1. Introduction. 2. Square Wave

531 Fourier Series Tools Used in Lab 31 Fourier Series: Square Wave Fourier Series: Triangle Wave Fourier Series: Gibbs Effect Fourier Series: Coefficients How does a Fourier series converge to a function?

### Fourier Series, Integrals, and Transforms

Chap. Sec.. Fourier Series, Integrals, and Transforms Fourier Series Content: Fourier series (5) and their coefficients (6) Calculation of Fourier coefficients by integration (Example ) Reason hy (6) gives

### Solutions series for some non-harmonic motion equations

Fifth Mississippi State Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference 10, 2003, pp 115 122. http://ejde.math.swt.edu or http://ejde.math.unt.edu

### Review of Key Concepts: 1.2 Characteristics of Polynomial Functions

Review of Key Concepts: 1.2 Characteristics of Polynomial Functions Polynomial functions of the same degree have similar characteristics The degree and leading coefficient of the equation of the polynomial

### Continuous Time Signals (Part - I) Fourier series

Continuous Time Signals (Part - I) Fourier series (a) Basics 1. Which of the following signals is/are periodic? (a) s(t) = cos t + cos 3t + cos 5t (b) s(t) = exp(j8 πt) (c) s(t) = exp( 7t) sin 1πt (d)

### Calculus 1: Sample Questions, Final Exam, Solutions

Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.

### Sine and Cosine Series; Odd and Even Functions

Sine and Cosine Series; Odd and Even Functions A sine series on the interval [, ] is a trigonometric series of the form k = 1 b k sin πkx. All of the terms in a series of this type have values vanishing

### M3 PRECALCULUS PACKET 1 FOR UNIT 5 SECTIONS 5.1 TO = to see another form of this identity.

M3 PRECALCULUS PACKET FOR UNIT 5 SECTIONS 5. TO 5.3 5. USING FUNDAMENTAL IDENTITIES 5. Part : Pythagorean Identities. Recall the Pythagorean Identity sin θ cos θ + =. a. Subtract cos θ from both sides

### Taylor Polynomials and Taylor Series Math 126

Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will

### 9.1 Trigonometric Identities

9.1 Trigonometric Identities r y x θ x -y -θ r sin (θ) = y and sin (-θ) = -y r r so, sin (-θ) = - sin (θ) and cos (θ) = x and cos (-θ) = x r r so, cos (-θ) = cos (θ) And, Tan (-θ) = sin (-θ) = - sin (θ)

### Trigonometric Functions

Trigonometric Functions MATH 10, Precalculus J. Robert Buchanan Department of Mathematics Fall 011 Objectives In this lesson we will learn to: identify a unit circle and describe its relationship to real

### Chapt.12: Orthogonal Functions and Fourier series

Chat.12: Orthogonal Functions and Fourier series J.-P. Gabardo gabardo@mcmaster.ca Deartment of Mathematics & Statistics McMaster University Hamilton, ON, Canada Lecture: January 10, 2011. 1/3 12.1:Orthogonal

### An introduction to generalized vector spaces and Fourier analysis. by M. Croft

1 An introduction to generalized vector spaces and Fourier analysis. by M. Croft FOURIER ANALYSIS : Introduction Reading: Brophy p. 58-63 This lab is u lab on Fourier analysis and consists of VI parts.

### Lecture 1 (Review of High School Math: Functions and Models) Introduction: Numbers and their properties

Lecture 1 (Review of High School Math: Functions and Models) Introduction: Numbers and their properties Addition: (1) (Associative law) If a, b, and c are any numbers, then ( ) ( ) (2) (Existence of an

### Tangent and normal lines to conics

4.B. Tangent and normal lines to conics Apollonius work on conics includes a study of tangent and normal lines to these curves. The purpose of this document is to relate his approaches to the modern viewpoints

### Chapter 11 Fourier Analysis

Chapter 11 Fourier Analysis Advanced Engineering Mathematics Wei-Ta Chu National Chung Cheng University wtchu@cs.ccu.edu.tw 1 2 11.1 Fourier Series Fourier Series Fourier series are infinite series that

### Limits at Infinity Limits at Infinity for Polynomials Limits at Infinity for the Exponential Function Function Dominance More on Asymptotes

