Expectation Discrete RV - weighted average Continuous RV - use integral to take the weighted average

Size: px
Start display at page:

Download "Expectation Discrete RV - weighted average Continuous RV - use integral to take the weighted average"

Transcription

1 PHP 2510 Expectation, variance, covariance, correlation Expectation Discrete RV - weighted average Continuous RV - use integral to take the weighted average Variance Variance is the average of (X µ) 2 Standard deviation Covariance and correlation Covariance is the average of (X µ X )(Y µ Y ) Correlation is a scaled version of covariance Lots of examples PHP 2510 Oct 8,

2 Expected value Synonyms for expected value: average, mean The expectation or expected value of a random variable X is a weighted average of its possible outcomes. For a discrete random variable, each outcome is weighted by its probability of occurrence, using the mass function: E(X) = i x i P (X = x i ) = i x i p(x i ) For a continuous random variable, each outcome is weighted by the relative frequency of its occurrence, using the density function: E(X) = x f(x) dx PHP 2510 Oct 8,

3 Examples: Discrete random variables Example 1. Let X denote the number of boys in a family with three children. Assume the probability of having a boy is.5. Step 1: Compute the mass function k p(k) Step 2: Compute weighted average E(X) = 3 k p(k) k=0 = (0)(.125) + (1)(.375) + (2)(.375) + (3)(.125) = 1.5 PHP 2510 Oct 8,

4 Example 2: Roulette. In roulette, a ball is tossed on a spinning wheel, and it lands on one of 38 numbers (each of 1 to 36, plus 0 and 00). If you bet $1 on a particular number, the payoff for winning is $36. Suppose you bet $1 on the number 12. Define the random variable X to be your winnings on one play of the roulette wheel. Then 36 if the number is 12 X = 1 if the number is not 12 Find E(X), or your expected winnings. PHP 2510 Oct 8,

5 Step 1: Compute mass function k p(k) Step 2: Compute E(X) as weighted average of outcomes E(X) = k p(k) k= 1,36 ( ) 37 = ( 1) + (36) 38 = ( ) 1 38 Question: What the expected return in 100 plays of roulette? PHP 2510 Oct 8,

6 Expected value for common discrete RV s Binomial. If X has the binomial distribution with parameters n and π, then E(X) = nπ. Example: Toss a coin 50 times, and let X denote the number of heads. Then E(X) = nπ = 50.5 = 25 Example: The proportion of individuals with coronary artery disease is.3. In a sample of 45 individuals, what is the expected number of cases of CAD? E(X) = nπ = 45.3 = 13.5 Suppose one person is selected from the population. Define a random variable Y such that Y = 1 if the person has CAD and Y = 0 if not. Then E(Y ) = nπ = 1.3 =.3 PHP 2510 Oct 8,

7 Poisson. If X has the Poisson distribution with rate parameter λ, then E(X) = λ. This is because ) λ λk E(X) = k (e = λ k! k=0 The mean of a Poisson RV is the number of events you expect to observe. PHP 2510 Oct 8,

8 Geometric. If X has the Geometric distribution with success probability π, then E(X) = 1/π. This is because E(X) = k { (1 π) k 1 π } = 1 π k=1 The mean of a geometric RV is the number of trials you expect to require before observing the first success. Hence if the success probability π is low, E(X) will be high; and vice-versa. Example. If you roll two dice, the probability of rolling a 3 is 2/36 or about Let X denote the number of rolls until a 3 comes up. What is E(X)? (Ans: 18) PHP 2510 Oct 8,

9 Expected value for continuous RV Let X be a continuous random variable defined on an interval A. Then the expected value is a weighted average of outcomes, weighted by the relative frequency of each outcome. The weighted average is computed using an integral, E(X) = x f(x) dx A PHP 2510 Oct 8,

10 Example. Suppose X is a uniform random variable on the interval [1, 4]. Find E(X). Step 1: Recall that f(x) = = 1 3, and that the interval A is [1, 4]. So the appropriate integral is 4 1 x f(x) dx = 4 1 x 1 3 dx Step 2: Evaluate the integral 4 1 x 1 3 dx = 1 3 x = 2.5 PHP 2510 Oct 8,

