Frederick Griffith Dna Is The Genetic Material 11/24/2015. Important Scientists in the Discovery of DNA

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Frederick Griffith Dna Is The Genetic Material 11/24/2015. Important Scientists in the Discovery of DNA"

Transcription

1 hapter 16 P Dna Is he enetic Material.H Morgan s group: showed that genes are located along chromosomes. wo chemical components of chromosomes are DN and protein. Little was known about nucleic acids. Role of DN in heredity was first worked out by studying bacteria and the viruses that infect them. Important Scientists in the Discovery of DN Frederick riffith Oswald very lfred Hershey and Martha hase Rosalind Franklin Francis rick and James Watson Frederick riffith Discovery of role in 1928 Vaccine against pneumonia (mice) Frederick riffith studied Streptococcus pneumoniae wo stains of the bacterium Pathogenic Non pathogenic Heated the pathogenic and killed the bacteria. Mixed the cell remains with living bacteria of the nonpathogenic and found some cells were then pathogenic Frederick riffith his newly acquired trait was inherited by all the descendants of the transformed bacteria. alled the phenomenon transformation: a change in genotype and phenotype due to the assimilation of external DN by a cell. 1

2 Oswald very Identity of transforming substance hree main candidates DN RN Protein very broke open the heat-killed bacteria and extracted the cellular contents Special treatments to inactivate each of the three molecules Oswald very ested each for its ability to transform live nonpathogenic bacteria. DN was left active transformation occurred ransforming agent was then announced as DN Studied viruses for more information Bacteriophages (phages): bacteria-eaters virus is composed of DN(or RN) enclosed by a protective coat. Fig Hershey and hase Devised an experiment showing that only one of the two components enters the E.coli cell. Specifically looked at 2 2 invades Escherichia coli bacteria Radioactive isotope of sulfur to tag protein, and phosphorus to tag DN. EXPERIMEN Phage Bacterial cell Batch 1: radioactive sulfur ( 35 S) Batch 2: radioactive phosphorus ( 32 P) Empty Radioactive protein protein shell DN Radioactive DN Phage DN entrifuge entrifuge Radioactivity (phage protein) in liquid Pellet (bacterial cells and contents) Radioactivity Pellet (phage DN) in pellet Rosalind Franklin Used X-Ray crystallography to find out structure of DN molecules X near center shows DN twists around ngle of the X suggests two strands and the nitrogenous bases are near the center of the molecule Shows diameter of the double helix Francis rick and James Watson Built three-dimensional models of DN Used Rosalind Franklin s x-ray pictures of DN to assist in the model he Double Helix Width suggested that it was made up of two strands. Began to build models that would conform to the X-ray measurements and the chemistry of DN. 2

3 Watson and rick- Double Helix omposed of two complementary strands of DN wrapped around each other Uniform diameter Hydrogen bonds held the two strands together wo hydrogen bonds between and hree hydrogen bonds between and. hargaff s Rule Studied percentages of nitrogenous bases. lmost equal % s denine bonds to hymine uanine bonds to ytosine = support Nitrogenous Bases make up DN molecules he two types are: Purines wo rings in the structure Pyrimidines One ring in the structure hargaff s Rule Fig Sugar phosphate backbone 5 end Nitrogenous bases hymine () denine () ytosine () Phosphate DN nucleotide Sugar (deoxyribose) 3 end uanine () Base Pairing Watson and rick stated their hypothesis Pair of templates, each of which is complementary to the other. Prior to duplication, the hydrogen bonds are broken he two chains unwind and separate Each chain acts as a template Eventually, two pairs of chains will result. 3

