# UNIT 14: HARMONIC MOTION

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Name St.No. - Date(YY/MM/DD) / / Section UNIT 14: HARMONIC MOTION Approximate Time three 100-minute sessions Back and Forth and Back and Forth... Cameo OBJECTIVES 1. To learn directly about some of the characteristics of periodic motion period, frequency, and amplitude. 2. To understand the basic properties of Simple Harmonic Motion (SHM), in which the displacement of a particle varies sinusoidally in time. 3. To show experimentally that a mass oscillating on a spring undergoes, within the limits of experimental uncertainty, Simple Harmonic Motion. 4. To explore theoretically the factors that influence the rate of oscillation of a mass-spring system using Newton's laws. 5. To explore the harmonic oscillations of the simple pendulum and the relationship between period, mass, and length of the pendulum, both experimentally and theoretically. Dept. of Ed.) and NSF. Modified for SFU by N. Alberding, 2005

2 Page 14-2 Workshop Physics Activity Guide OVERVIEW 5 min IX XI X VIII VII XII VI I I III IV V Any motion that repeats itself regularly is known as harmonic or periodic motion. The pendulum in a grandfather clock, molecules in a crystal, the vibrations of a car after it encounters a pothole on the road, and the rotation of the earth around the sun are examples of periodic motion. In this unit we will be especially interested in a type of periodic motion known as Simple Harmonic Motion, which is often called SHM. SHM involves a displacement that changes sinusoidally in time. In this unit, you will explore the mathematical significance of the phrase "displacement that changes sinusoidally in time". You will also study the mathematical behaviour of two classical systems that undergo SHM the mass on a spring and the simple pendulum. SHM is so common in the physical world that your understanding of its mathematical description will help you understand such diverse phenomena as the behaviour of the tiniest fundamental particles, how clocks work, and how pulsars emit radio waves. Pendula and masses on springs are merely two examples of thousands of similar periodic systems that oscillate with simple harmonic motion. In this unit we will study two oscillating systems: a mass and spring system and a simple pendulum. You will need to devise some ways to describe oscillating systems in general and then apply these descriptions to help you observe periodic oscillations. There are several questions you must address in the next three sessions: What is periodic motion and how can it be characterized? What factors does the rate of oscillation of a simple pendulum really depend on? What mathematical behaviour is required of a periodic system to qualify its motion as harmonic? Is the oscillation of a mass on the end of a spring really harmonic? How do Newton's laws allow us to predict that the motion of a mass on an ideal spring will be harmonic? Dept. of Ed.) and NSF. Modified for SFU by N. Alberding, 2005.

3 Workshop Physics: Unit 14-Harmonic Motion Page 14-3 Authors: Priscilla Laws, Ronald Thornton, David Sokoloff SESSION ONE: OSCILLATING SYSTEMS 10 min Some Characteristics of Oscillating Systems A mass on a spring, a simple pendulum, and a "particle" rotating on a wheel with uniform angular velocity can be adjusted so they undergo oscillations that have some similarities. To observe these three systems you need the following apparatus: A pendulum bob A string of variable length A spring (mounted with the tapered end up) A mass pan and masses A rotating disk with a pin on its outer rim A variable speed motor to drive the disk Clamp stands and rods for support These three systems are pictured below. Figure 14-1: The pendulum, spring and mass, and rotating disk as oscillating systems. Activity 14-1: Periodic System Similarities (a) Describe in your own words what characteristic of all three systems seems to be the same. These three systems should be adjusted so they have the same frequency and hence the same period. The speed of the motor, the length of the pendulum and the mass on the spring can all be varied until the frequencies are matched. (b) Describe what additional characteristic seems to be the same about the spring-mass system and the rotating disk. Dept. of Ed.) and NSF. Modified for SFU by N. Alberding.

4 Page 14-4 Workshop Physics Activity Guide The mass on the spring should be pulled back so that its amplitude equals the radius of the disk and its phase should be the same as that of the pin on the disk. 20 min Useful Definitions for Oscillating Systems In describing the similarities between the oscillating systems it would be useful if we all used a common vocabulary. The three terms used most often in describing oscillations are the following: tic toc tic tic tic tic toc toc toc toc Period The time it takes for the oscillating particle to go through one complete cycle of oscillation. This is commonly denoted by the capital letter T. Frequency The number of cycles the oscillating particle makes in one second. This is denoted by the symbol f or the Greek letter small ν (pronounced nu) in most textbooks. The units of frequency are hertz where 1 hertz = 1 cycle/sec. The unit hertz is abbreviated Hz. Amplitude The maximum displacement of the oscillating particle from its equilibrium position. Following the convention in this course, displacement is usually measured in meters. The symbol for amplitude is often the capital letter A. Other letters such as X max or Y max are also used. In the case of the simple pendulum, the amplitude is usually measured in radians and denoted by θ max. Two of these definitions, frequency and period, are related to each other. By observing the systems shown in Figure 14-1 above, you should be able to find a mathematical equation that relates the frequency of a given oscillating system to its period. To do the needed observations you'll need the following items: a spring-mass system w/ several masses a disk rotating with constant angular velocity a simple pendulum a stop watch Warning! If you add too much mass to a spring it will become permanently stretched and hence ruined. Dept. of Ed.) and NSF. Modified for SFU by N. Alberding, 2005.

5 Workshop Physics: Unit 14-Harmonic Motion Page 14-5 Authors: Priscilla Laws, Ronald Thornton, David Sokoloff Activity 14-2: Relating Period and Frequency Take a look at the three systems discussed above. Use the stop watch and record the average period and frequency of the object in question in each case. Hint: For more accuracy, you can count cycles for a long time and divide the total number of cycles by the total time in seconds to get the frequency in hertz. Also, you can time multiple periods and divide the total time by the number of periods. (a) Amplitude: Pendulum (rad) Mass on spring (m) Particle on wheel (m) (b) Period (s): Pendulum Mass on spring Particle on wheel (c) Frequency (Hz): Pendulum Mass on Spring Particle on wheel (d) Is there any obvious mathematical relationship between the period and frequency? For example, what happens to the period when the frequency doubles? Use mathematical data to confirm this relationship, not just qualitative reasoning. To get this data you can vary the amount of mass loaded on a spring. Period (s) Frequency (Hz) Dept. of Ed.) and NSF. Modified for SFU by N. Alberding.

