Simple Harmonic Motion

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Simple Harmonic Motion"

Transcription

1 Simple Harmonic Motion -Theory Simple harmonic motion refers to the periodic sinusoidal oscillation of an object or quantity. Simple harmonic motion is eecuted by any quantity obeying the Differential Equation & + ω, () = where, & & denotes the second Derivative of with respect to t, and ω is the angular frequency of oscillation. This Ordinary Differential Equation has an irregular Singularity at,. The general solution is = Asin( ω + B cos( ω () = C cos( ω t + φ) (3) where the two constants A and B (or C andφ ) are determined from the initial conditions. Many physical systems undergoing small displacements, including any objects obeying Hooke s Law, ehibit simple harmonic motion. This equation arises, for eample, in the analysis of the flow of current in an electronic CL circuit (which contains a capacitor and an inductor ). If a damping force such as Friction is present, an additional term β & must be added to the Differential Equation and motion dies out over time. Adding a damping force proportional to &, the first derivative of with respect to time, the equation of motion for damped simple harmonic motion is & + β& + ω, (4) =

2 where β is the damping constant. This equation arises, for eample, in the analysis of the flow of current in an electronic CLR circuit, (which contains a capacitor, an inductor, and a resistor ). This Ordinary Differential Equation can be solved by rt looking for trial solutions of the form = e. Plugging this into (4) gives ( r rt + β r + ω ) e = (5) r + β r + ω = (6) This is a Quadratic Equation with solutions r = ( β ± β 4ω ). (7) There are therefore three solution regimes depending on the Sign of the quantity inside the Square Root, α = β 4ω. (8) The three regimes are. α > is Positive: overdamped,. α = is Zero: critically damped, 3. α < is Negative: underdamped.

3 Under-damped simple harmonic motion occurs when β 4ω < (9) so α β 4ω < () Define ω α = 4ω β, () then the solutions satisfy r ± = β ± iγ, () where r ± ± β β 4ω, (3) and are of the form ( / iγ ) t = e β ± (4) 3

4 Using the Euler Formula e i = cos + isin (5) this can be rewritten. [ cos( ω. ± i sin( ω. ] ( β / ) t = e (6) We are interested in the real solutions. Since we are dealing here with a linear homogeneous ODE, linear sums of linearly independent solutions are also solutions. Since we have a sum of such solutions in (64), it follows that the Imaginary and real part separately satisfy the ODE and are therefore the solutions we seek. The constant in front of the sine term is arbitrary, so we can identify the solutions as ( β / ) t e cos( ω. (7) = [ ] ( β / ) t = e [ sin( ω. ] (8) so the general solution is ( β / ) t = e Acos( ω. + Bsin( ω. (9) [ ] - Eperiment - Object: To study Hooke s law, and simple harmonic motion of a mass oscillating on a spring. - Apparatus: Rotary motion sensor, thin string, uniform spring, balance, weight hanger and weight, computer Pasco Model 7 Interface, printer. -3 Procedure: - Adjust the apparatus. Hang the pan on the spring and add enough weight (about 4g) so that the spring and the scale are vertical. Take that position of the pan as the equilibrium position. - Start the data collection add etra mass m such as g, g, 3g and 4g to further stretch the spring. For each etra mass m, leave the pan get down very slowly to the maimum position and stop the data collection. Enlarge the 4

5 position s table you can record the etra stretch. Repeat this with the different weights. Plot mg vs., draw a straight line through the origin and all the points. (g is the gravity acceleration constant ). The slope of the line is the spring constant k 3- Remove the etra masses and come back to the equilibrium position (with 4g). Displace the whole weight by a small vertical distance (an inch or two). Release the system and start the collection data at the same time. When the oscillations (vibrations) vanish, stop the data collection. On the graph of the position vs. time, use the sine fit to fit all sinusoidal plots. You can read the period of oscillations and calculate the value of the corresponding frequency ω. Now, using the formula k ω = calculate the real m mass m.what is your conclusion? 4- Use the computer pencil to draw the line that connects the top peaks of the position s waves. 5- Use the Natural Eponent fit to fit that line. The eponent C gives you the value of β /. Infer the value of the damping constant β. 6- Repeat the same eperiment for the etra mass of 4 more grams. 7- Print all graphs and tables. 5

Simple Harmonic Motion Concepts

Simple Harmonic Motion Concepts Simple Harmonic Motion Concepts INTRODUCTION Have you ever wondered why a grandfather clock keeps accurate time? The motion of the pendulum is a particular kind of repetitive or periodic motion called

More information

Solving the Harmonic Oscillator Equation. Morgan Root NCSU Department of Math

Solving the Harmonic Oscillator Equation. Morgan Root NCSU Department of Math Solving the Harmonic Oscillator Equation Morgan Root NCSU Department of Math Spring-Mass System Consider a mass attached to a wall by means of a spring. Define y to be the equilibrium position of the block.