11 Expected values for common continuous RV s Normal. If X has a normal distribution with parameters µ and σ, then E(X) = µ. Exponential. If X has the exponential distribution with parameter θ, then E(X) = θ. In this case, θ is the expected waiting time until an event occurs, and 1/θ is called the event rate. PHP 2510 Oct 8,

12 Some properties of expected values. 1. Linear combinations. If a and b are constants, then E(aX + b) = ae(x) + b 2. Sums of random variables. The expected value of a sum of random variables is the sum of expected values. E(X 1 + X X n ) = E(X 1 ) + E(X 2 ) + + E(X n ) PHP 2510 Oct 8,

13 Example. Suppose X is a Poisson random variable denoting the number of lottery winners per week. Its expected value is E(X) = 2. What is the expected number of winners over 4 weeks? E(4X) = 4 E(X) = 4 2 = 8 Example. Let X denote the daily low temperature for each day in September, and let E(X) denote its average. Suppose E(X) = 65, measured in degrees Fahrenheit. What is the mean temperature in degrees Celsius? To convert X from F to C, define a new random variable Y = 5 9 X Then using the rule about linear combinations, E(Y ) = E(X) PHP 2510 Oct 8,

14 Computing means from a sample of data Loosely speaking, for a sample of observed data x 1, x 2,..., x n, each of the individual x i can be thought of as having associated probability mass p(x i ) = 1/n. So the sample mean is x = = = 1 n n x i p(x i ) i=1 n x i (1/n) Simply put, take the sum of the observations and divide by n. i=1 Sample means are not expected values! They are random variables. n i=1 We will discuss sample means later on... PHP 2510 Oct 8, x i

15 Variance of a random variables Variance measures dispersion of a random variable s distribution. It is just an average. It is the average squared deviation of a random variable from its mean. To make notation simple, let µ = E(X). Then var(x) = E{(X µ) 2 } In other words, it is the average value of (X µ) 2. For a discrete random variable, var(x) = i (x i µ) 2 p(x i ) For a continuous random variable, var(x) = (x µ) 2 f(x) dx PHP 2510 Oct 8,

16 Example 1 (consumers of alcohol). In a certain population, the proportion of those consuming alcohol is.65. Select a person at random, with X = 1 if consumer of alcohol and X = 0 if not. In this example, E(X) = µ = var(x) = E{(X 0.65) 2 } = i (x i 0.65) 2 p(x i ) = (1 0.65) 2 (0.65) + (0 0.65) 2 (0.35) =.228 Example 2. Suppose instead the probability was 0.1. What then is var(x)? Ans = Pattern: For a Binomial random variable X with n = 1 and success probability π, var(x) = π(1 π) PHP 2510 Oct 8,

17 Properties of variance If a and b are constants, then var(ax + b) = a 2 var(x) (Why is b not included?) If X 1, X 2,..., X n are independent random variables, then var(x 1 + X X n ) = var(x 1 ) + var(x 2 ) + + var(x n ) PHP 2510 Oct 8,

18 Computing variances from a sample of data Like with the sample mean, for a sample of observed data x 1, x 2,..., x n, each of the individual x i can be thought of as having associated probability mass p(x i ) = 1/n. To calculate the sample variance, we take an average of (x i x) 2. The sample variance is S 2 = = = 1 n n (x i x) 2 p(x i ) i=1 n (x i x) 2 (1/n) i=1 n (x i x) 2 i=1 1 It is more common to use n 1 instead of 1 n. We will discuss reasons for this later. For now, you should think of variance as an average. PHP 2510 Oct 8,

19 Standard deviation The standard deviation measures the average distance of a random variable X from its mean. By definition, SD(X) = var(x). The logic goes like this: 1. because var(x) measures average squared deviation between X and its mean; and 2. because SD(X) = var(x); then 3. SD(X) is approximately equal to the average absolute deviation between X and its mean PHP 2510 Oct 8,

20 Example. In September in Providence, noon time temperature has mean 65 and variance 100. What is the SD of the temperatures? Select a day at random. What does SD tell us about the temperature on that day, relative to the average temperature? Suppose noon time temps are normally distributed. Should a noon time temperature of 85 be considered unusual? Why or why not? PHP 2510 Oct 8,

