Even and Odd Functions

Size: px
Start display at page:

Download "Even and Odd Functions"

Transcription

1 Eve d Odd Fuctios Beore lookig t urther emples o Fourier series it is useul to distiguish two clsses o uctios or which the Euler- Fourier ormuls or the coeiciets c be simpliied. The two clsses re eve d odd uctios which re chrcterized geometriclly by the property o symmetry with respect to the y-is d the origi respectively. b d si d Deiitio o Eve d Odd Fuctios Alyticlly is eve uctio i its domi cotis the poit wheever it cotis d i - or ech i the domi o. See igure below. The uctio is odd uctio i its domi cotis the poit wheever it cotis d i - - or ech i the domi o. See igure b below. Note tht or odd uctio. Emples o eve uctios re. Emples o odd uctios re 3 si.

2 Arithmetic Properties The ollowig rithmetic properties hold: The sum dierece o two eve uctios is eve. The product quotiet o two eve uctios is eve. The sum dierece o two odd uctios is odd. The product quotiet o two odd uctios is eve. These properties c be veriied directly rom the deiitios see tet or detils. Itegrl Properties I is eve uctio the d d I is odd uctio the d These properties c be veriied directly rom the deiitios see tet or detils.

3 Cosie Series Suppose tht d ' re piecewise cotiuous o [- d tht is eve periodic uctio with period. The / is eve d si/ is odd. Thus d K b K Hece the Fourier series o is Thus the Fourier series o eve uctio ists oly o the ie terms d tt term d is clled Fourier ie series. Sie Series Suppose tht d ' re piecewise cotiuous o [- d tht is odd periodic uctio with period. The / is odd d si/ is eve. Thus K b si d K It ollows tht the Fourier series o is b si Thus the Fourier series o odd uctio ists oly o the sie terms d is clled Fourier sie series. 3

4 4 Epd - s hl-rge sie series over the itervl. weget si d b g si si d d b b si 3 [ ] 4 3 [ ] 3 si 4 Obti the ie series over pi d d d d d d

5 5 Emple : Sw-tooth Wve o 3 Cosider the uctio below. This uctio represets sw-tooth wve d is periodic with period T. See grph o below. Fid the Fourier series represettio or this uctio. ± Emple : Coeiciets o 3 Sice is odd periodic uctio with period we hve I ll h h F i i i K K si si d b It ollows tht the Fourier series o is si

6 Emple : Grph o Prtil Sum 3 o 3 The grphs o the prtil sum s 9 d re give below. Observe tht t is discotiuous t ± d t tthese poits the series coverges to the verge o the let d right limits s give by Theorem.3. which is zero. The Gibbs pheomeo gi occurs er the discotiuities. Eve Etesios It is ote useul to epd i Fourier series o period uctio origilly deied oly o [ ] s ollows. Deie uctio g o period so tht g g g The uctio g is the eve periodic etesio o. Its Fourier series which is ie series represets o [ ]. For emple the eve periodic etesio o o [ ] is the trigulr wve g give below. g 6

7 Odd Etesios As beore let be uctio deied oly o. Di Deie uctio h o period d so tht t h h h The uctio h is the odd periodic etesio o. Its Fourier series which is sie series represets o. For emple the odd periodic etesio o o [ is the swtooth wve h give below. h ± Geerl Etesios As beore let be uctio deied oly o [ ]. Di Deie uctio k o period d so tht t k k k m where m is uctio deied i y wy istet with Theorem.3.. For emple we my deie m. The Fourier series or k ivolves both sie d ie terms d represets o [ ] regrdless o how m is deied. Thus there re iiitely my such series ll o which coverge to o [ ]. 7

8 Emple Cosider the uctio below. As idicted previously we c represet either by ie series or sie series o [ ]. Here. The ie series or coverges to the eve periodic etesio o o period 4 d this grph is give below let. The sie series or coverges to the odd periodic etesio o o period 4 d this grph is give below right. 8

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

TAYLOR AND MACLAURIN SERIES

TAYLOR AND MACLAURIN SERIES Calculus TAYLOR AND MACLAURIN SERIES Give a uctio ( ad a poit a, we wish to approimate ( i the eighborhood o a by a polyomial o degree. c + c ( a + c ( a + L c ( a P c ( a We have + coeiciets to choose.