Lecture 5 Limits at Infinity and Asymptotes Limits at Infinity Horizontal Asymptotes Limits at Infinity for Polynomials Limit of a Reciprocal Power The End Behavior of a Polynomial Evaluating the Limit

### Lecture Notes for Math 251: ODE and PDE. Lecture 33: 10.4 Even and Odd Functions

Lecture Notes for Math 51: ODE and PDE. Lecture : 1.4 Even and Odd Functions Shawn D. Ryan Spring 1 Last Time: We studied what a given Fourier Series converges to if at a. 1 Even and Odd Functions Before

### 106 Chapter 5 Curve Sketching. If f(x) has a local extremum at x = a and. THEOREM 5.1.1 Fermat s Theorem f is differentiable at a, then f (a) = 0.

5 Curve Sketching Whether we are interested in a function as a purely mathematical object or in connection with some application to the real world, it is often useful to know what the graph of the function

### Investigation of Chebyshev Polynomials

Investigation of Chebyshev Polynomials Leon Loo April 25, 2002 1 Introduction Prior to taking part in this Mathematics Research Project, I have been responding to the Problems of the Week in the Math Forum

### 1 if 1 x 0 1 if 0 x 1

Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

### Math 201 Lecture 30: Fourier Cosine and Sine Series

Math ecture 3: Fourier Cosine and Sine Series Mar. 3, Many examples here are taken from the textbook. The first number in ( refers to the problem number in the UA Custom edition, the second number in (

### Fourier Transforms The Fourier Transform Properties of the Fourier Transform Some Special Fourier Transform Pairs 27

24 Contents Fourier Transforms 24.1 The Fourier Transform 2 24.2 Properties of the Fourier Transform 14 24.3 Some Special Fourier Transform Pairs 27 Learning outcomes In this Workbook you will learn about

### Sept 20, 2011 MATH 140: Calculus I Tutorial 2. ln(x 2 1) = 3 x 2 1 = e 3 x = e 3 + 1

Sept, MATH 4: Calculus I Tutorial Solving Quadratics, Dividing Polynomials Problem Solve for x: ln(x ) =. ln(x ) = x = e x = e + Problem Solve for x: e x e x + =. Let y = e x. Then we have a quadratic

### Fourier Series for Periodic Functions. Lecture #8 5CT3,4,6,7. BME 333 Biomedical Signals and Systems - J.Schesser

Fourier Series for Periodic Functions Lecture #8 5C3,4,6,7 Fourier Series for Periodic Functions Up to now we have solved the problem of approximating a function f(t) by f a (t) within an interval. However,

### nπt a n cos y(x) satisfies d 2 y dx 2 + P EI y = 0 If the column is constrained at both ends then we can apply the boundary conditions

Chapter 6: Page 6- Fourier Series 6. INTRODUCTION Fourier Anaysis breaks down functions into their frequency components. In particuar, a function can be written as a series invoving trigonometric functions.

### Infinite series, improper integrals, and Taylor series

Chapter Infinite series, improper integrals, and Taylor series. Introduction This chapter has several important and challenging goals. The first of these is to understand how concepts that were discussed

### Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum

Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum UNIT I: The Hyperbolic Functions basic calculus concepts, including techniques for curve sketching, exponential and logarithmic

### Fourier series. Jan Philip Solovej. English summary of notes for Analysis 1. May 8, 2012

Fourier series Jan Philip Solovej English summary of notes for Analysis 1 May 8, 2012 1 JPS, Fourier series 2 Contents 1 Introduction 2 2 Fourier series 3 2.1 Periodic functions, trigonometric polynomials

### y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx y 1 u 2 du u 1 3u 3 C

Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.