21 Mean and variance for some common RV s Random variable Mass or Density Function E(X) var(x) Binomial(n, π) ( n ) x π x (1 π) n x nπ nπ(1 π) Poisson(λ) e λ λ x /x! λ λ Geometric(π) (1 π) x 1 π 1/π 1/π 2 Normal(µ, σ 2 ) µ σ 2 Exponential(θ) (1/θ)e θ/x 1/θ 1/θ 2 PHP 2510 Oct 8,

22 Correlation and Covariance Correlation and covariance are one way to measure association between two random variables that are observed at the same time on the same unit. Example: Height and weight measured on the same person Example: years of education and income Example: two successive measures of weight, taken on the same person but one year apart. PHP 2510 Oct 8,

23 Covariance Covariance measures the degree to which two variables differ from their mean. It is an average: cov(x, Y ) = E {(X µ X )(Y µ Y )} cov(x, Y ) > 0 means that X and Y tend to vary in the same direction relative to their means (both higher or both lower). They have a positive association. Example: height and weight cov(x, Y ) < 0 means that X and Y tend to vary in opposite directions relative to their means (when one is higher, the other is lower). They have a negative association. Example: weight and minutes of exercise per day cov(x, Y ) = 0 generally means that X and Y are not associated. PHP 2510 Oct 8,

24 Example: mean arterial pressure and body mass index during pregnancy SUMMARY STATISTICS Variable Obs Mean Std. Dev map bmi Give an interpretation for SD here. PHP 2510 Oct 8,

25 map bmi PHP 2510 Oct 8,

26 Computing covariance For individual i, let m i denote MAP and let b i denote BMI. In this table, prod represents (m i m) (b i b) Recall m = 76.6 and b = To compute covariance, we take the average (sample mean) of the products (following pages) DATA EXCERPT map24 (m_i) bmi (b_i) prod PHP 2510 Oct 8,

27 SUMMARY STATISTICS Variable Obs Mean prod PHP 2510 Oct 8,

28 Computing covariance from a sample Like mean and variance, covariance is an average. In a sample of pairs (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ), we can assume each pair is observed with probability p(x i, y i ) = 1/n. Then the sample covariance is a weighted average of (x i x) (y i y): n ĉov(x, Y ) = (x i x) (y i y) p(x i, y i ) = 1 n i=1 n (x i x) (y i y) i=1 PHP 2510 Oct 8,

29 Correlation is a standardized covariance corr(x, Y ) = Always between 1 and 1 cov(x, Y ) SD(X) SD(Y ) Measures degree of linear relationship (If relationship not linear, correlation not an appropriate measure of association) Pearson s sample correlation plugs in sample estimates for the quantities in the formula above ĉorr(x, Y ) = (1/n) n i=1 (x i x)(y i y) S x S y PHP 2510 Oct 8,

30 SUMMARY STATISTICS Variable Obs Mean Std. Dev. Min Max prod map bmi CORRELATION COEFFICIENT (obs=326) bmi map Using the numbers on the table above, how would you obtain the correlation coefficient? PHP 2510 Oct 8,

Example. A casino offers the following bets (the fairest bets in the casino!) 1 You get $0 (i.e., you can walk away)

Example. A casino offers the following bets (the fairest bets in the casino!) 1 You get $0 (i.e., you can walk away) : Three bets Math 45 Introduction to Probability Lecture 5 Kenneth Harris aharri@umich.edu Department of Mathematics University of Michigan February, 009. A casino offers the following bets (the fairest

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

More information

University of California, Los Angeles Department of Statistics. Random variables

University of California, Los Angeles Department of Statistics. Random variables University of California, Los Angeles Department of Statistics Statistics Instructor: Nicolas Christou Random variables Discrete random variables. Continuous random variables. Discrete random variables.

More information

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i ) Probability Review 15.075 Cynthia Rudin A probability space, defined by Kolmogorov (1903-1987) consists of: A set of outcomes S, e.g., for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 1 1 2 1 6 for the roll

More information

Covariance and Correlation

Covariance and Correlation Covariance and Correlation ( c Robert J. Serfling Not for reproduction or distribution) We have seen how to summarize a data-based relative frequency distribution by measures of location and spread, such

More information

Random Variables. Chapter 2. Random Variables 1

Random Variables. Chapter 2. Random Variables 1 Random Variables Chapter 2 Random Variables 1 Roulette and Random Variables A Roulette wheel has 38 pockets. 18 of them are red and 18 are black; these are numbered from 1 to 36. The two remaining pockets