More information

f(x + T ) = f(x), for all x. The period of the function f(t) is the interval between two successive repetitions.

f(x + T ) = f(x), for all x. The period of the function f(t) is the interval between two successive repetitions. Fourier Series. Itroductio Whe the Frech mathematicia Joseph Fourier (768-83) was tryig to study the flow of heat i a metal plate, he had the idea of expressig the heat source as a ifiite series of sie

More information

A function f whose domain is the set of positive integers is called a sequence. The values

A function f whose domain is the set of positive integers is called a sequence. The values EQUENCE: A fuctio f whose domi is the set of positive itegers is clled sequece The vlues f ( ), f (), f (),, f (), re clled the terms of the sequece; f() is the first term, f() is the secod term, f() is

More information

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series 8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series

More information

Fourier Analysis. f () t = + cos[5 t] + cos[10 t] + sin[5 t] + sin[10 t] x10 Pa

Fourier Analysis. f () t = + cos[5 t] + cos[10 t] + sin[5 t] + sin[10 t] x10 Pa Fourier Aalysis I our Mathematics classes, we have bee taught that complicated uctios ca ote be represeted as a log series o terms whose sum closely approximates the actual uctio. aylor series is oe very

More information

Arithmetic Sequences

Arithmetic Sequences Arithmetic equeces A simple wy to geerte sequece is to strt with umber, d dd to it fixed costt d, over d over gi. This type of sequece is clled rithmetic sequece. Defiitio: A rithmetic sequece is sequece

More information

CHAPTER 7 EXPONENTS and RADICALS

CHAPTER 7 EXPONENTS and RADICALS Mth 40 Bittiger 8 th Chpter 7 Pge 1 of 0 CHAPTER 7 EXPONENTS d RADICALS 7.1 RADICAL EXPRESSIONS d FUNCTIONS b mes b Exmple: Simplify. (1) 8 sice () 8 () 16 () 4 56 (4) 5 4 16 (5) 4 81 (6) 0.064 (7) 6 (8)

More information

Fourier Series (Lecture 13)

Fourier Series (Lecture 13) Fourier Series (Lecture 3) ody s Objectives: Studets will be ble to: ) Determie the Fourier Coefficiets for periodic sigl b) Fid the stedy-stte respose for system forced with geerl periodic forcig Rrely

More information

Gray level image enhancement using the Bernstein polynomials

Gray level image enhancement using the Bernstein polynomials Buletiul Ştiiţiic l Uiersităţii "Politehic" di Timişor Seri ELECTRONICĂ şi TELECOMUNICAŢII TRANSACTIONS o ELECTRONICS d COMMUNICATIONS Tom 47(6), Fscicol -, 00 Gry leel imge ehcemet usig the Berstei polyomils

More information

Gaussian Elimination Autar Kaw

Gaussian Elimination Autar Kaw Gussi Elimitio Autr Kw After redig this chpter, you should be ble to:. solve set of simulteous lier equtios usig Nïve Guss elimitio,. ler the pitflls of the Nïve Guss elimitio method,. uderstd the effect

More information

A black- line master of Example 3 You Try is on provided on page 10 for duplication or use with a projection system.

A black- line master of Example 3 You Try is on provided on page 10 for duplication or use with a projection system. Grde Level/Course: Algebr Lesso/Uit Pl Nme: Geometric Sequeces Rtiole/Lesso Abstrct: Wht mkes sequece geometric? This chrcteristic is ddressed i the defiitio of geometric sequece d will help derive the

More information

The Fundamental Theorems of Calculus

The Fundamental Theorems of Calculus The Fudmetl Theorems of Clculus The Fudmetl Theorem of Clculus, Prt II Recll the Tke-home Messge we metioed erlier Exmple poits out tht eve though the defiite itegrl solves the re problem, we must still

More information

Measurable Functions

Measurable Functions Measurable Fuctios Dug Le 1 1 Defiitio It is ecessary to determie the class of fuctios that will be cosidered for the Lebesgue itegratio. We wat to guaratee that the sets which arise whe workig with these

More information

More About Expected Value and Variance

More About Expected Value and Variance More Aout Expected Vlue d Vrice Pge of 5 E[ X ] Expected vlue,, hs umer of iterestig properties These re t likely to e used i this course eyod this lesso, ut my come ito ply i lter sttistics course Properties

More information

Chapter 18 Superposition and Standing Waves

Chapter 18 Superposition and Standing Waves hpter 8 Superpositio d Stdig Wves 8. Superpositio d Iterereces y '(, y(, + y (, Overlppig wves lgericlly dd to produce resultt wve (or et wve). Overlppig wves do ot i y wy lter the trvel o ech other. Superpositio