6 Page 14-6 Workshop Physics Activity Guide 50 min Graphing Periodic Motion Using a Motion Detector What is the nature of the displacement as a function of time for the spring-mass system? Can you predict how the displacement will vary with time? How will your prediction compare with actual observations? This activity involves using a motion detector system to track the displacement of a mass on a spring. For this activity you'll need the following apparatus: A spring A mass holder and masses (NOT TOO MUCH!) A clamp stand A motion detection system The setup is shown in the figure below. Figure 14-2: Diagram of the setup for the Graphical Observation of the Motion of a Mass on a Spring. Pull down on your spring to obtain a good healthy amplitude. (Somewhere between a small displacement and one that stretches the spring so much that it remains permanently distorted.) Let the mass go. As you watch the mass oscillating on the spring you can see the mass going from a maximum displacement to no displacement and then to a maximum displacement in the opposite direction. What do you expect a graph of this motion to look like? Dept. of Ed.) and NSF. Modified for SFU by N. Alberding, 2005.

7 Workshop Physics: Unit 14-Harmonic Motion Page 14-7 Authors: Priscilla Laws, Ronald Thornton, David Sokoloff Activity 14-3: Position Graph for a Mass on a Spring (a) What would a graph of the mass' distance from the motion detector vs. time look like? Sketch your prediction below..... Distance (m) Time (s) (b) Explain the physical basis for your prediction. (c) Set up the motion software to record a distance vs. time graph for 10 seconds. Take at least 100 points/second. Use the motion detector to measure the equilibrium position of the mass and record it below. (d) Give your mass approximately the same amplitude you gave it for your casual observations. In the space below sketch the graph you see on the computer screen..... Distance (m) Time (s) (e) How does the shape of the graph compare with that which you predicted? How about the amplitude you predicted? The period? Dept. of Ed.) and NSF. Modified for SFU by N. Alberding.

8 Page 14-8 Workshop Physics Activity Guide If the observed shape differs from the predicted shape, explain what assumptions you were making that don't seem valid? (f) Label the sketch of your observed graph in part (d) as follows: "1" at the beginning of a cycle and "2" at the end the same cycle "A" on the points on the graph where the mass is moving away from the detector most rapidly. "B" on the points on the graph where the mass is moving toward the detector most rapidly. "C" on the points on the graph were the mass is standing still. "D" where the mass is farthest from the motion detector. "E" where the mass is closest to the motion detector. (g) Use the analysis feature of the software to read points on the graph and find the period, T, of the oscillations. (h)find the frequency of the oscillations, f, from the graph. (i) Use the analysis feature again to find the equilibrium distance and the amplitude, X max, of the oscillations. Show your computations. Note: At this point, be sure to save your data as a file. You will need it for the next couple of activities! Activity 14-4: Velocity Graph for a Mass-Spring System (a) At what displacements from equilibrium is the velocity of the oscillating mass a maximum? A minimum? At what displacements is the velocity of the mass zero? (For instance, is the veloc- Dept. of Ed.) and NSF. Modified for SFU by N. Alberding, 2005.

9 Workshop Physics: Unit 14-Harmonic Motion Page 14-9 Authors: Priscilla Laws, Ronald Thornton, David Sokoloff ity a maximum when the displacement is a maximum? is zero? or what?) (b) Use the results of your observations in part (a) to sketch a predicted shape of the graph describing how the velocity, v, of the mass varies with time compared to the variation of the displacement at the same times. Use a dotted line or a different colour of pen or pencil for the predicted velocity graph. D i s t m V e l m / s (c) Arrange to display the distance and velocity graphs on the same screen using the motion software. Sketch the actual velocity on the graph above with a solid line. 10 min What is Simple Harmonic Motion? Simple Harmonic Motion is defined as any periodic motion in which the displacement varies sinusoidally in time. In other words, either a sine or cosine function, which both have exactly the same basic shape, can be used to describe the displace- Dept. of Ed.) and NSF. Modified for SFU by N. Alberding.

10 Page Workshop Physics Activity Guide ment as a function of time. To be more exact, a general sinusoidal equation that describes the displacement x(t) as time goes on can be given in the form x(t)= X max cos (ωt + φ) [ Eq. 14-1] where A is the amplitude or (maximum displacement from equilibrium) of an oscillating mass, ω is its angular frequency, and φ is its phase angle. Definitions Angular frequency (ω): ω 2πf (rad/s) where ω has units of rad/s (or s 1 ) and f is the frequency of oscillation in hertz Phase Angle (φ): φ ± ArcCosine (x(0)/x max ). The phase angle is the angle in radians needed to determine the value of the displacement, x(0) of the oscillating system when t=0 s. This phase angle is positive (+) when the velocity of the mass is negative and it is negative when the velocity of the mass is positive. 30 min Was the Motion Harmonic? During the remainder of Session 1 and continuing into Session 2, we would like you to demonstrate that, within the limits of experimental uncertainty, the actual motion of a mass on the end of a spring undergoes a sinusoidal oscillation, which can be represented by the Simple Harmonic Motion Equation (Eq. 14-1). Consider the data you recorded earlier with the motion detector for displacement of a mass on a spring as a function of time. How closely can the data be represented by a cosine function? This is the acid test for ideal simple harmonic motion. Activity 14-5: Displacement vs. Time Experimental (a) Refer to the data you reported in Activity 14-3 and use it to find the amplitude X max and the angular frequency ω associated with the motion you recorded for the mass on the spring. X max = ω = (b) Use equation 14-1 to show mathematically that the phase angle is given by φ ± ArcCosine (x(0)/x max ). Explain why the ± sign is needed. Dept. of Ed.) and NSF. Modified for SFU by N. Alberding, 2005.