More information

Simple Harmonic Motion Experiment. 1 f

Simple Harmonic Motion Experiment. 1 f Simple Harmonic Motion Experiment In this experiment, a motion sensor is used to measure the position of an oscillating mass as a function of time. The frequency of oscillations will be obtained by measuring

More information

Homework #7 Solutions

Homework #7 Solutions MAT 0 Spring 201 Problems Homework #7 Solutions Section.: 4, 18, 22, 24, 4, 40 Section.4: 4, abc, 16, 18, 22. Omit the graphing part on problems 16 and 18...4. Find the general solution to the differential

More information

1 of 10 11/23/2009 6:37 PM

1 of 10 11/23/2009 6:37 PM hapter 14 Homework Due: 9:00am on Thursday November 19 2009 Note: To understand how points are awarded read your instructor's Grading Policy. [Return to Standard Assignment View] Good Vibes: Introduction

More information

Physics 53. Oscillations. You've got to be very careful if you don't know where you're going, because you might not get there.

Physics 53. Oscillations. You've got to be very careful if you don't know where you're going, because you might not get there. Physics 53 Oscillations You've got to be very careful if you don't know where you're going, because you might not get there. Yogi Berra Overview Many natural phenomena exhibit motion in which particles

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion Objective: In this exercise you will investigate the simple harmonic motion of mass suspended from a helical (coiled) spring. Apparatus: Spring 1 Table Post 1 Short Rod 1 Right-angled

More information

LABORATORY 9. Simple Harmonic Motion

LABORATORY 9. Simple Harmonic Motion LABORATORY 9 Simple Harmonic Motion Purpose In this experiment we will investigate two examples of simple harmonic motion: the mass-spring system and the simple pendulum. For the mass-spring system we

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion 9M Object: Apparatus: To determine the force constant of a spring and then study the harmonic motion of that spring when it is loaded with a mass m. Force sensor, motion sensor,

More information

SIMPLE HARMONIC MOTION

SIMPLE HARMONIC MOTION SIMPLE HARMONIC MOTION PURPOSE The purpose of this experiment is to investigate one of the fundamental types of motion that exists in nature - simple harmonic motion. The importance of this kind of motion

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights

More information

Applications of Second-Order Differential Equations

Applications of Second-Order Differential Equations Applications of Second-Order Differential Equations Second-order linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration

More information

Hooke s Law and Simple Harmonic Motion

Hooke s Law and Simple Harmonic Motion Hooke s Law and Simple Harmonic Motion OBJECTIVE to measure the spring constant of the springs using Hooke s Law to explore the static properties of springy objects and springs, connected in series and

More information

Hooke s Law. Spring. Simple Harmonic Motion. Energy. 12/9/09 Physics 201, UW-Madison 1

Hooke s Law. Spring. Simple Harmonic Motion. Energy. 12/9/09 Physics 201, UW-Madison 1 Hooke s Law Spring Simple Harmonic Motion Energy 12/9/09 Physics 201, UW-Madison 1 relaxed position F X = -kx > 0 F X = 0 x apple 0 x=0 x > 0 x=0 F X = - kx < 0 x 12/9/09 Physics 201, UW-Madison 2 We know

More information

Periodic Motion or Oscillations. Physics 232 Lecture 01 1

Periodic Motion or Oscillations. Physics 232 Lecture 01 1 Periodic Motion or Oscillations Physics 3 Lecture 01 1 Periodic Motion Periodic Motion is motion that repeats about a point of stable equilibrium Stable Equilibrium Unstable Equilibrium A necessary requirement

More information

Mechanical Vibrations

Mechanical Vibrations Mechanical Vibrations A mass m is suspended at the end of a spring, its weight stretches the spring by a length L to reach a static state (the equilibrium position of the system). Let u(t) denote the displacement,