More information

SOME IMPORTANT MATHEMATICAL FORMULAE

SOME IMPORTANT MATHEMATICAL FORMULAE SOME IMPORTANT MATHEMATICAL FORMULAE Circle : Are = π r ; Circuferece = π r Squre : Are = ; Perieter = 4 Rectgle: Are = y ; Perieter = (+y) Trigle : Are = (bse)(height) ; Perieter = +b+c Are of equilterl

More information

Astronomische Waarneemtechnieken (Astronomical Observing Techniques)

Astronomische Waarneemtechnieken (Astronomical Observing Techniques) Astroomische Wreemtechiee (Astroomicl Observig Techiques) 5 th Lecture: 1 October 01 1. Fourier Series. Fourier Trsorm 3. FT Exmples i 1D D 4. Telescope PSF 5. Importt Theorems Sources: Le boo, Brcewell

More information

STUDENT S COMPANIONS IN BASIC MATH: THE SECOND. Basic Identities in Algebra. Let us start with a basic identity in algebra:

STUDENT S COMPANIONS IN BASIC MATH: THE SECOND. Basic Identities in Algebra. Let us start with a basic identity in algebra: STUDENT S COMPANIONS IN BASIC MATH: THE SECOND Bsic Idetities i Algebr Let us strt with bsic idetity i lgebr: 2 b 2 ( b( + b. (1 Ideed, multiplyig out the right hd side, we get 2 +b b b 2. Removig the

More information

GENERATING A FRACTAL SQUARE

GENERATING A FRACTAL SQUARE GENERATING A FRACTAL SQUARE I 194 the Swedish mathematicia Helge vo Koch(187-194 itroduced oe o the earliest ow ractals, amely, the Koch Sowlae. It is a closed cotiuous curve with discotiuities i its derivative

More information

Sequences II. Chapter 3. 3.1 Convergent Sequences

Sequences II. Chapter 3. 3.1 Convergent Sequences Chapter 3 Sequeces II 3. Coverget Sequeces Plot a graph of the sequece a ) = 2, 3 2, 4 3, 5 + 4,...,,... To what limit do you thik this sequece teds? What ca you say about the sequece a )? For ǫ = 0.,

More information

8.2 Simplifying Radicals

8.2 Simplifying Radicals . Simplifig Rdicls I the lst sectio we sw tht sice. However, otice tht (-). So hs two differet squre roots. Becuse of this we eed to defie wht we cll the pricipl squre root so tht we c distiguish which

More information

if A S, then X \ A S, and if (A n ) n is a sequence of sets in S, then n A n S,

if A S, then X \ A S, and if (A n ) n is a sequence of sets in S, then n A n S, Lecture 5: Borel Sets Topologically, the Borel sets i a topological space are the σ-algebra geerated by the ope sets. Oe ca build up the Borel sets from the ope sets by iteratig the operatios of complemetatio

More information

Section 11.3: The Integral Test

Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

Application: Volume. 6.1 Overture. Cylinders

Application: Volume. 6.1 Overture. Cylinders Applictio: Volume 61 Overture I this chpter we preset other pplictio of the defiite itegrl, this time to fid volumes of certi solids As importt s this prticulr pplictio is, more importt is to recogize

More information

Math 115 HW #4 Solutions

Math 115 HW #4 Solutions Math 5 HW #4 Solutios From 2.5 8. Does the series coverge or diverge? ( ) 3 + 2 = Aswer: This is a alteratig series, so we eed to check that the terms satisfy the hypotheses of the Alteratig Series Test.

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

MATHEMATICS SYLLABUS SECONDARY 7th YEAR

MATHEMATICS SYLLABUS SECONDARY 7th YEAR Europe Schools Office of the Secretry-Geerl Pedgogicl developmet Uit Ref.: 2011-01-D-41-e-2 Orig.: DE MATHEMATICS SYLLABUS SECONDARY 7th YEAR Stdrd level 5 period/week course Approved y the Joit Techig

More information

1.2 Accumulation Functions: The Definite Integral as a Function

1.2 Accumulation Functions: The Definite Integral as a Function mth 3 more o the fudmetl theorem of clculus 23 2 Accumultio Fuctios: The Defiite Itegrl s Fuctio Whe we compute defiite itegrl b f (x) we get umber which we my iterpret s the et re betwee f d the x-xis

More information

Repeated multiplication is represented using exponential notation, for example:

Repeated multiplication is represented using exponential notation, for example: Appedix A: The Lws of Expoets Expoets re short-hd ottio used to represet my fctors multiplied together All of the rules for mipultig expoets my be deduced from the lws of multiplictio d divisio tht you