11 Workshop Physics: Unit 14-Harmonic Motion Page Authors: Priscilla Laws, Ronald Thornton, David Sokoloff (c) Use the definition of the phase angle along with the value of the displacement at time t=0 and the values of ω and A you determined to calculate the value of the phase angle, φ. (d) In order to compare the theoretical and experimental displacements with each other, you should do the following: 1. Call up your file of spring oscillation data you saved earlier in this session, and paste the table of values for the distance from the motion detector vs. time for at least two complete cycles of oscillation into a modelling spreadsheet file starting at time t=0 seconds. 2. Add a column to the spreadsheet entitled "x(t) experimental" and calculate the displacements of the mass from equilibrium from the distance data. (See Figure 14-2 for details.) 3. Enter the values of X max, ω and φ in cells. 4. Next add a column entitled "x(t) theoretical" to your spread sheet, and enter equation 14-1 to calculate the theoretical values of the displacements, x(t), at the same times you measured the experimental values of distances from the motion detector. Use absolute references to call on the cells containing values of X max, ω and φ. 5. Format the spread sheet to include units and the correct number of significant figures for both measured and calculated values of time and displacement. How well do the theoretical and experimental values compare? (e) Graph both the experimental and theoretical displacements vs. time on the same graph. How do the results look? Discuss and try to explain reasons for any differences you see between the Dept. of Ed.) and NSF. Modified for SFU by N. Alberding.

12 Page Workshop Physics Activity Guide two graphs. If the agreement is less than convincing adjust the parameters of the model until the fit is acceptable. After you get an acceptable fit upload the spreadsheet with the graphs to WebCT. (f) On the basis of your graphs, do you think your spring-mass system underwent simple harmonic motion? Why or why not? Dept. of Ed.) and NSF. Modified for SFU by N. Alberding, 2005.

13 Workshop Physics: Unit 14-Harmonic Motion Page Authors: Priscilla Laws, Ronald Thornton, David Sokoloff SESSION TWO: SIMPLE HARMONIC MOTION FOR THE MASS & SPRING 20 min Problem Review 20 min Theoretical Confirmation of SHM for a Spring-Mass System You should be able to show that a sinusoidal motion will occur for an oscillating mass-spring system if: (1) the one dimensional force exerted by the spring on a mass has the form F= kx where k is the spring constant, and (2) Newton's second law holds. Using these assumptions you can show mathematically that the following equation will hold: x(t)= X max cos (ωt + φ) where φ = the phase angle indicating the displacement, x(0), at t = 0 s x(t) = displacement of the spring from equilibrium at time t X max = amplitude of the system,i.e., its maximum displacement ω = the angular frequency of oscillation given by ω = where k is the spring constant and m is the oscillating mass k m Activity 14-6: Displacement vs. Time Theoretical (a) Show that the equation of motion (F = ma when written out) of a mass m attached to a spring of force constant k is given by m d 2 x dt 2 = kx Hint: (1) What are the definitions of instantaneous velocity and acceleration in one dimension? (2) x(t) is really just x expressed in a form that reminds us that x changes with t. Dept. of Ed.) and NSF. Modified for SFU by N. Alberding.

14 Page Workshop Physics Activity Guide Note: This type of equation, which occurs frequently in physics, is known as a differential equation. cos (ωt + φ) d = ω sin (ωt + φ) (b) Show that if dt and sin (ωt + φ) d = ω cos (ωt + φ) dt where ω 2 =k/m then the equation x(t)= X max cos (ωt + φ) satisfies the equation m d 2 x dt 2 = kx 40 min A Mathematical Model for the Mass-Spring System. You have confirmed the fact that the theoretical equation describing a mass-spring system is given by x(t) = X max cos (ωt + φ) where φ = the phase angle indicating the displacement, x(0) at t = 0 s x(t) = displacement of the spring from equilibrium X max = amplitude of the system i.e., its maximum displacement k ω = the angular frequency of oscillation given by ω = m where k is the spring constant and m is the oscillating mass In this activity you will construct a spreadsheet model to explore the behaviour of mass-spring systems for different values of the four parameters X max, φ, k, and m. You can start by using the Excel Modelling Worksheet and setting appropriate column headings and parameter labels as shown in the illustration below. Dept. of Ed.) and NSF. Modified for SFU by N. Alberding, 2005.

15 Workshop Physics: Unit 14-Harmonic Motion Page Authors: Priscilla Laws, Ronald Thornton, David Sokoloff To construct your mathematical model you should do the following: 1. Open the modelling worksheet and label the parameters, column headers, etc. as shown above. 2. Get set to do calculations every 1/20th of a second for two seconds by entering times of s, s, etc. in the time column. 3. Enter the equation of motion x(t) = X cos k m t + φ in the x-th (x theoretical column). Get the values of k, m, etc. from cells C1, C2, C3, and C4. Don't forget to call on these cells with absolute references i.e. \$C\$1, \$C\$2, etc. 4. Place reasonable values for the four parameters in the appropriate cells. The values in the sample table will get you started. Once this is done you should see a cosine function on the graph. Dept. of Ed.) and NSF. Modified for SFU by N. Alberding.

16 Page Workshop Physics Activity Guide Activity 14-7: The Spreadsheet Model Outcomes (a) Use your simulation to graph for Xmax = m, k= N/m, m= m, and ϕ = rad in the space below. Sketch the graph in the space below. (b) What do you predict will happen to the graph if Xmax is decreased to m? Sketch your prediction on the graph below, using a dotted line. Explain the reasons for your prediction. Now, try decreasing it in your simulation and sketch the result on the same graph, using a solid line. Beware: Do your sketches on the same scale the Excel program might rescale your graph automatically! Dept. of Ed.) and NSF. Modified for SFU by N. Alberding, 2005.

17 Workshop Physics: Unit 14-Harmonic Motion Page Authors: Priscilla Laws, Ronald Thornton, David Sokoloff (c) Reset X max to m. What do you predict will happen to the graph if k is decreased to N/m? Again using a dotted line, sketch your prediction on the graph below. Explain the reasons for your prediction. Now try decreasing it in your simulation and sketch the result using a solid line. Beware: Do your sketches on the same scale the Excel program might rescale your graph automatically. (d) Reset k to N/m. What do you predict will happen to the graph if m is decreased to.1000 kg? Sketch your prediction below. Explain the reasons for your prediction. Try decreasing it in the simulation and sketch the result. Beware: Do your sketches on the same scale the Excel program might rescale your graph automatically. Dept. of Ed.) and NSF. Modified for SFU by N. Alberding.