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter 10 Simple Harmonic Motion Name: Lab Partner: Section: 10.1 Purpose Simple harmonic motion will be examined in this experiment. 10.2 Introduction A periodic motion is one that repeats itself in

More information

SIMPLE HARMONIC MOTION: SHIFTED ORIGIN AND PHASE

SIMPLE HARMONIC MOTION: SHIFTED ORIGIN AND PHASE MISN-0-26 SIMPLE HARMONIC MOTION: SHIFTED ORIGIN AND PHASE SIMPLE HARMONIC MOTION: SHIFTED ORIGIN AND PHASE by Kirby Morgan 1. Dynamics of Harmonic Motion a. Force Varies in Magnitude and Direction................

More information

A C O U S T I C S of W O O D Lecture 3

A C O U S T I C S of W O O D Lecture 3 Jan Tippner, Dep. of Wood Science, FFWT MU Brno jan. tippner@mendelu. cz Content of lecture 3: 1. Damping 2. Internal friction in the wood Content of lecture 3: 1. Damping 2. Internal friction in the wood

More information

Lab M1: The Simple Pendulum

Lab M1: The Simple Pendulum Lab M1: The Simple Pendulum Introduction. The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are usually regarded as the beginning of

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion Simple harmonic motion is one of the most common motions found in nature and can be observed from the microscopic vibration of atoms in a solid to rocking of a supertanker on the

More information

PHYS 130 Laboratory Experiment 11 Hooke s Law & Simple Harmonic Motion

PHYS 130 Laboratory Experiment 11 Hooke s Law & Simple Harmonic Motion PHYS 130 Laboratory Experiment 11 Hooke s Law & Simple Harmonic Motion NAME: DATE: SECTION: PARTNERS: OBJECTIVES 1. Verify Hooke s Law and use it to measure the force constant of a spring. 2. Investigate

More information

Advanced Higher Physics: MECHANICS. Simple Harmonic Motion

Advanced Higher Physics: MECHANICS. Simple Harmonic Motion Advanced Higher Physics: MECHANICS Simple Harmonic Motion At the end of this section, you should be able to: Describe examples of simple harmonic motion (SHM). State that in SHM the unbalanced force is

More information

Resonance. The purpose of this experiment is to observe and evaluate the phenomenon of resonance.

Resonance. The purpose of this experiment is to observe and evaluate the phenomenon of resonance. Resonance Objective: The purpose of this experiment is to observe and evaluate the phenomenon of resonance. Background: Resonance is a wave effect that occurs when an object has a natural frequency that

More information

Simple Harmonic Motion

Simple Harmonic Motion 5 Simple Harmonic Motion Note: this section is not part of the syllabus for PHYS26. You should already be familiar with simple harmonic motion from your first year course PH115 Oscillations and Waves.

More information

Experiment Type: Open-Ended

Experiment Type: Open-Ended Simple Harmonic Oscillation Overview Experiment Type: Open-Ended In this experiment, students will look at three kinds of oscillators and determine whether or not they can be approximated as simple harmonic

More information

p = F net t (2) But, what is the net force acting on the object? Here s a little help in identifying the net force on an object:

p = F net t (2) But, what is the net force acting on the object? Here s a little help in identifying the net force on an object: Harmonic Oscillator Objective: Describe the position as a function of time of a harmonic oscillator. Apply the momentum principle to a harmonic oscillator. Sketch (and interpret) a graph of position as

More information

Solutions 2.4-Page 140

Solutions 2.4-Page 140 Solutions.4-Page 4 Problem 3 A mass of 3 kg is attached to the end of a spring that is stretched cm by a force of 5N. It is set in motion with initial position = and initial velocity v = m/s. Find the

More information

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

More information

HOOKE'S LAW AND SIMPLE HARMONIC MOTION OBJECT

HOOKE'S LAW AND SIMPLE HARMONIC MOTION OBJECT 5 M19 M19.1 HOOKE'S LAW AND SIMPLE HARMONIC MOTION OBJECT The object of this experiment is to determine whether a vertical mass-spring system obeys Hooke's Law and to study simple harmonic motion. THEORY

More information

2.3 Cantilever linear oscillations

2.3 Cantilever linear oscillations .3 Cantilever linear oscillations Study of a cantilever oscillation is a rather science - intensive problem. In many cases the general solution to the cantilever equation of motion can not be obtained

More information

Resonance. The purpose of this experiment is to observe and evaluate the phenomenon of resonance.