More information

Math Bowl 2009 Written Test Solutions. 2 8i

Math Bowl 2009 Written Test Solutions. 2 8i Mth owl 009 Writte Test Solutios i? i i i i i ( i)( i ( i )( i ) ) 8i i i (i ) 9i 8 9i 9 i How my pirs of turl umers ( m, ) stisfy the equtio? m We hve to hve m d d, the m ; d, the 0 m m Tryig these umers,

More information

1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION 1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

More information

4 n. n 1. You shold think of the Ratio Test as a generalization of the Geometric Series Test. For example, if a n ar n is a geometric sequence then

4 n. n 1. You shold think of the Ratio Test as a generalization of the Geometric Series Test. For example, if a n ar n is a geometric sequence then SECTION 2.6 THE RATIO TEST 79 2.6. THE RATIO TEST We ow kow how to hadle series which we ca itegrate (the Itegral Test), ad series which are similar to geometric or p-series (the Compariso Test), but of

More information

4.3. The Integral and Comparison Tests

4.3. The Integral and Comparison Tests 4.3. THE INTEGRAL AND COMPARISON TESTS 9 4.3. The Itegral ad Compariso Tests 4.3.. The Itegral Test. Suppose f is a cotiuous, positive, decreasig fuctio o [, ), ad let a = f(). The the covergece or divergece

More information

Fourier Series and the Wave Equation Part 2

Fourier Series and the Wave Equation Part 2 Fourier Series ad the Wave Equatio Part There are two big ideas i our work this week. The first is the use of liearity to break complicated problems ito simple pieces. The secod is the use of the symmetries

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

s = 1 2 at2 + v 0 t + s 0

s = 1 2 at2 + v 0 t + s 0 Mth A UCB, Sprig A. Ogus Solutios for Problem Set 4.9 # 5 The grph of the velocity fuctio of prticle is show i the figure. Sketch the grph of the positio fuctio. Assume s) =. A sketch is give below. Note

More information

Second Order Linear Partial Differential Equations. Part III

Second Order Linear Partial Differential Equations. Part III Secod Order iear Partial Differetial Equatios Part III Oe-dimesioal Heat oductio Equatio revisited; temperature distributio of a bar with isulated eds; ohomogeeous boudary coditios; temperature distributio

More information

Chapter Eleven. Taylor Series. (x a) k. c k. k= 0

Chapter Eleven. Taylor Series. (x a) k. c k. k= 0 Chapter Eleve Taylor Series 111 Power Series Now that we are kowledgeable about series, we ca retur to the problem of ivestigatig the approximatio of fuctios by Taylor polyomials of higher ad higher degree

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

Ae2 Mathematics : Fourier Series

Ae2 Mathematics : Fourier Series Ae Mthemtics : Fourier Series J. D. Gibbon (Professor J. D Gibbon, Dept of Mthemtics j.d.gibbon@ic.c.uk http://www.imperil.c.uk/ jdg These notes re not identicl word-for-word with my lectures which will

More information

Chapter 16. Fourier Series Analysis

Chapter 16. Fourier Series Analysis Chapter 6 Fourier Series alysis 6 Itroductio May electrical waveforms are period but ot siusoidal For aalysis purposes, such waveform ca be represeted i series form based o the origial work of Jea Baptise

More information

Showing Recursive Sequences Converge

Showing Recursive Sequences Converge Showig Recursive Sequeces Coverge Itroductio My studets hve sked me bout how to prove tht recursively defied sequece coverges. Hopefully, fter redig these otes, you will be ble to tckle y such problem.

More information

Math 105: Review for Final Exam, Part II - SOLUTIONS

Math 105: Review for Final Exam, Part II - SOLUTIONS Math 5: Review for Fial Exam, Part II - SOLUTIONS. Cosider the fuctio fx) =x 3 l x o the iterval [/e, e ]. a) Fid the x- ad y-coordiates of ay ad all local extrema ad classify each as a local maximum or

More information

Time Domain Techniques

Time Domain Techniques ME365 FALL 008 Overview O ID Techiques 10/06/008 Four techiques are used to idetiy the system parameters ω ad ζ or the d order system studied i this experimet. These techiques all ito two categories: (1)

More information

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL - INDICES, LOGARITHMS AND FUNCTION This is the oe of series of bsic tutorils i mthemtics imed t begiers or yoe wtig to refresh themselves o fudmetls.