18 Page Workshop Physics Activity Guide (e) Reset m to its original value. What do you predict will happen to the graph if ϕ is decreased to rad? Sketch your prediction below, and explain the reasons for your prediction. Try decreasing it in your simulation and sketch the result. Beware: Do your sketches on the same scale the Excel program might rescale your graph automatically. (f) Find the value for the spring constant k from the value of ω and m you found for the spring-mass system of session one. Dept. of Ed.) and NSF. Modified for SFU by N. Alberding, 2005.

19 Workshop Physics: Unit 14-Harmonic Motion Page Authors: Priscilla Laws, Ronald Thornton, David Sokoloff Dept. of Ed.) and NSF. Modified for SFU by N. Alberding.

20 Page Workshop Physics Activity Guide SESSION THREE: THE SIMPLE PENDULUM 20 min Course evaluation and/or problem review 50 min What Does the Period of a Pendulum Depend On? When a mass suspended from a string is raised and released it oscillates. The oscillating motion of a simple pendulum has been used throughout history to record the passage of time. How do clock makers go about constructing a pendulum with a given period? Why does a pendulum oscillate? What factors affect its period? For the following activity, you will need: Pendulum parts including: bobs (small round objects with different masses)- stringstand to suspend the pendulum Timing devices: (your choice, if available) a stop watch a photogate timing system a motion detection system a video analysis system a rotary motion detector Activity 14-8: Factors Influencing Pendulum Period (a) Watch the oscillation of a pendulum carefully. Sketch the forces on the bob when the pendulum is at its maximum angular displacement and at zero displacement. The amplitude is the maximum angle in the swing.! max At the bottom of the swing the angular displacement is zero:!! = 0. (b) Explain why the pendulum oscillates back and forth when the bob is lifted through an angle θ max and released. Dept. of Ed.) and NSF. Modified for SFU by N. Alberding, 2005.

21 Workshop Physics: Unit 14-Harmonic Motion Page Authors: Priscilla Laws, Ronald Thornton, David Sokoloff (c) List all the factors that might conceivably affect the period of a pendulum in the table below. Indicate for each factor whether or not you expect it to matter. Feel free to discuss your ideas with your classmates and debate the issues. (d) Play with the pendulum factors and see which factors obviously matter. Summarize your findings in the space below and indicate in the table above which of your predictions were correct. (e) [7 pts] Design an experiment to check the possible dependence of the period of a pendulum on its length in a much more careful quantitative way. You have a choice of a number of timing devices to complete this task. Regardless of which device you use you should design your experiment to be as accurate as possible with your time measurements. Document your experiment on the 8-page mini-lab notebook that we provide. Hint: Be sure to use some very short lengths and some much longer lengths for your pendulum. Dept. of Ed.) and NSF. Modified for SFU by N. Alberding.

22 Page Workshop Physics Activity Guide The lab write up should contain the following 1. Title Experiment Name Date Your name and your partners 2. Experiment s objective 3. Description of the apparatus and procedure. A simple diagram that is labelled is needed here. 4. Experimental results. Put data in a neat table. Include uncertainty estimates. Write the results Directly into the table as you take the data. Avoid recopying data from scrap paper. Do not erase data. If you need make a correction, cross out the data and rewrite the correct values. 5. Calculations and results. Display results graphically if possible. Show sample calculations. 6. Conclusions: How do your results compare with your prediction? 40 min Should the Pendulum Really Undergo SHM? In your theoretical consideration of the mass-spring system, you showed mathematically that, if the restoring force is proportional to the displacement but opposite in direction, then one would expect to see the mass undergo simple harmonic motion. The restoring force for the spring has the form F=-kx. To what extent does the restoring force for a simple pendulum which oscillates at a small angle of displacement have a similar mathematical form to that of the mass on a spring? In this next activity you will derive the equation of motion for a simple pendulum. This equation is very similar to the equation of motion of the mass-spring system, and so it will be clear that the simple pendulum ought to undergo a simple harmonic motion in which its period of motion is independent of the mass of the pendulum bob. In order to derive the equation of motion you should recall the when a mass, m, experiences a torque, it will undergo an angular acceleration given by the equation τ = Iα You can look at the form of this equation for a simple pendulum when the angle of the oscillation is small. You should find that it is quite similar to the equation for the mass-spring system. Dept. of Ed.) and NSF. Modified for SFU by N. Alberding, 2005.

23 Workshop Physics: Unit 14-Harmonic Motion Page Authors: Priscilla Laws, Ronald Thornton, David Sokoloff Activity 14-9: The Pendulum Equation of Motion (a)what is the restoring force on the pendulum bob as a function of m, g, and the displacement angle θ?! L F T = mg cos! F T F rest! mg (b) The small angle approximation: The value of θ in radians and the value of sinθ are quite close to each other for small values of θ. Use a spreadsheet or scientific calculator to find the angle in radians for which θ and sin θ vary from each other by 1%. Use three decimal places in your calculations. (c) Calculate the value in degrees of the angle you have just calculated in radians. (d) Show that, if the maximum angle through which the pendulum swings is small enough so that θ sin θ (say to within about 1%), then the restoring force can be expressed (to within 1%) by F = mgθ. (c) Show that the torque experienced by the mass is given by the expression τ = mgθl (where L is the length). Dept. of Ed.) and NSF. Modified for SFU by N. Alberding.

24 Page Workshop Physics Activity Guide (d) What is the rotational inertia of the simple pendulum as a function of its mass, m, and length, L? (e) Use the relationship between τ, I, and α to show that the equation of motion for the angular displacement of the pendulum is given by [you fill in the blank] (g) How does this compare to the equation of motion you derived for the mass-spring system given by m d 2 x dt 2 = kx What is the same? What is different? (h) Refer to the solution of the spring-mass equation of motion to write down the solution to the pendulum equation and show why its solution is given by Hint: In the pendulum equation of motion the term θ plays the role of x in the mass-spring equation and the term (mg/l) plays the role of the spring constant k. (i) Show that if the period, T, of a mass-spring system is given by the equation Dept. of Ed.) and NSF. Modified for SFU by N. Alberding, 2005.