More information

Joint Exam 1/P Sample Exam 1

Joint Exam 1/P Sample Exam 1 Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question

More information

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4) Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

More information

Math 425 (Fall 08) Solutions Midterm 2 November 6, 2008

Math 425 (Fall 08) Solutions Midterm 2 November 6, 2008 Math 425 (Fall 8) Solutions Midterm 2 November 6, 28 (5 pts) Compute E[X] and Var[X] for i) X a random variable that takes the values, 2, 3 with probabilities.2,.5,.3; ii) X a random variable with the

More information

Math 431 An Introduction to Probability. Final Exam Solutions

Math 431 An Introduction to Probability. Final Exam Solutions Math 43 An Introduction to Probability Final Eam Solutions. A continuous random variable X has cdf a for 0, F () = for 0 <

More information

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8.

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8. Random variables Remark on Notations 1. When X is a number chosen uniformly from a data set, What I call P(X = k) is called Freq[k, X] in the courseware. 2. When X is a random variable, what I call F ()

More information

ST 371 (IV): Discrete Random Variables

ST 371 (IV): Discrete Random Variables ST 371 (IV): Discrete Random Variables 1 Random Variables A random variable (rv) is a function that is defined on the sample space of the experiment and that assigns a numerical variable to each possible

More information

5. Continuous Random Variables

5. Continuous Random Variables 5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be

More information

MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.

MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values. MA 5 Lecture 4 - Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

More information

Chapter 5. Random variables

Chapter 5. Random variables Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like

More information

CA200 Quantitative Analysis for Business Decisions. File name: CA200_Section_04A_StatisticsIntroduction

CA200 Quantitative Analysis for Business Decisions. File name: CA200_Section_04A_StatisticsIntroduction CA200 Quantitative Analysis for Business Decisions File name: CA200_Section_04A_StatisticsIntroduction Table of Contents 4. Introduction to Statistics... 1 4.1 Overview... 3 4.2 Discrete or continuous

More information

AMS 5 CHANCE VARIABILITY

AMS 5 CHANCE VARIABILITY AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and

More information

Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 5 Solutions

Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 5 Solutions Math 370/408, Spring 2008 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 5 Solutions About this problem set: These are problems from Course 1/P actuarial exams that I have collected over the

More information

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,

More information

Thursday, November 13: 6.1 Discrete Random Variables

Thursday, November 13: 6.1 Discrete Random Variables Thursday, November 13: 6.1 Discrete Random Variables Read 347 350 What is a random variable? Give some examples. What is a probability distribution? What is a discrete random variable? Give some examples.

More information

2. Discrete random variables

2. Discrete random variables 2. Discrete random variables Statistics and probability: 2-1 If the chance outcome of the experiment is a number, it is called a random variable. Discrete random variable: the possible outcomes can be

More information

Math 461 Fall 2006 Test 2 Solutions

Math 461 Fall 2006 Test 2 Solutions Math 461 Fall 2006 Test 2 Solutions Total points: 100. Do all questions. Explain all answers. No notes, books, or electronic devices. 1. [105+5 points] Assume X Exponential(λ). Justify the following two

More information

Section 6.1 Discrete Random variables Probability Distribution

Section 6.1 Discrete Random variables Probability Distribution Section 6.1 Discrete Random variables Probability Distribution Definitions a) Random variable is a variable whose values are determined by chance. b) Discrete Probability distribution consists of the values

More information

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL STATIsTICs 4 IV. RANDOm VECTORs 1. JOINTLY DIsTRIBUTED RANDOm VARIABLEs If are two rom variables defined on the same sample space we define the joint

More information

Lecture Notes 1. Brief Review of Basic Probability

Lecture Notes 1. Brief Review of Basic Probability Probability Review Lecture Notes Brief Review of Basic Probability I assume you know basic probability. Chapters -3 are a review. I will assume you have read and understood Chapters -3. Here is a very

More information

Chapter 5. Discrete Probability Distributions

Chapter 5. Discrete Probability Distributions Chapter 5. Discrete Probability Distributions Chapter Problem: Did Mendel s result from plant hybridization experiments contradicts his theory? 1. Mendel s theory says that when there are two inheritable

More information

Statistics 100A Homework 3 Solutions

Statistics 100A Homework 3 Solutions Chapter Statistics 00A Homework Solutions Ryan Rosario. Two balls are chosen randomly from an urn containing 8 white, black, and orange balls. Suppose that we win $ for each black ball selected and we

More information

AP Statistics 7!3! 6!