Resonance. The purpose of this experiment is to observe and evaluate the phenomenon of resonance. Resonance Objective: The purpose of this experiment is to observe and evaluate the phenomenon of resonance. Background: Resonance is the tendency of a system to oscillate with greater amplitude at some

More information

Coupled Electrical Oscillators Physics 3600 Advanced Physics Lab Summer 2010 Don Heiman, Northeastern University, 5/10/10

Coupled Electrical Oscillators Physics 3600 Advanced Physics Lab Summer 2010 Don Heiman, Northeastern University, 5/10/10 Coupled Electrical Oscillators Physics 3600 Advanced Physics Lab Summer 00 Don Heiman, Northeastern University, 5/0/0 I. Introduction The objectives of this experiment are: () explore the properties of

More information

Chapter 24 Physical Pendulum

Chapter 24 Physical Pendulum Chapter 4 Physical Pendulum 4.1 Introduction... 1 4.1.1 Simple Pendulum: Torque Approach... 1 4. Physical Pendulum... 4.3 Worked Examples... 4 Example 4.1 Oscillating Rod... 4 Example 4.3 Torsional Oscillator...

More information

Physics 53. Wave Motion 1

Physics 53. Wave Motion 1 Physics 53 Wave Motion 1 It's just a job. Grass grows, waves pound the sand, I beat people up. Muhammad Ali Overview To transport energy, momentum or angular momentum from one place to another, one can

More information

THE SPRING CONSTANT. Apparatus: A spiral spring, a set of weights, a weight hanger, a balance, a stop watch, and a twometer

THE SPRING CONSTANT. Apparatus: A spiral spring, a set of weights, a weight hanger, a balance, a stop watch, and a twometer THE SPRING CONSTANT Objective: To determine the spring constant of a spiral spring by Hooe s law and by its period of oscillatory motion in response to a weight. Apparatus: A spiral spring, a set of weights,

More information

Notes on the Periodically Forced Harmonic Oscillator

Notes on the Periodically Forced Harmonic Oscillator Notes on the Periodically orced Harmonic Oscillator Warren Weckesser Math 38 - Differential Equations 1 The Periodically orced Harmonic Oscillator. By periodically forced harmonic oscillator, we mean the

More information

Oscillations: Mass on a Spring and Pendulums

Oscillations: Mass on a Spring and Pendulums Chapter 3 Oscillations: Mass on a Spring and Pendulums 3.1 Purpose 3.2 Introduction Galileo is said to have been sitting in church watching the large chandelier swinging to and fro when he decided that

More information

Module M6.3 Solving second order differential equations

Module M6.3 Solving second order differential equations F L E X I B L E L E A R N I N G A P P R O A C H T O P H Y S I C S Module M6. Solving second order differential equations Opening items. Module introduction.2 Fast track questions. Rea to stu? 2 Methods

More information

STANDING WAVES. Objective: To verify the relationship between wave velocity, wavelength, and frequency of a transverse wave.

STANDING WAVES. Objective: To verify the relationship between wave velocity, wavelength, and frequency of a transverse wave. STANDING WAVES Objective: To verify the relationship between wave velocity, wavelength, and frequency of a transverse wave. Apparatus: Magnetic oscillator, string, mass hanger and assorted masses, pulley,

More information

HOOKE S LAW AND OSCILLATIONS

HOOKE S LAW AND OSCILLATIONS 9 HOOKE S LAW AND OSCILLATIONS OBJECTIVE To measure the effect of amplitude, mass, and spring constant on the period of a spring-mass oscillator. INTRODUCTION The force which restores a spring to its equilibrium

More information

Force. Net Force Mass. Acceleration = Section 1: Weight. Equipment Needed Qty Equipment Needed Qty Force Sensor 1 Mass and Hanger Set 1 Balance 1

Force. Net Force Mass. Acceleration = Section 1: Weight. Equipment Needed Qty Equipment Needed Qty Force Sensor 1 Mass and Hanger Set 1 Balance 1 Department of Physics and Geology Background orce Physical Science 1421 A force is a vector quantity capable of producing motion or a change in motion. In the SI unit system, the unit of force is the Newton