25 Workshop Physics: Unit 14-Harmonic Motion Page Authors: Priscilla Laws, Ronald Thornton, David Sokoloff Spring-Mass: T = 2π m k then the period of the pendulum ought to be given by Pendulum: T = 2π L g (j) How does this expression for the period compare to the one which you found experimentally in Activity 14-7 (e)? (k) Many people are surprised to find that the period of a simple pendulum does not depend on its mass. Can you explain why the period of a simple pendulum doesn't depend on its mass? Hint: Can you explain why the acceleration of a falling mass close to the surface of the earth is a constant regardless of the size of the mass? Dept. of Ed.) and NSF. Modified for SFU by N. Alberding.

### Simple Harmonic Motion Concepts

Simple Harmonic Motion Concepts INTRODUCTION Have you ever wondered why a grandfather clock keeps accurate time? The motion of the pendulum is a particular kind of repetitive or periodic motion called

### LABORATORY 9. Simple Harmonic Motion

LABORATORY 9 Simple Harmonic Motion Purpose In this experiment we will investigate two examples of simple harmonic motion: the mass-spring system and the simple pendulum. For the mass-spring system we

### Chapter 13, example problems: x (cm) 10.0

Chapter 13, example problems: (13.04) Reading Fig. 13-30 (reproduced on the right): (a) Frequency f = 1/ T = 1/ (16s) = 0.0625 Hz. (since the figure shows that T/2 is 8 s.) (b) The amplitude is 10 cm.

### Physics 1022: Chapter 14 Waves

Phys 10: Introduction, Pg 1 Physics 10: Chapter 14 Waves Anatomy of a wave Simple harmonic motion Energy and simple harmonic motion Phys 10: Introduction, Pg Page 1 1 Waves New Topic Phys 10: Introduction,

### Lab M1: The Simple Pendulum

Lab M1: The Simple Pendulum Introduction. The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are usually regarded as the beginning of

### Hooke s Law and Simple Harmonic Motion

Hooke s Law and Simple Harmonic Motion OBJECTIVE to measure the spring constant of the springs using Hooke s Law to explore the static properties of springy objects and springs, connected in series and

### Advanced Higher Physics: MECHANICS. Simple Harmonic Motion

Advanced Higher Physics: MECHANICS Simple Harmonic Motion At the end of this section, you should be able to: Describe examples of simple harmonic motion (SHM). State that in SHM the unbalanced force is

### SHM Simple Harmonic Motion revised June 16, 2012

SHM Simple Harmonic Motion revised June 16, 01 Learning Objectives: During this lab, you will 1. communicate scientific results in writing.. estimate the uncertainty in a quantity that is calculated from

### Periodic Motion or Oscillations. Physics 232 Lecture 01 1

Periodic Motion or Oscillations Physics 3 Lecture 01 1 Periodic Motion Periodic Motion is motion that repeats about a point of stable equilibrium Stable Equilibrium Unstable Equilibrium A necessary requirement

### Physics 53. Oscillations. You've got to be very careful if you don't know where you're going, because you might not get there.

Physics 53 Oscillations You've got to be very careful if you don't know where you're going, because you might not get there. Yogi Berra Overview Many natural phenomena exhibit motion in which particles

### Hooke s Law. Spring. Simple Harmonic Motion. Energy. 12/9/09 Physics 201, UW-Madison 1

Hooke s Law Spring Simple Harmonic Motion Energy 12/9/09 Physics 201, UW-Madison 1 relaxed position F X = -kx > 0 F X = 0 x apple 0 x=0 x > 0 x=0 F X = - kx < 0 x 12/9/09 Physics 201, UW-Madison 2 We know

### p = F net t (2) But, what is the net force acting on the object? Here s a little help in identifying the net force on an object:

Harmonic Oscillator Objective: Describe the position as a function of time of a harmonic oscillator. Apply the momentum principle to a harmonic oscillator. Sketch (and interpret) a graph of position as

### Simple Harmonic Motion

Simple Harmonic Motion Objective: In this exercise you will investigate the simple harmonic motion of mass suspended from a helical (coiled) spring. Apparatus: Spring 1 Table Post 1 Short Rod 1 Right-angled

### Simple Harmonic Motion

Simple Harmonic Motion Restating Hooke s law The equation of motion Phase, frequency, amplitude Simple Pendulum Damped and Forced oscillations Resonance Harmonic Motion A lot of motion in the real world

### AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

### Simple Harmonic Motion

Simple Harmonic Motion 9M Object: Apparatus: To determine the force constant of a spring and then study the harmonic motion of that spring when it is loaded with a mass m. Force sensor, motion sensor,

### Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum

Updated 2013 (Mathematica Version) M1.1 Introduction. Lab M1: The Simple Pendulum The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are

### Simple Harmonic Motion

Simple Harmonic Motion Simple harmonic motion is one of the most common motions found in nature and can be observed from the microscopic vibration of atoms in a solid to rocking of a supertanker on the

### Lab 5: Conservation of Energy

Lab 5: Conservation of Energy Equipment SWS, 1-meter stick, 2-meter stick, heavy duty bench clamp, 90-cm rod, 40-cm rod, 2 double clamps, brass spring, 100-g mass, 500-g mass with 5-cm cardboard square

### HOOKE S LAW AND SIMPLE HARMONIC MOTION

HOOKE S LAW AND SIMPLE HARMONIC MOTION Alexander Sapozhnikov, Brooklyn College CUNY, New York, alexs@brooklyn.cuny.edu Objectives Study Hooke s Law and measure the spring constant. Study Simple Harmonic

### Chapter 24 Physical Pendulum

Chapter 4 Physical Pendulum 4.1 Introduction... 1 4.1.1 Simple Pendulum: Torque Approach... 1 4. Physical Pendulum... 4.3 Worked Examples... 4 Example 4.1 Oscillating Rod... 4 Example 4.3 Torsional Oscillator...