AP Statistics 7!3! 6! Lesson 6-4 Introduction to Binomial Distributions Factorials 3!= Definition: n! = n( n 1)( n 2)...(3)(2)(1), n 0 Note: 0! = 1 (by definition) Ex. #1 Evaluate: a) 5! b) 3!(4!) c) 7!3! 6! d) 22! 21! 20!

More information

E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

More information

6 PROBABILITY GENERATING FUNCTIONS

6 PROBABILITY GENERATING FUNCTIONS 6 PROBABILITY GENERATING FUNCTIONS Certain derivations presented in this course have been somewhat heavy on algebra. For example, determining the expectation of the Binomial distribution (page 5.1 turned

More information

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random

More information

Normal distribution. ) 2 /2σ. 2π σ

Normal distribution. ) 2 /2σ. 2π σ Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a

More information

Measurements of central tendency express whether the numbers tend to be high or low. The most common of these are:

Measurements of central tendency express whether the numbers tend to be high or low. The most common of these are: A PRIMER IN PROBABILITY This handout is intended to refresh you on the elements of probability and statistics that are relevant for econometric analysis. In order to help you prioritize the information

More information

WHERE DOES THE 10% CONDITION COME FROM?

WHERE DOES THE 10% CONDITION COME FROM? 1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay

More information

36 Odds, Expected Value, and Conditional Probability

36 Odds, Expected Value, and Conditional Probability 36 Odds, Expected Value, and Conditional Probability What s the difference between probabilities and odds? To answer this question, let s consider a game that involves rolling a die. If one gets the face

More information

Important Probability Distributions OPRE 6301

Important Probability Distributions OPRE 6301 Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in real-life applications that they have been given their own names.

More information

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015. Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x

More information

4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions 4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

More information

An Introduction to Basic Statistics and Probability

An Introduction to Basic Statistics and Probability An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random

More information

Lecture 2: Discrete Distributions, Normal Distributions. Chapter 1

Lecture 2: Discrete Distributions, Normal Distributions. Chapter 1 Lecture 2: Discrete Distributions, Normal Distributions Chapter 1 Reminders Course website: www. stat.purdue.edu/~xuanyaoh/stat350 Office Hour: Mon 3:30-4:30, Wed 4-5 Bring a calculator, and copy Tables

More information

Unit 4 The Bernoulli and Binomial Distributions

Unit 4 The Bernoulli and Binomial Distributions PubHlth 540 4. Bernoulli and Binomial Page 1 of 19 Unit 4 The Bernoulli and Binomial Distributions Topic 1. Review What is a Discrete Probability Distribution... 2. Statistical Expectation.. 3. The Population

More information

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

More information

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 3-5, 3-6 Special discrete random variable distributions we will cover

More information

Lecture 3: Continuous distributions, expected value & mean, variance, the normal distribution

Lecture 3: Continuous distributions, expected value & mean, variance, the normal distribution Lecture 3: Continuous distributions, expected value & mean, variance, the normal distribution 8 October 2007 In this lecture we ll learn the following: 1. how continuous probability distributions differ

More information

Feb 7 Homework Solutions Math 151, Winter 2012. Chapter 4 Problems (pages 172-179)

Feb 7 Homework Solutions Math 151, Winter 2012. Chapter 4 Problems (pages 172-179) Feb 7 Homework Solutions Math 151, Winter 2012 Chapter Problems (pages 172-179) Problem 3 Three dice are rolled. By assuming that each of the 6 3 216 possible outcomes is equally likely, find the probabilities

More information

4.1 4.2 Probability Distribution for Discrete Random Variables

4.1 4.2 Probability Distribution for Discrete Random Variables 4.1 4.2 Probability Distribution for Discrete Random Variables Key concepts: discrete random variable, probability distribution, expected value, variance, and standard deviation of a discrete random variable.

More information

Chapter 16: law of averages

Chapter 16: law of averages Chapter 16: law of averages Context................................................................... 2 Law of averages 3 Coin tossing experiment......................................................