### Fourier Series and Sturm-Liouville Eigenvalue Problems

Fourier Series and Sturm-Liouville Eigenvalue Problems 2009 Outline Functions Fourier Series Representation Half-range Expansion Convergence of Fourier Series Parseval s Theorem and Mean Square Error Complex

### ANALYTICAL MATHEMATICS FOR APPLICATIONS 2016 LECTURE NOTES Series

ANALYTICAL MATHEMATICS FOR APPLICATIONS 206 LECTURE NOTES 8 ISSUED 24 APRIL 206 A series is a formal sum. Series a + a 2 + a 3 + + + where { } is a sequence of real numbers. Here formal means that we don

### 3 Trigonometric Fourier Series

3 Trigonometric Fourier Series Ordinary language is totally unsuited for epressing what physics really asserts, since the words of everyday life are not sufficiently abstract. Only mathematics and mathematical

### The Heat Equation. Lectures INF2320 p. 1/88

The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)

### Introduction to Fourier Series

Introduction to Fourier Series We ve seen one eample so far of series of functions. The Taylor Series of a function is a series of polynomials and can be used to approimate a function at a point. Another

### Learning Objectives for Math 165

Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given

### Review for Calculus Rational Functions, Logarithms & Exponentials

Definition and Domain of Rational Functions A rational function is defined as the quotient of two polynomial functions. F(x) = P(x) / Q(x) The domain of F is the set of all real numbers except those for

### HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

### 6.8 Taylor and Maclaurin s Series

6.8. TAYLOR AND MACLAURIN S SERIES 357 6.8 Taylor and Maclaurin s Series 6.8.1 Introduction The previous section showed us how to find the series representation of some functions by using the series representation

### Some Notes on Taylor Polynomials and Taylor Series

Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited

### Math 211, Multivariable Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions

Math 211, Multivariable Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions For each question, I give a model lution ( you can see the level of detail that I expect from you in the exam) me comments.

### Differentiation and Integration

This material is a supplement to Appendix G of Stewart. You should read the appendix, except the last section on complex exponentials, before this material. Differentiation and Integration Suppose we have

### Taylor and Maclaurin Series

Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions

### SECOND-ORDER LINEAR HOMOGENEOUS DIFFERENTIAL EQUATIONS

L SECOND-ORDER LINEAR HOOGENEOUS DIFFERENTIAL EQUATIONS SECOND-ORDER LINEAR HOOGENEOUS DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS A second-order linear differential equation is one of the form d

### Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) =

Vertical Asymptotes Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: lim f (x) = x a lim f (x) = lim x a lim f (x) = x a

### SECTION 1.5: PIECEWISE-DEFINED FUNCTIONS; LIMITS AND CONTINUITY IN CALCULUS

(Section.5: Piecewise-Defined Functions; Limits and Continuity in Calculus).5. SECTION.5: PIECEWISE-DEFINED FUNCTIONS; LIMITS AND CONTINUITY IN CALCULUS LEARNING OBJECTIVES Know how to evaluate and graph

### Math 201 Lecture 23: Power Series Method for Equations with Polynomial

Math 201 Lecture 23: Power Series Method for Equations with Polynomial Coefficients Mar. 07, 2012 Many examples here are taken from the textbook. The first number in () refers to the problem number in

### Introduction to Complex Fourier Series

Introduction to Complex Fourier Series Nathan Pflueger 1 December 2014 Fourier series come in two flavors. What we have studied so far are called real Fourier series: these decompose a given periodic function

### Power Series. We already know how to express one function as a series. Take a look at following equation: 1 1 r = r n. n=0

Math -0 Calc Power, Taylor, and Maclaurin Series Survival Guide One of the harder concepts that we have to become comfortable with during this semester is that of sequences and series We are working with

### 6.3 Inverse Trigonometric Functions

Chapter 6 Periodic Functions 863 6.3 Inverse Trigonometric Functions In this section, you will: Learning Objectives 6.3.1 Understand and use the inverse sine, cosine, and tangent functions. 6.3. Find the

### 1 Mathematical Induction

Extra Credit Homework Problems Note: these problems are of varying difficulty, so you might want to assign different point values for the different problems. I have suggested the point values each problem

### MTH4100 Calculus I. Lecture notes for Week 8. Thomas Calculus, Sections 4.1 to 4.4. Rainer Klages

MTH4100 Calculus I Lecture notes for Week 8 Thomas Calculus, Sections 4.1 to 4.4 Rainer Klages School of Mathematical Sciences Queen Mary University of London Autumn 2009 Theorem 1 (First Derivative Theorem