### Simple Harmonic Motion

Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights

### Physics 41 HW Set 1 Chapter 15

Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

### Name: Lab Partner: Section:

Chapter 10 Simple Harmonic Motion Name: Lab Partner: Section: 10.1 Purpose Simple harmonic motion will be examined in this experiment. 10.2 Introduction A periodic motion is one that repeats itself in

### Lecture Presentation Chapter 14 Oscillations

Lecture Presentation Chapter 14 Oscillations Suggested Videos for Chapter 14 Prelecture Videos Describing Simple Harmonic Motion Details of SHM Damping and Resonance Class Videos Oscillations Basic Oscillation

### 1.10 Using Figure 1.6, verify that equation (1.10) satisfies the initial velocity condition. t + ") # x (t) = A! n. t + ") # v(0) = A!

1.1 Using Figure 1.6, verify that equation (1.1) satisfies the initial velocity condition. Solution: Following the lead given in Example 1.1., write down the general expression of the velocity by differentiating

### SIMPLE HARMONIC MOTION

PERIODIC MOTION SIMPLE HARMONIC MOTION If a particle moves such that it repeats its path regularly after equal intervals of time, its motion is said to be periodic. The interval of time required to complete

### Practice Test SHM with Answers

Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

### SIMPLE HARMONIC MOTION

SIMPLE HARMONIC MOTION PURPOSE The purpose of this experiment is to investigate one of the fundamental types of motion that exists in nature - simple harmonic motion. The importance of this kind of motion

### AP Physics C. Oscillations/SHM Review Packet

AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

### SIMPLE HARMONIC MOTION Ken Cheney

SIMPLE HARMONIC MOTION Ken Cheney INTRODUCTION GENERAL Probably no tools that you will learn in Physics are more widely used than those that deal with simple harmonic motion. Here we will be investigating

### Physics 211 Week 12. Simple Harmonic Motion: Equation of Motion

Physics 11 Week 1 Simple Harmonic Motion: Equation of Motion A mass M rests on a frictionless table and is connected to a spring of spring constant k. The other end of the spring is fixed to a vertical

### Physics 2305 Lab 11: Torsion Pendulum

Name ID number Date Lab CRN Lab partner Lab instructor Physics 2305 Lab 11: Torsion Pendulum Objective 1. To demonstrate that the motion of the torsion pendulum satisfies the simple harmonic form in equation

### Experiment Type: Open-Ended

Simple Harmonic Oscillation Overview Experiment Type: Open-Ended In this experiment, students will look at three kinds of oscillators and determine whether or not they can be approximated as simple harmonic

### 1 of 10 11/23/2009 6:37 PM

hapter 14 Homework Due: 9:00am on Thursday November 19 2009 Note: To understand how points are awarded read your instructor's Grading Policy. [Return to Standard Assignment View] Good Vibes: Introduction

### turn-table in terms of SHM and UCM: be plotted as a sine wave. n Think about spinning a ball on a string or a ball on a

RECALL: Angular Displacement & Angular Velocity Think about spinning a ball on a string or a ball on a turn-table in terms of SHM and UCM: If you look at the ball from the side, its motion could be plotted

### 8 SIMPLE HARMONIC MOTION

8 SIMPLE HARMONIC MOTION Chapter 8 Simple Harmonic Motion Objectives After studying this chapter you should be able to model oscillations; be able to derive laws to describe oscillations; be able to use

### Physics 1120: Simple Harmonic Motion Solutions

Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured

### Simple Harmonic Motion. Simple Harmonic Motion

Siple Haronic Motion Basic oscillations are siple haronic otion (SHM) where the position as a function of tie is given by a sign or cosine Eaples of actual otion: asses on springs vibration of atos in

### Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations

Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring

### SIMPLE HARMONIC MOTION: SHIFTED ORIGIN AND PHASE

MISN-0-26 SIMPLE HARMONIC MOTION: SHIFTED ORIGIN AND PHASE SIMPLE HARMONIC MOTION: SHIFTED ORIGIN AND PHASE by Kirby Morgan 1. Dynamics of Harmonic Motion a. Force Varies in Magnitude and Direction................

### Simple Harmonic Motion

Periodic motion Earth around the sun Elastic ball bouncing up an down Quartz in your watch, computer clock, ipod clock, etc. Heart beat, and many more In taking your pulse, you count 70.0 heartbeats in

### Simple Harmonic Motion(SHM) Period and Frequency. Period and Frequency. Cosines and Sines

Simple Harmonic Motion(SHM) Vibration (oscillation) Equilibrium position position of the natural length of a spring Amplitude maximum displacement Period and Frequency Period (T) Time for one complete

### PHYS-2020: General Physics II Course Lecture Notes Section VII

PHYS-2020: General Physics II Course Lecture Notes Section VII Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and

### MECHANICS IV - SIMPLE HARMONIC MOTION

M-IV-p.1 A. OSCILLATIONS B. SIMPLE PENDULUM C. KINEMATICS OF SIMPLE HARMONIC MOTION D. SPRING-AND-MASS SYSTEM E. ENERGY OF SHM F. DAMPED HARMONIC MOTION G. FORCED VIBRATION A. OSCILLATIONS A to-and-fro

### both double. A. T and v max B. T remains the same and v max doubles. both remain the same. C. T and v max

Q13.1 An object on the end of a spring is oscillating in simple harmonic motion. If the amplitude of oscillation is doubled, how does this affect the oscillation period T and the object s maximum speed

### 226 Chapter 15: OSCILLATIONS

Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion

### HOOKE S LAW AND OSCILLATIONS

9 HOOKE S LAW AND OSCILLATIONS OBJECTIVE To measure the effect of amplitude, mass, and spring constant on the period of a spring-mass oscillator. INTRODUCTION The force which restores a spring to its equilibrium

### PC1221 Fundamentals of Physics I Inertia Wheel

PC1221 Fundamentals of Physics I Inertia Wheel 1 Purpose Determination of the angular acceleration of the inertial wheel as a function of the applied torque Determination of the moment of inertia I of

### Rotational Motion. So far, you have studied translational motion. Here you will explore the physics of rotational motion.