More information

TAYLOR SERIES, POWER SERIES

TAYLOR SERIES, POWER SERIES TAYLOR SERIES, POWER SERIES The followig represets a (icomplete) collectio of thigs that we covered o the subject of Taylor series ad power series. Warig. Be prepared to prove ay of these thigs durig the

More information

Introductory Explorations of the Fourier Series by

Introductory Explorations of the Fourier Series by page Itroductory Exploratios of the Fourier Series by Theresa Julia Zieliski Departmet of Chemistry, Medical Techology, ad Physics Momouth Uiversity West Log Brach, NJ 7764-898 tzielis@momouth.edu Copyright

More information

4.0 5-Minute Review: Rational Functions

4.0 5-Minute Review: Rational Functions mth 130 dy 4: working with limits 1 40 5-Minute Review: Rtionl Functions DEFINITION A rtionl function 1 is function of the form y = r(x) = p(x) q(x), 1 Here the term rtionl mens rtio s in the rtio of two

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

Uniform convergence and its consequences

Uniform convergence and its consequences Uniform convergence nd its consequences The following issue is centrl in mthemtics: On some domin D, we hve sequence of functions {f n }. This mens tht we relly hve n uncountble set of ordinry sequences,

More information

Continuous Random Variables: Joint PDFs, Conditioning, Expectation and Independence

Continuous Random Variables: Joint PDFs, Conditioning, Expectation and Independence Cotiuous Radom Variables: Joit DFs, Coditioig, xpectatio ad Idepedece Berli Che Departmet o Computer ciece & Iormatio gieerig Natioal Taiwa Normal Uiversit Reerece: - D.. Bertsekas, J. N. Tsitsiklis, Itroductio

More information

Chapter 25. Waveforms

Chapter 25. Waveforms Chapter 5 Nosiusoidal Waveforms Waveforms Used i electroics except for siusoidal Ay periodic waveform may be expressed as Sum of a series of siusoidal waveforms at differet frequecies ad amplitudes 1 Waveforms

More information

1. a n = 2. a n = 3. a n = 4. a n = 5. a n = 6. a n =

1. a n = 2. a n = 3. a n = 4. a n = 5. a n = 6. a n = Versio PREVIEW Homework Berg (5860 This prit-out should have 9 questios. Multiple-choice questios may cotiue o the ext colum or page fid all choices before aswerig. CalCb0b 00 0.0 poits Rewrite the fiite

More information

Secondary Math 2 Honors. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers

Secondary Math 2 Honors. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Secodr Mth Hoors Uit Polomils, Epoets, Rdicls & Comple Numbers. Addig, Subtrctig, d Multiplig Polomils Notes Moomil: A epressio tht is umber, vrible, or umbers d vribles multiplied together. Moomils ol

More information

Section 8.3 : De Moivre s Theorem and Applications

Section 8.3 : De Moivre s Theorem and Applications The Sectio 8 : De Moivre s Theorem ad Applicatios Let z 1 ad z be complex umbers, where z 1 = r 1, z = r, arg(z 1 ) = θ 1, arg(z ) = θ z 1 = r 1 (cos θ 1 + i si θ 1 ) z = r (cos θ + i si θ ) ad z 1 z =

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

CHAPTER 2 FOURIER SERIES

CHAPTER 2 FOURIER SERIES CHAPTER 2 FOURIER SERIES PERIODIC FUNCTIONS A function is said to have a period T if for all x,, where T is a positive constant. The least value of T>0 is called the period of. EXAMPLES We know that =

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

Continued Fractions continued. 3. Best rational approximations

Continued Fractions continued. 3. Best rational approximations Cotiued Fractios cotiued 3. Best ratioal approximatios We hear so much about π beig approximated by 22/7 because o other ratioal umber with deomiator < 7 is closer to π. Evetually 22/7 is defeated by 333/06

More information

Review of Fourier Series and Its Applications in Mechanical Engineering Analysis

Review of Fourier Series and Its Applications in Mechanical Engineering Analysis ME 3 Applied Egieerig Aalysis Chapter 6 Review of Fourier Series ad Its Applicatios i Mechaical Egieerig Aalysis Tai-Ra Hsu, Professor Departmet of Mechaical ad Aerospace Egieerig Sa Jose State Uiversity

More information

4.1 Sigma Notation and Riemann Sums

4.1 Sigma Notation and Riemann Sums 0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

More information

Section 9.2 Series and Convergence

Section 9.2 Series and Convergence Sectio 9. Series ad Covergece Goals of Chapter 9 Approximate Pi Prove ifiite series are aother importat applicatio of limits, derivatives, approximatio, slope, ad cocavity of fuctios. Fid challegig atiderivatives