### Course MA2C02, Hilary Term 2012 Section 8: Periodic Functions and Fourier Series

Course MAC, Hiary Term Section 8: Periodic Functions and Fourier Series David R. Wikins Copyright c David R. Wikins Contents 8 Periodic Functions and Fourier Series 37 8. Fourier Series of Even and Odd

### The Fibonacci Sequence and Recursion

The Fibonacci Sequence and Recursion (Handout April 6, 0) The Fibonacci sequence,,,3,,8,3,,34,,89,44,... is defined recursively by {, for n {0,}; F n = F n + F n, for n. Note that the first two terms in

### 1. Periodic Fourier series. The Fourier expansion of a 2π-periodic function f is:

CONVERGENCE OF FOURIER SERIES 1. Periodic Fourier series. The Fourier expansion of a 2π-periodic function f is: with coefficients given by: a n = 1 π f(x) a 0 2 + a n cos(nx) + b n sin(nx), n 1 f(x) cos(nx)dx

### Examination paper for Solutions to Matematikk 4M and 4N

Department of Mathematical Sciences Examination paper for Solutions to Matematikk 4M and 4N Academic contact during examination: Trygve K. Karper Phone: 99 63 9 5 Examination date:. mai 04 Examination

### ME231 Measurements Laboratory Spring Fourier Series. Edmundo Corona c

ME23 Measurements Laboratory Spring 23 Fourier Series Edmundo Corona c If you listen to music you may have noticed that you can tell what instruments are used in a given song or symphony. In some cases,

### Discrete Mathematics: Solutions to Homework (12%) For each of the following sets, determine whether {2} is an element of that set.

Discrete Mathematics: Solutions to Homework 2 1. (12%) For each of the following sets, determine whether {2} is an element of that set. (a) {x R x is an integer greater than 1} (b) {x R x is the square

### Section 10.7 Parametric Equations

299 Section 10.7 Parametric Equations Objective 1: Defining and Graphing Parametric Equations. Recall when we defined the x- (rcos(θ), rsin(θ)) and y-coordinates on a circle of radius r as a function of

### CALCULUS 2. 0 Repetition. tutorials 2015/ Find limits of the following sequences or prove that they are divergent.

CALCULUS tutorials 5/6 Repetition. Find limits of the following sequences or prove that they are divergent. a n = n( ) n, a n = n 3 7 n 5 n +, a n = ( n n 4n + 7 ), a n = n3 5n + 3 4n 7 3n, 3 ( ) 3n 6n

### Chapter 10 Fourier Series

Chapter Fourier Series. Periodic Functions and Orthogonality Relations The differential equation y +β 2 y = F cosωt models a mass-spring system with natural frequency β with a pure cosine forcing function

### APPLICATIONS OF DIFFERENTIATION

4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION So far, we have been concerned with some particular aspects of curve sketching: Domain, range, and symmetry (Chapter 1) Limits, continuity,

### Inverse Circular Function and Trigonometric Equation

Inverse Circular Function and Trigonometric Equation 1 2 Caution The 1 in f 1 is not an exponent. 3 Inverse Sine Function 4 Inverse Cosine Function 5 Inverse Tangent Function 6 Domain and Range of Inverse

### MATH 222 Second Semester Calculus. Spring 2013

MATH Second Semester Calculus Spring 3 Typeset:March 4, 3 Math nd Semester Calculus Lecture notes version. (Spring 3) is is a self contained set of lecture notes for Math. e notes were wri en by Sigurd

### Fourier Analysis. Be able to follow derivations of Fourier Series coefficients, relations between Fourier Series and Fourier Integrals etc.

Self Learn Module Fourier Analysis Contents Fourier Series for functions of period 2π Fourier Series for functions of period L Fourier Integrals Complex Fourier Integrals Fourier analysis of standing wave

### MATH 132: CALCULUS II SYLLABUS

MATH 32: CALCULUS II SYLLABUS Prerequisites: Successful completion of Math 3 (or its equivalent elsewhere). Math 27 is normally not a sufficient prerequisite for Math 32. Required Text: Calculus: Early

### 2 Complex Functions and the Cauchy-Riemann Equations

2 Complex Functions and the Cauchy-Riemann Equations 2.1 Complex functions In one-variable calculus, we study functions f(x) of a real variable x. Likewise, in complex analysis, we study functions f(z)