Team: Rotational Motion Rotational motion is everywhere. When you push a door, it rotates. When you pedal a bike, the wheel rotates. When you start an engine, many parts rotate. Electrons rotate in an

### Chapter 1. Oscillations. Oscillations

Oscillations 1. A mass m hanging on a spring with a spring constant k has simple harmonic motion with a period T. If the mass is doubled to 2m, the period of oscillation A) increases by a factor of 2.

### 5.2 Rotational Kinematics, Moment of Inertia

5 ANGULAR MOTION 5.2 Rotational Kinematics, Moment of Inertia Name: 5.2 Rotational Kinematics, Moment of Inertia 5.2.1 Rotational Kinematics In (translational) kinematics, we started out with the position

### PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION

PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION I. INTRODUCTION The objective of this experiment is the study of oscillatory motion. In particular the springmass system and the simple

### Computer Experiment. Simple Harmonic Motion. Kinematics and Dynamics of Simple Harmonic Motion. Evaluation copy

INTRODUCTION Simple Harmonic Motion Kinematics and Dynamics of Simple Harmonic Motion Computer Experiment 16 When you suspend an object from a spring, the spring will stretch. If you pull on the object,

### Experiment P19: Simple Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor)

PASCO scientific Physics Lab Manual: P19-1 Science Workshop S. H. M. Mass on a Spring Experiment P19: Simple Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor) Concept Time SW Interface Macintosh

### Circular Motion. Physics 1425 Lecture 18. Michael Fowler, UVa

Circular Motion Physics 1425 Lecture 18 Michael Fowler, UVa How Far is it Around a Circle? A regular hexagon (6 sides) can be made by putting together 6 equilateral triangles (all sides equal). The radius

### CHAPTER 5 THE HARMONIC OSCILLATOR

CHAPTER 5 THE HARMONIC OSCILLATOR The harmonic oscillator is a model which has several important applications in both classical and quantum mechanics. It serves as a prototype in the mathematical treatment

### Experiment 9. The Pendulum

Experiment 9 The Pendulum 9.1 Objectives Investigate the functional dependence of the period (τ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle (θ 0 ). Use a pendulum

### Experiment 4: Harmonic Motion Analysis

Experiment 4: Harmonic Motion Analysis Background In this experiment you will investigate the influence of damping on a driven harmonic oscillator and study resonant conditions. The following theoretical

### Centripetal Force. 1. Introduction

1. Introduction Centripetal Force When an object travels in a circle, even at constant speed, it is undergoing acceleration. In this case the acceleration acts not to increase or decrease the magnitude

### Type: Double Date: Simple Harmonic Motion III. Homework: Read 10.3, Do CONCEPT QUEST #(7) Do PROBLEMS #(5, 19, 28) Ch. 10

Type: Double Date: Objective: Simple Harmonic Motion II Simple Harmonic Motion III Homework: Read 10.3, Do CONCEPT QUEST #(7) Do PROBLEMS #(5, 19, 28) Ch. 10 AP Physics B Mr. Mirro Simple Harmonic Motion

### Lab 5: Harmonic Oscillations and Damping

3 Lab 5: Harmonic Oscillations and Damping I. Introduction A. Objectives for this lab: 1. Learn how to quantitatively model a real harmonic oscillator 2. Learn how damping affects simple harmonic motion

### STANDING WAVES. Objective: To verify the relationship between wave velocity, wavelength, and frequency of a transverse wave.

STANDING WAVES Objective: To verify the relationship between wave velocity, wavelength, and frequency of a transverse wave. Apparatus: Magnetic oscillator, string, mass hanger and assorted masses, pulley,

### HOOKE'S LAW AND SIMPLE HARMONIC MOTION OBJECT

5 M19 M19.1 HOOKE'S LAW AND SIMPLE HARMONIC MOTION OBJECT The object of this experiment is to determine whether a vertical mass-spring system obeys Hooke's Law and to study simple harmonic motion. THEORY

### y = a sin ωt or y = a cos ωt then the object is said to be in simple harmonic motion. In this case, Amplitude = a (maximum displacement)

5.5 Modelling Harmonic Motion Periodic behaviour happens a lot in nature. Examples of things that oscillate periodically are daytime temperature, the position of a weight on a spring, and tide level. If

### Response to Harmonic Excitation

Response to Harmonic Excitation Part 1 : Undamped Systems Harmonic excitation refers to a sinusoidal external force of a certain frequency applied to a system. The response of a system to harmonic excitation

### Recitation 2 Chapters 12 and 13

Recitation 2 Chapters 12 and 13 Problem 12.20. 65.0 kg bungee jumper steps off a bridge with a light bungee cord tied to her and the bridge (Figure P12.20. The unstretched length of the cord is 11.0 m.

### The moment of inertia of a rod rotating about its centre is given by:

Pendulum Physics 161 Introduction This experiment is designed to study the motion of a pendulum consisting of a rod and a mass attached to it. The period of the pendulum will be measured using three different

### Determination of Acceleration due to Gravity

Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two

### Lesson 5 Rotational and Projectile Motion

Lesson 5 Rotational and Projectile Motion Introduction: Connecting Your Learning The previous lesson discussed momentum and energy. This lesson explores rotational and circular motion as well as the particular

### Waves I: Generalities, Superposition & Standing Waves

Chapter 5 Waves I: Generalities, Superposition & Standing Waves 5.1 The Important Stuff 5.1.1 Wave Motion Wave motion occurs when the mass elements of a medium such as a taut string or the surface of a

### Resonance. The purpose of this experiment is to observe and evaluate the phenomenon of resonance.

Resonance Objective: The purpose of this experiment is to observe and evaluate the phenomenon of resonance. Background: Resonance is a wave effect that occurs when an object has a natural frequency that

### Rotational Motion. Symbol Units Symbol Units Position x (m) θ (rad) (m/s) " = d# Source of Parameter Symbol Units Parameter Symbol Units