More information

Sect Simplifying Radical Expressions. We can use our properties of exponents to establish two properties of radicals:

Sect Simplifying Radical Expressions. We can use our properties of exponents to establish two properties of radicals: 70 Sect 11. - Simplifyig Rdicl Epressios Cocept #1 Multiplictio d Divisio Properties of Rdicls We c use our properties of epoets to estlish two properties of rdicls: () 1/ 1/ 1/ & ( ) 1/ 1/ 1/ Multiplictio

More information

Heat (or Diffusion) equation in 1D*

Heat (or Diffusion) equation in 1D* Heat (or Diffusio) equatio i D* Derivatio of the D heat equatio Separatio of variables (refresher) Worked eamples *Kreysig, 8 th Ed, Sectios.4b Physical assumptios We cosider temperature i a log thi wire

More information

Public Stackelberg leadership in a mixed oligopoly with foreign firms

Public Stackelberg leadership in a mixed oligopoly with foreign firms ublic Stcelberg ledership i ixed oligopoly with oreig irs Keeth Fjell Foudtio or Reserch i Ecooics d Busiess Adiistrtio d Norwegi School o Ecooics d Busiess Adiistrtio Helleveie, 55 Berge, Norwy hoe: 7-5595-9687

More information

8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology. Lecture 6. Time Evolution and the Schrödinger Equation

8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology. Lecture 6. Time Evolution and the Schrödinger Equation 8.04: Quatum Mechaics Proessor Alla Adams Massachusetts Istitute o Techology 2013 February 26 Lecture 6 Time Evolutio ad the Schrödiger Equatio Assiged Readig: E&R 3 all, 5 1,3,4,6 Li. 2 5 8, 3 1 3 Ga.

More information

Summation Notation The sum of the first n terms of a sequence is represented by the summation notation i the index of summation

Summation Notation The sum of the first n terms of a sequence is represented by the summation notation i the index of summation Lesso 0.: Sequeces d Summtio Nottio Def. of Sequece A ifiite sequece is fuctio whose domi is the set of positive rel itegers (turl umers). The fuctio vlues or terms of the sequece re represeted y, 2, 3,...,....

More information

M06/5/MATME/SP2/ENG/TZ2/XX MATHEMATICS STANDARD LEVEL PAPER 2. Thursday 4 May 2006 (morning) 1 hour 30 minutes INSTRUCTIONS TO CANDIDATES

M06/5/MATME/SP2/ENG/TZ2/XX MATHEMATICS STANDARD LEVEL PAPER 2. Thursday 4 May 2006 (morning) 1 hour 30 minutes INSTRUCTIONS TO CANDIDATES IB MATHEMATICS STANDARD LEVEL PAPER 2 DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI 22067304 Thursday 4 May 2006 (morig) 1 hour 30 miutes INSTRUCTIONS TO CANDIDATES Do ot ope

More information

HW 1 Solutions Math 115, Winter 2009, Prof. Yitzhak Katznelson

HW 1 Solutions Math 115, Winter 2009, Prof. Yitzhak Katznelson HW Solutios Math 5, Witer 2009, Prof. Yitzhak Katzelso.: Prove 2 + 2 2 +... + 2 = ( + )(2 + ) for all atural umbers. The proof is by iductio. Call the th propositio P. The basis for iductio P is the statemet

More information

The Field of Complex Numbers

The Field of Complex Numbers The Field of Complex Numbers S. F. Ellermeyer The costructio of the system of complex umbers begis by appedig to the system of real umbers a umber which we call i with the property that i = 1. (Note that

More information

Chapter 2 Analysis of Graphs of Functions

Chapter 2 Analysis of Graphs of Functions Chapter Analysis o Graphs o Functions Chapter Analysis o Graphs o Functions Covered in this Chapter:.1 Graphs o Basic Functions and their Domain and Range. Odd, Even Functions, and their Symmetry.. Translations

More information

Riemann Sums y = f (x)

Riemann Sums y = f (x) Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, o-egative fuctio o the closed iterval [a, b] Fid

More information

Overview of some probability distributions.