More information

Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum

Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum Updated 2013 (Mathematica Version) M1.1 Introduction. Lab M1: The Simple Pendulum The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are

More information

AP Physics C. Oscillations/SHM Review Packet

AP Physics C. Oscillations/SHM Review Packet AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

More information

Lab 5: Conservation of Energy

Lab 5: Conservation of Energy Lab 5: Conservation of Energy Equipment SWS, 1-meter stick, 2-meter stick, heavy duty bench clamp, 90-cm rod, 40-cm rod, 2 double clamps, brass spring, 100-g mass, 500-g mass with 5-cm cardboard square

More information

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 3)

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 3) Chapter 2. Small Oscillations Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 3) 2.1 Introduction If a particle, originally in a position of equilibrium we limit

More information

physics 111N oscillations & waves

physics 111N oscillations & waves physics 111N oscillations & waves periodic motion! often a physical system will repeat the same motion over and over! we call this periodic motion, or an oscillation the time it takes for the motion to

More information

Two mass-three spring system. Math 216 Differential Equations. Forces on mass m 1. Forces on mass m 2. Kenneth Harris

Two mass-three spring system. Math 216 Differential Equations. Forces on mass m 1. Forces on mass m 2. Kenneth Harris Two mass-three spring system Math 6 Differential Equations Kenneth Harris kaharri@umich.edu m, m > 0, two masses k, k, k 3 > 0, spring elasticity t), t), displacement of m, m from equilibrium. Positive

More information

PENDULUM PERIODS. First Last. Partners: student1, student2, and student3

PENDULUM PERIODS. First Last. Partners: student1, student2, and student3 PENDULUM PERIODS First Last Partners: student1, student2, and student3 Governor s School for Science and Technology 520 Butler Farm Road, Hampton, VA 23666 April 13, 2011 ABSTRACT The effect of amplitude,

More information

Computer Experiment. Simple Harmonic Motion. Kinematics and Dynamics of Simple Harmonic Motion. Evaluation copy

Computer Experiment. Simple Harmonic Motion. Kinematics and Dynamics of Simple Harmonic Motion. Evaluation copy INTRODUCTION Simple Harmonic Motion Kinematics and Dynamics of Simple Harmonic Motion Computer Experiment 16 When you suspend an object from a spring, the spring will stretch. If you pull on the object,

More information

23.7. An Application of Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.7. An Application of Fourier Series. Introduction. Prerequisites. Learning Outcomes An Application of Fourier Series 23.7 Introduction In this Section we look at a typical application of Fourier series. The problem we study is that of a differential equation with a periodic (but non-sinusoidal)

More information

11/27/2014 Partner: Diem Tran. Bungee Lab I: Exploring the Relationship Between Bungee Cord Length and Spring Force Constant

11/27/2014 Partner: Diem Tran. Bungee Lab I: Exploring the Relationship Between Bungee Cord Length and Spring Force Constant Bungee Lab I: Exploring the Relationship Between Bungee Cord Length and Spring Force Constant Introduction: This lab relies on an understanding of the motion of a spring and spring constant to facilitate

More information

1 CHAPTER 11 SIMPLE AND DAMPED OSCILLATORY MOTION

1 CHAPTER 11 SIMPLE AND DAMPED OSCILLATORY MOTION CHAPTER SIMPLE AND DAMPED OSCILLATORY MOTION. Simple Harmonic Motion I am assuming that this is by no means the first occasion on which the reader has met simple harmonic motion, and hence in this section

More information

Prelab Exercises: Hooke's Law and the Behavior of Springs

Prelab Exercises: Hooke's Law and the Behavior of Springs 59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

More information

Lab 5: Harmonic Oscillations and Damping

Lab 5: Harmonic Oscillations and Damping 3 Lab 5: Harmonic Oscillations and Damping I. Introduction A. Objectives for this lab: 1. Learn how to quantitatively model a real harmonic oscillator 2. Learn how damping affects simple harmonic motion

More information

HOOKE S LAW AND SIMPLE HARMONIC MOTION

HOOKE S LAW AND SIMPLE HARMONIC MOTION HOOKE S LAW AND SIMPLE HARMONIC MOTION Alexander Sapozhnikov, Brooklyn College CUNY, New York, alexs@brooklyn.cuny.edu Objectives Study Hooke s Law and measure the spring constant. Study Simple Harmonic