Introduction Rotational Motion There are many similarities between straight-line motion (translation) in one dimension and angular motion (rotation) of a rigid object that is spinning around some rotation

### A) F = k x B) F = k C) F = x k D) F = x + k E) None of these.

CT16-1 Which of the following is necessary to make an object oscillate? i. a stable equilibrium ii. little or no friction iii. a disturbance A: i only B: ii only C: iii only D: i and iii E: All three Answer:

### A B = AB sin(θ) = A B = AB (2) For two vectors A and B the cross product A B is a vector. The magnitude of the cross product

1 Dot Product and Cross Products For two vectors, the dot product is a number A B = AB cos(θ) = A B = AB (1) For two vectors A and B the cross product A B is a vector. The magnitude of the cross product

### Physics Exam 2 Formulas

INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam is closed book, and you may have only pens/pencils and a calculator (no stored equations or programs and no graphing). Show

### PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PHYS 101-4M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in

### Physics 231 Lecture 15

Physics 31 ecture 15 Main points of today s lecture: Simple harmonic motion Mass and Spring Pendulum Circular motion T 1/f; f 1/ T; ω πf for mass and spring ω x Acos( ωt) v ωasin( ωt) x ax ω Acos( ωt)

### Rotational Motion & Moment of Inertia

Physics 161 Rotational Motion & Moment of Inertia Introduction In this experiment we will study motion of objects is a circular path as well as the effect of a constant torque on a symmetrical body. In

### Physics 2101 Section 3 Apr 14th Announcements: Quiz Friday Midterm #4, April Midterm #4,

Physics 2101 Section 3 Apr 14 th Announcements: Quiz Friday Midterm #4, April 28 th Final: May 11 th-7:30am Class Website: 6 pm Make up Final: May 15 th -7:30am http://www.phys.lsu.edu/classes/spring2010/phys2101

### Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath

Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath 1. The exam will last from 8:00 am to 11:00 am. Use a # 2 pencil to make entries on the answer sheet. Enter the following id information

### Standing Waves Physics Lab I

Standing Waves Physics Lab I Objective In this series of experiments, the resonance conditions for standing waves on a string will be tested experimentally. Equipment List PASCO SF-9324 Variable Frequency

### PENDULUM PERIODS. First Last. Partners: student1, student2, and student3

PENDULUM PERIODS First Last Partners: student1, student2, and student3 Governor s School for Science and Technology 520 Butler Farm Road, Hampton, VA 23666 April 13, 2011 ABSTRACT The effect of amplitude,

Week 8 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

### Simple Pendulum 10/10

Physical Science 101 Simple Pendulum 10/10 Name Partner s Name Purpose In this lab you will study the motion of a simple pendulum. A simple pendulum is a pendulum that has a small amplitude of swing, i.e.,

### People s Physics book 3e Ch 25-1

The Big Idea: In most realistic situations forces and accelerations are not fixed quantities but vary with time or displacement. In these situations algebraic formulas cannot do better than approximate

### 2. The graph shows how the displacement varies with time for an object undergoing simple harmonic motion.

Practice Test: 29 marks (37 minutes) Additional Problem: 31 marks (45 minutes) 1. A transverse wave travels from left to right. The diagram on the right shows how, at a particular instant of time, the

### HW 7 Q 14,20,20,23 P 3,4,8,6,8. Chapter 7. Rotational Motion of the Object. Dr. Armen Kocharian

HW 7 Q 14,20,20,23 P 3,4,8,6,8 Chapter 7 Rotational Motion of the Object Dr. Armen Kocharian Axis of Rotation The radian is a unit of angular measure The radian can be defined as the arc length s along

### Experiment 8. The Pendulum

Experiment 8 The Pendulum 8.1 Objectives Investigate the functional dependence of the period ( ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle ( 0 ). Use a pendulum

### LAB MECH 16. CALC From Physics with Calculators, Vernier Software & Technology, 2003.

LAB MECH 16. CALC From Physics with Calculators, Vernier Software & Technology, 2003. INTRODUCTION A swinging pendulum keeps a very regular beat. It is so regular, in fact, that for many years the pendulum

### Center of Mass/Momentum

Center of Mass/Momentum 1. 2. An L-shaped piece, represented by the shaded area on the figure, is cut from a metal plate of uniform thickness. The point that corresponds to the center of mass of the L-shaped

### Homework #7 Solutions

MAT 0 Spring 201 Problems Homework #7 Solutions Section.: 4, 18, 22, 24, 4, 40 Section.4: 4, abc, 16, 18, 22. Omit the graphing part on problems 16 and 18...4. Find the general solution to the differential

### Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

### ICP/Physics 8 Oscillations lab p. 1 NAME PARTNER'S NAME. Date TA Lab Day/Time LAB 7: OSCILLATIONS

ICP/Physics 8 Oscillations lab p. 1 NAME PARTNER'S NAME Date TA Lab Day/Time LAB 7: OSCILLATIONS Introduction We can use the tools we have been developing all semester to understand a great deal about

### A ball, attached to a cord of length 1.20 m, is set in motion so that it is swinging backwards and forwards like a pendulum.

MECHANICS: SIMPLE HARMONIC MOTION QUESTIONS THE PENDULUM (2014;2) A pendulum is set up, as shown in the diagram. The length of the cord attached to the bob is 1.55 m. The bob has a mass of 1.80 kg. The

### Oscillations: Mass on a Spring and Pendulums

Chapter 3 Oscillations: Mass on a Spring and Pendulums 3.1 Purpose 3.2 Introduction Galileo is said to have been sitting in church watching the large chandelier swinging to and fro when he decided that

### Chapter 14. Oscillations. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc.

Chapter 14 Oscillations PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition 14 Oscillations Reading Quiz 1. The type of function that describes simple harmonic motion is A.

### Lecture 11 Chapter 16 Waves I

Lecture 11 Chapter 16 Waves I Forced oscillator from last time Slinky example Coiled wire Rope Transverse Waves demonstrator Longitudinal Waves magnetic balls Standing Waves machine Damped simple harmonic