4 DN Replication In DN replication, the parent molecule unwinds, and two new daughter strands are built based on basepairing rules When a cell copies a DN molecule, each strand serves as a template for ordering nucleotides into a new, complementary strand. Nucleotides line up along the template strand and are linked Where there was one double-stranded DN molecule at the beginning, there are then two at the end. he copying mechanism is analogous to using a photographic negative to make a positive Watson and rick s Hypothesis Figure 16.9 (a) Parent molecule (b) Separation of strands (c) Daughter DN molecules, each consisting of one parental strand and one new strand Fig Parent cell First replication Second replication Replication Models Remained untested for many years Difficult to perform Watson and rick predicted the semiconservative model Each daughter molecule will have one old strand (derived or conserved from the parent molecule) and one newly made strand here are two others: onservative Dispersive (a) onservative model (b) Semiconservative model (c) Dispersive model DN Replication Models onservative he two parental strands reassociate after acting as templates for new strands. Semiconservative he two strands of the parental molecule separate, and each functions as a template for synthesis of a new, complementary strand. Dispersive Each strand of both daughter molecules contains a mixture of old and newly synthesized DN. Semiconservative Model 1950 Matthew Meselson and Franklin Stahl devised a clever experiment that supported the semiconservative model. Widely acknowledged among biologists to be a classic example of elegant experimental design. Figure shows the experiment performed by Meselson and Stahl. 4

5 DN and Replication in Prokaryotes Prokaryotes: ring of chromosome holds nearly all of the cell s genetic material DN replication begins at a single point and continues to replicate whole circular strand Replication goes in both directions around the DN (begins with replication fork) Prokaryotes Eukaryotes Eukaryotic DN Replication he replication of a DN molecule begins at special sites called origins of replication Begins in hundreds of locations along the chromosome Begins when the DN molecule unzips creating: Replication fork Replication bubble Eukaryotic DN Replication Hydrogen bonds between base pairs breaks Helicases enzymes that untwist the double helix at the replication forks. Single-strand binding proteins bind to the unpaired DN strands, stabilizing them. opoisomerase relieves pressure of DN ahead of replication fork RN Primer RN chain Primase enzyme that synthesizes the primer Helicase will start to unwind the DN strand. opoisomerase will hold the strands together and prevent breaking Single-stranded binding proteins will stabilize the DN strands he Primase will start to form the RN chain Synthesizing a New DN Strand DN polymerase: catalyze the synthesis of new DN by adding nucleotides to a preexisting chain. Most DN polymerases require a primer and a DN template strand. DN polymerase III adds a DN nucleotide to the RN primer and then continues adding DN nucleotides complementary to the parent DN template strand. 5

6 ntiparallel Elongation he two strands of DN in a double helix are antiparallel (0riented in opposite directions). DN polymerases can only add nucleotides to the free 3 end of a primer or growing strand. NEVER HE 5 new strand can only elongate in the 5-3 direction LWYS Read in the 3 5 direction reated in 5 3 direction ntiparallel Elongation Leading Strand only 1 primer needed, moves toward the replication fork Lagging Strand many primers needed, moves away from the replication fork Okazaki Fragments on lagging strand, short segment of DN synthesized away from the replication fork DN ligase enzyme, joins the sugar-phosphate backbones of all the Okazaki fragments into a continuous DN strand he DN Replication omplex By interacting with other proteins at the fork, primase acts as a molecular brake, slowing progress of the replication fork. he DN replication complex does not move along the DN he DN moves through the complex Proofreading and Repairing DN During DN replication, DN polymerases proofread each nucleotide against its template as soon as it is added to the growing strand. he polymerase removes the incorrectly paired nucleotide and resumes synthesis. Mismatched nucleotides sometimes are missed. an also arise after replication Mismatched repair enzymes remove and replace incorrectly paired nucleotides that have resulted from replication errors. 6