More information

Centripetal Force. 1. Introduction

Centripetal Force. 1. Introduction 1. Introduction Centripetal Force When an object travels in a circle, even at constant speed, it is undergoing acceleration. In this case the acceleration acts not to increase or decrease the magnitude

More information

Second Order Linear Differential Equations

Second Order Linear Differential Equations CHAPTER 2 Second Order Linear Differential Equations 2.. Homogeneous Equations A differential equation is a relation involving variables x y y y. A solution is a function f x such that the substitution

More information

14 Mass on a spring and other systems described by linear ODE

14 Mass on a spring and other systems described by linear ODE 14 Mass on a spring and other systems described by linear ODE 14.1 Mass on a spring Consider a mass hanging on a spring (see the figure). The position of the mass in uniquely defined by one coordinate

More information

EXPERIMENT 5: SERIES AND PARALLEL RLC RESONATOR CIRCUITS

EXPERIMENT 5: SERIES AND PARALLEL RLC RESONATOR CIRCUITS EXPERIMENT 5: SERIES AND PARALLEL RLC RESONATOR CIRCUITS Equipment List S 1 BK Precision 4011 or 4011A 5 MHz Function Generator OS BK 2120B Dual Channel Oscilloscope V 1 BK 388B Multimeter L 1 Leeds &

More information

Experiment 8. The Pendulum

Experiment 8. The Pendulum Experiment 8 The Pendulum 8.1 Objectives Investigate the functional dependence of the period ( ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle ( 0 ). Use a pendulum

More information

Experiment 4: Harmonic Motion Analysis

Experiment 4: Harmonic Motion Analysis Experiment 4: Harmonic Motion Analysis Background In this experiment you will investigate the influence of damping on a driven harmonic oscillator and study resonant conditions. The following theoretical

More information

L = 1 2 a(q) q2 V (q).

L = 1 2 a(q) q2 V (q). Physics 3550, Fall 2012 Motion near equilibrium - Small Oscillations Relevant Sections in Text: 5.1 5.6, 11.1 11.3 Motion near equilibrium 1 degree of freedom One of the most important situations in physics

More information

Chapter 8. Standing Waves on a String. A. Boundary conditions and initial conditions.

Chapter 8. Standing Waves on a String. A. Boundary conditions and initial conditions. Chapter 8. Standing Waves on a String The superposition principle for solutions of the wave equation guarantees that a sum of waves, each satisfying the wave equation, also represents a valid solution.

More information

Equilibrium. To determine the mass of unknown objects by utilizing the known force requirements of an equilibrium

Equilibrium. To determine the mass of unknown objects by utilizing the known force requirements of an equilibrium Equilibrium Object To determine the mass of unknown objects by utilizing the known force requirements of an equilibrium situation. 2 Apparatus orce table, masses, mass pans, metal loop, pulleys, strings,

More information

Second-Order Linear Equations

Second-Order Linear Equations 2 Second-Order Linear Equations In this chapter we study second-order linear differential equations of the form ax + bx + cx = f(t) and their applications to classical mechanics and electrical circuits.

More information

People s Physics book 3e Ch 25-1

People s Physics book 3e Ch 25-1 The Big Idea: In most realistic situations forces and accelerations are not fixed quantities but vary with time or displacement. In these situations algebraic formulas cannot do better than approximate

More information

Experiment P19: Simple Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor)

Experiment P19: Simple Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor) PASCO scientific Physics Lab Manual: P19-1 Science Workshop S. H. M. Mass on a Spring Experiment P19: Simple Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor) Concept Time SW Interface Macintosh

More information

PHY 157 Standing Waves on a String (Experiment 5)

PHY 157 Standing Waves on a String (Experiment 5) PHY 157 Standing Waves on a String (Experiment 5) Name: 1 Introduction In this lab you will observe standing waves on a string. You will also investigate the relationship between wave speed and tension

More information

Experiment 08: RLC Circuits and Resonance Dr. Pezzaglia

Experiment 08: RLC Circuits and Resonance Dr. Pezzaglia Mar9 RLC Circuit Page Experiment 8: RLC Circuits and Resonance Dr. Pezzaglia Theory When a system at a stable equilibrium is displaced, it will tend to oscillate. An Inductor combined with Capacitor will