More information

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1]. Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real

More information

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers)

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) B Bar graph a diagram representing the frequency distribution for nominal or discrete data. It consists of a sequence

More information

The Binomial Distribution. Summer 2003

The Binomial Distribution. Summer 2003 The Binomial Distribution Summer 2003 Internet Bubble Several industry experts believe that 30% of internet companies will run out of cash in 6 months and that these companies will find it very hard to

More information

X: 0 1 2 3 4 5 6 7 8 9 Probability: 0.061 0.154 0.228 0.229 0.173 0.094 0.041 0.015 0.004 0.001

X: 0 1 2 3 4 5 6 7 8 9 Probability: 0.061 0.154 0.228 0.229 0.173 0.094 0.041 0.015 0.004 0.001 Tuesday, January 17: 6.1 Discrete Random Variables Read 341 344 What is a random variable? Give some examples. What is a probability distribution? What is a discrete random variable? Give some examples.

More information

Chapter 4. Probability Distributions

Chapter 4. Probability Distributions Chapter 4 Probability Distributions Lesson 4-1/4-2 Random Variable Probability Distributions This chapter will deal the construction of probability distribution. By combining the methods of descriptive

More information

Mathematical Expectation

Mathematical Expectation Mathematical Expectation Properties of Mathematical Expectation I The concept of mathematical expectation arose in connection with games of chance. In its simplest form, mathematical expectation is the

More information

MULTIVARIATE PROBABILITY DISTRIBUTIONS

MULTIVARIATE PROBABILITY DISTRIBUTIONS MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined

More information

Lecture 6: Discrete & Continuous Probability and Random Variables

Lecture 6: Discrete & Continuous Probability and Random Variables Lecture 6: Discrete & Continuous Probability and Random Variables D. Alex Hughes Math Camp September 17, 2015 D. Alex Hughes (Math Camp) Lecture 6: Discrete & Continuous Probability and Random September

More information

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS UNIT I: RANDOM VARIABLES PART- A -TWO MARKS 1. Given the probability density function of a continuous random variable X as follows f(x) = 6x (1-x) 0

More information

Statistics 100A Homework 4 Solutions

Statistics 100A Homework 4 Solutions Problem 1 For a discrete random variable X, Statistics 100A Homework 4 Solutions Ryan Rosario Note that all of the problems below as you to prove the statement. We are proving the properties of epectation

More information

Introduction to Probability

Introduction to Probability Introduction to Probability EE 179, Lecture 15, Handout #24 Probability theory gives a mathematical characterization for experiments with random outcomes. coin toss life of lightbulb binary data sequence

More information

Statistics 100A Homework 7 Solutions

Statistics 100A Homework 7 Solutions Chapter 6 Statistics A Homework 7 Solutions Ryan Rosario. A television store owner figures that 45 percent of the customers entering his store will purchase an ordinary television set, 5 percent will purchase

More information

Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of sample space, event and probability function. 2. Be able to

More information

Stat 20: Intro to Probability and Statistics

Stat 20: Intro to Probability and Statistics Stat 20: Intro to Probability and Statistics Lecture 16: More Box Models Tessa L. Childers-Day UC Berkeley 22 July 2014 By the end of this lecture... You will be able to: Determine what we expect the sum

More information

Probability and statistics; Rehearsal for pattern recognition

Probability and statistics; Rehearsal for pattern recognition Probability and statistics; Rehearsal for pattern recognition Václav Hlaváč Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics Center for Machine Perception

More information

You flip a fair coin four times, what is the probability that you obtain three heads.

You flip a fair coin four times, what is the probability that you obtain three heads. Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.

More information

Probability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2

Probability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2 Probability: The Study of Randomness Randomness and Probability Models IPS Chapters 4 Sections 4.1 4.2 Chapter 4 Overview Key Concepts Random Experiment/Process Sample Space Events Probability Models Probability

More information

Math/Stats 342: Solutions to Homework

Math/Stats 342: Solutions to Homework Math/Stats 342: Solutions to Homework Steven Miller (sjm1@williams.edu) November 17, 2011 Abstract Below are solutions / sketches of solutions to the homework problems from Math/Stats 342: Probability

More information

Problem sets for BUEC 333 Part 1: Probability and Statistics

Problem sets for BUEC 333 Part 1: Probability and Statistics Problem sets for BUEC 333 Part 1: Probability and Statistics I will indicate the relevant exercises for each week at the end of the Wednesday lecture. Numbered exercises are back-of-chapter exercises from