Overview of some probability distributions. Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability

More information

when n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on.

when n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on. Geometric eries Before we defie what is meat by a series, we eed to itroduce a related topic, that of sequeces. Formally, a sequece is a fuctio that computes a ordered list. uppose that o day 1, you have

More information

8.3 POLAR FORM AND DEMOIVRE S THEOREM

8.3 POLAR FORM AND DEMOIVRE S THEOREM SECTION 8. POLAR FORM AND DEMOIVRE S THEOREM 48 8. POLAR FORM AND DEMOIVRE S THEOREM Figure 8.6 (a, b) b r a 0 θ Complex Number: a + bi Rectagular Form: (a, b) Polar Form: (r, θ) At this poit you ca add,

More information

Strategy for Testing Series

Strategy for Testing Series Strategy for Testig Series We ow have several ways of testig a series for covergece or divergece; the problem is to decide which test to use o which series. I this respect testig series is similar to itegratig

More information

Taylor Series and Polynomials

Taylor Series and Polynomials Taylor Series ad Polyomials Motivatios The purpose of Taylor series is to approimate a fuctio with a polyomial; ot oly we wat to be able to approimate, but we also wat to kow how good the approimatio is.

More information

Rational Functions. Rational functions are the ratio of two polynomial functions. Qx bx b x bx b. x x x. ( x) ( ) ( ) ( ) and

Rational Functions. Rational functions are the ratio of two polynomial functions. Qx bx b x bx b. x x x. ( x) ( ) ( ) ( ) and Rtionl Functions Rtionl unctions re the rtio o two polynomil unctions. They cn be written in expnded orm s ( ( P x x + x + + x+ Qx bx b x bx b n n 1 n n 1 1 0 m m 1 m + m 1 + + m + 0 Exmples o rtionl unctions

More information

A Note on Complement of Trapezoidal Fuzzy Numbers Using the α-cut Method

A Note on Complement of Trapezoidal Fuzzy Numbers Using the α-cut Method Interntionl Journl of Applictions of Fuzzy Sets nd Artificil Intelligence ISSN - Vol. - A Note on Complement of Trpezoidl Fuzzy Numers Using the α-cut Method D. Stephen Dingr K. Jivgn PG nd Reserch Deprtment

More information

WILLIAM ARDIS Collin County Community College. George B. Thomas, Jr. Massachusetts Institute of Technology. Maurice D. Weir Naval Postgraduate School

WILLIAM ARDIS Collin County Community College. George B. Thomas, Jr. Massachusetts Institute of Technology. Maurice D. Weir Naval Postgraduate School INSTUCTO S SOLUTIONS MANUAL MULTIVAIABLE WILLIAM ADIS Colli Cout Commuit College THOMAS CALCULUS TWELFTH EDITION BASED ON THE OIGINAL WOK BY George B. Thoms, Jr. Msschusetts Istitute of Techolog AS EVISED

More information

A REA AND INTEGRALS. 1 Sigma Notation 2. 2 Area 7. 3 The Definite Integral 16

A REA AND INTEGRALS. 1 Sigma Notation 2. 2 Area 7. 3 The Definite Integral 16 ALTERNATIVE TREATMENT: A REA AND INTEGRALS Sigm Nottio Are 7 The Defiite Itegrl Reprited with permissio from Clculus: Erl Trscedetls, Third Editio Jmes Stewrt 995 Brooks/Cole Pulishig Comp, A divisio of

More information

Chapter 04.05 System of Equations

Chapter 04.05 System of Equations hpter 04.05 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

A. Description: A simple queueing system is shown in Fig. 16-1. Customers arrive randomly at an average rate of

A. Description: A simple queueing system is shown in Fig. 16-1. Customers arrive randomly at an average rate of Queueig Theory INTRODUCTION Queueig theory dels with the study of queues (witig lies). Queues boud i rcticl situtios. The erliest use of queueig theory ws i the desig of telehoe system. Alictios of queueig

More information

8.5 Alternating infinite series

8.5 Alternating infinite series 65 8.5 Alteratig ifiite series I the previous two sectios we cosidered oly series with positive terms. I this sectio we cosider series with both positive ad egative terms which alterate: positive, egative,

More information

MA2108S Tutorial 5 Solution

MA2108S Tutorial 5 Solution MA08S Tutorial 5 Solutio Prepared by: LuJigyi LuoYusheg March 0 Sectio 3. Questio 7. Let x := / l( + ) for N. (a). Use the difiitio of limit to show that lim(x ) = 0. Proof. Give ay ɛ > 0, sice ɛ > 0,