More information

Experiment 9. The Pendulum

Experiment 9. The Pendulum Experiment 9 The Pendulum 9.1 Objectives Investigate the functional dependence of the period (τ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle (θ 0 ). Use a pendulum

More information

Inductors in AC Circuits

Inductors in AC Circuits Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum

More information

Copyright 2011 Casa Software Ltd. www.casaxps.com

Copyright 2011 Casa Software Ltd. www.casaxps.com Table of Contents Variable Forces and Differential Equations... 2 Differential Equations... 3 Second Order Linear Differential Equations with Constant Coefficients... 6 Reduction of Differential Equations

More information

Damping in a variable mass on a spring pendulum

Damping in a variable mass on a spring pendulum Damping in a variable mass on a spring pendulum Rafael M. Digilov, a M. Reiner, and Z. Weizman Department of Education in Technology and Science, Technion-Israel Institute of Technology, Haifa 32000, Israel

More information

Waves I: Generalities, Superposition & Standing Waves

Waves I: Generalities, Superposition & Standing Waves Chapter 5 Waves I: Generalities, Superposition & Standing Waves 5.1 The Important Stuff 5.1.1 Wave Motion Wave motion occurs when the mass elements of a medium such as a taut string or the surface of a

More information

AP Physics Scoring Guidelines

AP Physics Scoring Guidelines AP Physics 1 2015 Scoring Guidelines College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central is the official online home

More information

MECHANICS IV - SIMPLE HARMONIC MOTION

MECHANICS IV - SIMPLE HARMONIC MOTION M-IV-p.1 A. OSCILLATIONS B. SIMPLE PENDULUM C. KINEMATICS OF SIMPLE HARMONIC MOTION D. SPRING-AND-MASS SYSTEM E. ENERGY OF SHM F. DAMPED HARMONIC MOTION G. FORCED VIBRATION A. OSCILLATIONS A to-and-fro

More information

Simple harmonic motion

Simple harmonic motion PH-122- Dynamics Page 1 Simple harmonic motion 02 February 2011 10:10 Force opposes the displacement in A We assume the spring is linear k is the spring constant. Sometimes called stiffness constant Newton's

More information

Rotational Mechanics CHAPTER SOME IMPORTANT OBSERVATIONS

Rotational Mechanics CHAPTER SOME IMPORTANT OBSERVATIONS CHAPTER 6 Rotational Mechanics In this chapter, simple single-dimensional rotational processes will be treated. Essentially, we will be concerned with wheels rotating around fixed axes. It will become

More information

Physics 231 Lecture 15

Physics 231 Lecture 15 Physics 31 ecture 15 Main points of today s lecture: Simple harmonic motion Mass and Spring Pendulum Circular motion T 1/f; f 1/ T; ω πf for mass and spring ω x Acos( ωt) v ωasin( ωt) x ax ω Acos( ωt)

More information

1.10 Using Figure 1.6, verify that equation (1.10) satisfies the initial velocity condition. t + ") # x (t) = A! n. t + ") # v(0) = A!

1.10 Using Figure 1.6, verify that equation (1.10) satisfies the initial velocity condition. t + ) # x (t) = A! n. t + ) # v(0) = A! 1.1 Using Figure 1.6, verify that equation (1.1) satisfies the initial velocity condition. Solution: Following the lead given in Example 1.1., write down the general expression of the velocity by differentiating

More information

Physics 2305 Lab 11: Torsion Pendulum

Physics 2305 Lab 11: Torsion Pendulum Name ID number Date Lab CRN Lab partner Lab instructor Physics 2305 Lab 11: Torsion Pendulum Objective 1. To demonstrate that the motion of the torsion pendulum satisfies the simple harmonic form in equation

More information

Simple Harmonic Motion

Simple Harmonic Motion SHM-1 Siple Haronic Motion A pendulu, a ass on a spring, and any other kinds of oscillators ehibit a special kind of oscillatory otion called Siple Haronic Motion (SHM). SHM occurs whenever : i. there

More information

Determination of Acceleration due to Gravity

Determination of Acceleration due to Gravity Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two

More information

23.7. Application of Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.7. Application of Fourier Series. Introduction. Prerequisites. Learning Outcomes Application of Fourier Series 23.7 Introduction In this Section we look at a typical application of Fourier series. The problem we study is that of a differential equation with a periodic (but non-sinusoidal)