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 18. A Brief Introduction to Continuous Probability

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 18. A Brief Introduction to Continuous Probability CS 7 Discrete Mathematics and Probability Theory Fall 29 Satish Rao, David Tse Note 8 A Brief Introduction to Continuous Probability Up to now we have focused exclusively on discrete probability spaces

More information

The overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS 0 400 800 1200 1600 NUMBER OF TOSSES

The overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS 0 400 800 1200 1600 NUMBER OF TOSSES INTRODUCTION TO CHANCE VARIABILITY WHAT DOES THE LAW OF AVERAGES SAY? 4 coins were tossed 1600 times each, and the chance error number of heads half the number of tosses was plotted against the number

More information

Section 7C: The Law of Large Numbers

Section 7C: The Law of Large Numbers Section 7C: The Law of Large Numbers Example. You flip a coin 00 times. Suppose the coin is fair. How many times would you expect to get heads? tails? One would expect a fair coin to come up heads half

More information

STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE

STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE TROY BUTLER 1. Random variables and distributions We are often presented with descriptions of problems involving some level of uncertainty about

More information

MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables

MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides,

More information

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce

More information

Descriptive Statistics. Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion

Descriptive Statistics. Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion Descriptive Statistics Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion Statistics as a Tool for LIS Research Importance of statistics in research

More information

Without data, all you are is just another person with an opinion.

Without data, all you are is just another person with an opinion. OCR Statistics Module Revision Sheet The S exam is hour 30 minutes long. You are allowed a graphics calculator. Before you go into the exam make sureyou are fully aware of the contents of theformula booklet

More information

Second Midterm Exam (MATH1070 Spring 2012)

Second Midterm Exam (MATH1070 Spring 2012) Second Midterm Exam (MATH1070 Spring 2012) Instructions: This is a one hour exam. You can use a notecard. Calculators are allowed, but other electronics are prohibited. 1. [60pts] Multiple Choice Problems

More information

Statistics and Random Variables. Math 425 Introduction to Probability Lecture 14. Finite valued Random Variables. Expectation defined

Statistics and Random Variables. Math 425 Introduction to Probability Lecture 14. Finite valued Random Variables. Expectation defined Expectation Statistics and Random Variables Math 425 Introduction to Probability Lecture 4 Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan February 9, 2009 When a large

More information

Practice Problems #4

Practice Problems #4 Practice Problems #4 PRACTICE PROBLEMS FOR HOMEWORK 4 (1) Read section 2.5 of the text. (2) Solve the practice problems below. (3) Open Homework Assignment #4, solve the problems, and submit multiple-choice

More information

15.062 Data Mining: Algorithms and Applications Matrix Math Review

15.062 Data Mining: Algorithms and Applications Matrix Math Review .6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

More information

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in

More information

MAS108 Probability I

MAS108 Probability I 1 QUEEN MARY UNIVERSITY OF LONDON 2:30 pm, Thursday 3 May, 2007 Duration: 2 hours MAS108 Probability I Do not start reading the question paper until you are instructed to by the invigilators. The paper

More information

Lab 11. Simulations. The Concept

Lab 11. Simulations. The Concept Lab 11 Simulations In this lab you ll learn how to create simulations to provide approximate answers to probability questions. We ll make use of a particular kind of structure, called a box model, that

More information

Answer: C. The strength of a correlation does not change if units change by a linear transformation such as: Fahrenheit = 32 + (5/9) * Centigrade

Answer: C. The strength of a correlation does not change if units change by a linear transformation such as: Fahrenheit = 32 + (5/9) * Centigrade Statistics Quiz Correlation and Regression -- ANSWERS 1. Temperature and air pollution are known to be correlated. We collect data from two laboratories, in Boston and Montreal. Boston makes their measurements

More information

Section 5.1 Continuous Random Variables: Introduction

Section 5.1 Continuous Random Variables: Introduction Section 5. Continuous Random Variables: Introduction Not all random variables are discrete. For example:. Waiting times for anything (train, arrival of customer, production of mrna molecule from gene,

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 13. Random Variables: Distribution and Expectation