More information

By Gilberto E. Urroz, September 2004

By Gilberto E. Urroz, September 2004 Solutio o o-liear equatios By Gilberto E. Urroz, September 004 I this documet I preset methods or the solutio o sigle o-liear equatios as well as or systems o such equatios. Solutio o a sigle o-liear equatio

More information

x(x 1)(x 2)... (x k + 1) = [x] k n+m 1

x(x 1)(x 2)... (x k + 1) = [x] k n+m 1 1 Coutig mappigs For every real x ad positive iteger k, let [x] k deote the fallig factorial ad x(x 1)(x 2)... (x k + 1) ( ) x = [x] k k k!, ( ) k = 1. 0 I the sequel, X = {x 1,..., x m }, Y = {y 1,...,

More information

Homework 10. Problems: 19.29, 19.63, 20.9, 20.68

Homework 10. Problems: 19.29, 19.63, 20.9, 20.68 Homework 0 Prolems: 9.29, 9.63, 20.9, 20.68 Prolem 9.29 An utomoile tire is inlted with ir originlly t 0 º nd norml tmospheric pressure. During the process, the ir is compressed to 28% o its originl volume

More information

MATHEMATICAL ANALYSIS

MATHEMATICAL ANALYSIS Mri Predoi Trdfir Băl MATHEMATICAL ANALYSIS VOL II INTEGRAL CALCULUS Criov, 5 CONTENTS VOL II INTEGRAL CALCULUS Chpter V EXTENING THE EFINITE INTEGRAL V efiite itegrls with prmeters Problems V 5 V Improper

More information

Hermitian Operators. Eigenvectors of a Hermitian operator. Definition: an operator is said to be Hermitian if it satisfies: A =A

Hermitian Operators. Eigenvectors of a Hermitian operator. Definition: an operator is said to be Hermitian if it satisfies: A =A Heriti Opertors Defiitio: opertor is sid to be Heriti if it stisfies: A A Altertively clled self doit I QM we will see tht ll observble properties st be represeted by Heriti opertors Theore: ll eigevles

More information

3. Greatest Common Divisor - Least Common Multiple

3. Greatest Common Divisor - Least Common Multiple 3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

More information

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. The Weak Law of Large Numbers

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. The Weak Law of Large Numbers Steve R. Dubar Departmet o Mathematics 203 Avery Hall Uiversity o Nebrasa-Licol Licol, NE 68588-0130 http://www.math.ul.edu Voice: 402-472-3731 Fax: 402-472-8466 Topics i Probability Theory ad Stochastic

More information

A proof of Goldbach's hypothesis that all even numbers greater than four are the sum of two primes.

A proof of Goldbach's hypothesis that all even numbers greater than four are the sum of two primes. A roof of Goldbch's hyothesis tht ll eve umbers greter th four re the sum of two rimes By Ket G Sliker Abstrct I this er I itroduce model which llows oe to rove Goldbchs hyothesis The model is roduced

More information

Second Order Linear Partial Differential Equations. Part II

Second Order Linear Partial Differential Equations. Part II Secod Order iear Parial Differeial Equaios Par II Fourier series; Euler-Fourier formulas; Fourier Covergece Theorem; Eve ad odd fucios; Cosie ad Sie Series Eesios; Paricular soluio of he hea coducio equaio

More information

Your grandmother and her financial counselor

Your grandmother and her financial counselor Sectio 10. Arithmetic Sequeces 963 Objectives Sectio 10. Fid the commo differece for a arithmetic sequece. Write s of a arithmetic sequece. Use the formula for the geeral of a arithmetic sequece. Use the

More information

m n Use technology to discover the rules for forms such as a a, various integer values of m and n and a fixed integer value a.

m n Use technology to discover the rules for forms such as a a, various integer values of m and n and a fixed integer value a. TIth.co Alger Expoet Rules ID: 988 Tie required 25 iutes Activity Overview This ctivity llows studets to work idepedetly to discover rules for workig with expoets, such s Multiplictio d Divisio of Like

More information

13 Fast Fourier Transform (FFT)

13 Fast Fourier Transform (FFT) 13 Fast Fourier Trasform FFT) The fast Fourier trasform FFT) is a algorithm for the efficiet implemetatio of the discrete Fourier trasform. We begi our discussio oce more with the cotiuous Fourier trasform.

More information

5. SEQUENCES AND SERIES

5. SEQUENCES AND SERIES 5. SEQUENCES AND SERIES 5.. Limits of Sequeces Let N = {0,,,... } be the set of atural umbers ad let R be the set of real umbers. A ifiite real sequece u 0, u, u, is a fuctio from N to R, where we write

More information