More information

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring

More information

2. The graph shows how the displacement varies with time for an object undergoing simple harmonic motion.

2. The graph shows how the displacement varies with time for an object undergoing simple harmonic motion. Practice Test: 29 marks (37 minutes) Additional Problem: 31 marks (45 minutes) 1. A transverse wave travels from left to right. The diagram on the right shows how, at a particular instant of time, the

More information

Lecture 31: Second order homogeneous equations II

Lecture 31: Second order homogeneous equations II Lecture 31: Second order homogeneous equations II Nathan Pflueger 21 November 2011 1 Introduction This lecture gives a complete description of all the solutions to any differential equation of the form

More information

General Physics Lab: Atwood s Machine

General Physics Lab: Atwood s Machine General Physics Lab: Atwood s Machine Introduction One may study Newton s second law using a device known as Atwood s machine, shown below. It consists of a pulley and two hanging masses. The difference

More information

Kinetic Friction. Experiment #13

Kinetic Friction. Experiment #13 Kinetic Friction Experiment #13 Joe Solution E01234567 Partner- Jane Answers PHY 221 Lab Instructor- Nathaniel Franklin Wednesday, 11 AM-1 PM Lecture Instructor Dr. Jacobs Abstract The purpose of this

More information

Ohm s Law. Electrical Quantity Description Unit Water Analogy Voltage or Potential Difference

Ohm s Law. Electrical Quantity Description Unit Water Analogy Voltage or Potential Difference Ohm s Law Experiment 25 The fundamental relationship among the three important electrical quantities current, voltage, and resistance was discovered by Georg Simon Ohm. The relationship and the unit of

More information

Logger Pro Modeling, Fitting and Linearization

Logger Pro Modeling, Fitting and Linearization Appendix C When physicists compare theory with experiment, they usually consider a physical model of the situation. The Bohr model or quark model may be the first that come to mind, but in fact nearly

More information

1: (ta initials) 2: first name (print) last name (print) brock id (ab13cd) (lab date)

1: (ta initials) 2: first name (print) last name (print) brock id (ab13cd) (lab date) 1: (ta initials) 2: first name (print) last name (print) brock id (ab13cd) (lab date) Experiment 5 Harmonic motion In this Experiment you will learn that Hooke s Law F = kx can be used to model the interaction

More information

Bungee Constant per Unit Length & Bungees in Parallel. Skipping school to bungee jump will get you suspended.

Bungee Constant per Unit Length & Bungees in Parallel. Skipping school to bungee jump will get you suspended. Name: Johanna Goergen Section: 05 Date: 10/28/14 Partner: Lydia Barit Introduction: Bungee Constant per Unit Length & Bungees in Parallel Skipping school to bungee jump will get you suspended. The purpose

More information

Chapter 13, example problems: x (cm) 10.0

Chapter 13, example problems: x (cm) 10.0 Chapter 13, example problems: (13.04) Reading Fig. 13-30 (reproduced on the right): (a) Frequency f = 1/ T = 1/ (16s) = 0.0625 Hz. (since the figure shows that T/2 is 8 s.) (b) The amplitude is 10 cm.

More information

Rotational Motion & Moment of Inertia

Rotational Motion & Moment of Inertia Rotational Motion & Moment of nertia Physics 161 ntroduction n this experiment we will study motion of objects is a circular path as well as the effect of a constant torque on a symmetrical body. n Part

More information

Practice Test SHM with Answers

Practice Test SHM with Answers Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

More information

Wave Motion (Chapter 15)

Wave Motion (Chapter 15) Wave Motion (Chapter 15) Waves are moving oscillations. They transport energy and momentum through space without transporting matter. In mechanical waves this happens via a disturbance in a medium. Transverse

More information

PHYS 202 Laboratory #4. Activity 1: Thinking about Oscillating Systems

PHYS 202 Laboratory #4. Activity 1: Thinking about Oscillating Systems SHM Lab 1 Introduction PHYS 202 Laboratory #4 Oscillations and Simple Harmonic Motion In this laboratory, we examine three simple oscillatory systems: a mass on a spring, a pendulum, and a mass on a rubber

More information

Electrical Resonance RLC circuits

Electrical Resonance RLC circuits Purpose: To investigate resonance phenomena that result from forced motion near a system's natural frequency. In this case the system will be a variety of RLC circuits. Theory: You are already familiar

More information