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 13. Random Variables: Distribution and Expectation CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 3 Random Variables: Distribution and Expectation Random Variables Question: The homeworks of 20 students are collected

More information

Statistics 100A Homework 8 Solutions

Statistics 100A Homework 8 Solutions Part : Chapter 7 Statistics A Homework 8 Solutions Ryan Rosario. A player throws a fair die and simultaneously flips a fair coin. If the coin lands heads, then she wins twice, and if tails, the one-half

More information

Betting rules and information theory

Betting rules and information theory Betting rules and information theory Giulio Bottazzi LEM and CAFED Scuola Superiore Sant Anna September, 2013 Outline Simple betting in favorable games The Central Limit Theorem Optimal rules The Game

More information

REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k.

REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k. REPEATED TRIALS Suppose you toss a fair coin one time. Let E be the event that the coin lands heads. We know from basic counting that p(e) = 1 since n(e) = 1 and 2 n(s) = 2. Now suppose we play a game

More information

In the situations that we will encounter, we may generally calculate the probability of an event

In the situations that we will encounter, we may generally calculate the probability of an event What does it mean for something to be random? An event is called random if the process which produces the outcome is sufficiently complicated that we are unable to predict the precise result and are instead

More information

ECE 316 Probability Theory and Random Processes

ECE 316 Probability Theory and Random Processes ECE 316 Probability Theory and Random Processes Chapter 4 Solutions (Part 2) Xinxin Fan Problems 20. A gambling book recommends the following winning strategy for the game of roulette. It recommends that

More information

6.041/6.431 Spring 2008 Quiz 2 Wednesday, April 16, 7:30-9:30 PM. SOLUTIONS

6.041/6.431 Spring 2008 Quiz 2 Wednesday, April 16, 7:30-9:30 PM. SOLUTIONS 6.4/6.43 Spring 28 Quiz 2 Wednesday, April 6, 7:3-9:3 PM. SOLUTIONS Name: Recitation Instructor: TA: 6.4/6.43: Question Part Score Out of 3 all 36 2 a 4 b 5 c 5 d 8 e 5 f 6 3 a 4 b 6 c 6 d 6 e 6 Total

More information

Section 5 Part 2. Probability Distributions for Discrete Random Variables

Section 5 Part 2. Probability Distributions for Discrete Random Variables Section 5 Part 2 Probability Distributions for Discrete Random Variables Review and Overview So far we ve covered the following probability and probability distribution topics Probability rules Probability

More information

Solution to HW - 1. Problem 1. [Points = 3] In September, Chapel Hill s daily high temperature has a mean

Solution to HW - 1. Problem 1. [Points = 3] In September, Chapel Hill s daily high temperature has a mean Problem 1. [Points = 3] In September, Chapel Hill s daily high temperature has a mean of 81 degree F and a standard deviation of 10 degree F. What is the mean, standard deviation and variance in terms

More information

The Math. P (x) = 5! = 1 2 3 4 5 = 120.

The Math. P (x) = 5! = 1 2 3 4 5 = 120. The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct

More information

Correlation key concepts:

Correlation key concepts: CORRELATION Correlation key concepts: Types of correlation Methods of studying correlation a) Scatter diagram b) Karl pearson s coefficient of correlation c) Spearman s Rank correlation coefficient d)

More information

13.0 Central Limit Theorem

13.0 Central Limit Theorem 13.0 Central Limit Theorem Discuss Midterm/Answer Questions Box Models Expected Value and Standard Error Central Limit Theorem 1 13.1 Box Models A Box Model describes a process in terms of making repeated

More information

6.2. Discrete Probability Distributions

6.2. Discrete Probability Distributions 6.2. Discrete Probability Distributions Discrete Uniform distribution (diskreetti tasajakauma) A random variable X follows the dicrete uniform distribution on the interval [a, a+1,..., b], if it may attain

More information

Exploratory Data Analysis

Exploratory Data Analysis Exploratory Data Analysis Johannes Schauer johannes.schauer@tugraz.at Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction

More information

How To Find The Correlation Of Random Bits With The Xor Operator

How To Find The Correlation Of Random Bits With The Xor Operator Exclusive OR (XOR) and hardware random number generators Robert B Davies February 28, 2002 1 Introduction The exclusive or (XOR) operation is commonly used to reduce the bias from the bits generated by

More information