7 Proofreading and Repairing DN Most cellular systems that repair incorrectly paired nucleotides use a mechanism that takes advantage of the base-paired structure of DN. Nuclease DN-cutting enzyme. uts out the segment of the strand containing the damaged segment. Enzymes involved in filling gaps: DN polymerase and DN ligase Nucleotide excision repair repair system, Figure Replicating the Ends of DN elomeres Found at the ends of each chromosome and contain no genes (protective cap) elomerase lengthens telomeres in gametes dds DN bases at the 5 end he shortening of telomeres might protect cells from cancerous growth by limiting the number of cell divisions Important Enzymes to Remember Helicase, single-strand binding protein, topoisomerase Primase Synthesis of RN primer DN polymerase III (DN pol III) dd new bases to DN strand DN polymerase I (DN pol I) Removes and replaces RN primer from 5 end DN ligase Links Okazaki fragments and replaces RN primer from 3 end Vocab Nucleoid dense region of DN in a prokaryotic cell hromatin complex of DN and proteins that makes up a eukaryotic chromosome Heterochromatin Eukaryotic chromatin that remains highly compacted during interphase and is generally not transcribed. Euchromatin he less condensed form of eukaryotic chromatin that is available for transcription. hromosome Structures Bacteria: one double-stranded, circular DN molecule that is associated with a small amount of protein. Prokaryotes: Ring of chromosomes Holds nearly all the cell s genetic material Eukaryotes: DN in chromosomes Found in nucleus 7

8 Fig a hromatin Packing In the cell, eukaryotic DN is combined with large amounts of protein. omplex of DN and protein chromatin Histones - proteins that are responsible for the first level of DN packing in chromatin Form a tight bond because DN is negatively charged and the histones have a positive charge DN double helix (2 nm in diameter) Histones Nucleosome (10 nm in diameter) Histone tail DN, the double helix Histones Nucleosomes, or beads on a string (10-nm fiber) H1 Fig b hromatid (700 nm) hromosome Organizations 30-nm fiber Loops Scaffold 300-nm fiber 10-nm fiber 30 nm fiber 300-nm fiber Replicated chromosome (1,400 nm) 30-nm fiber Looped domains (300-nm fiber) Metaphase chromosome 10 - nm fiber DN winds around histones to form nucleosome beads Nucleosomes are strung together he string between the beads is called linker DN Nucleosome consists of DN wound twice around a protein core composed of two molecules each. 10-nm coils Forms a chromatin fiber 30 nm thick Interactions between nucleosomes cause the thin fiber to coil or fold into this thicker fiber 30-nm fiber 8

9 30 nm fiber forms loops called looped domains attached to a chromosome scaffold made of proteins Scaffold is rich in one type of topoisomerase. 300-nm Fiber Heterochromatin and Euchromatin Heterochromatin During interphase, a few regions of chromatin are highly condensed into heterochromatin Dense packing of the heterochromatin makes it difficult for the cell to express genetic information coded in these regions Euchromatin Most chromatin is loosely packed in the nucleus during interphase ondenses prior to mitosis DN ligase, DN polymerase, Helicase, Primase, elomerase Single-strand binding proteins, opoisomerase, Nuclease 1. removes section of DN that is damaged 2. proofreads and repairs damaged/mismatched DN; base pairing 3. synthesis of RN primer 4. Links Okazaki fragments; replaces RN primer from 3 end (in both leading and lagging strand). 5. relieves pressure of DN ahead of replication fork 6. attach to separated DN strands to ensure they stay separated 7. breaks hydrogen bonds between DN strands 8. lengthens telomeres in gametes Questions 9

Chapter 16: DNA Structure & Replication

Chapter 16: DNA Structure & Replication hapter 16: DN Structure & Replication 1. DN Structure 2. DN Replication 1. DN Structure hapter Reading pp. 313-318 enetic Material: Protein or DN? Until the early 1950 s no one knew for sure, but it was

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance hapter 6 he Molecular Basis of Inheritance PowerPoint Lecture Presentations for Biology Eighth Edition Neil ampbell and Jane Reece Lectures by hris Romero, updated by Erin Barley with contributions from

More information

2. Why did biologists used to think that proteins are the genetic material?

2. Why did biologists used to think that proteins are the genetic material? Chapter 16: DNA: The Genetic Material 1. What must genetic material do? 2. Why did biologists used to think that proteins are the genetic material? 3. Describe Griffith s experiments with genetic transformation

More information

Chapter 6: DNA: Hereditary Molecules of Life pg : DNA Replication and Repair pg

Chapter 6: DNA: Hereditary Molecules of Life pg : DNA Replication and Repair pg UNIT 3: Molecular Genetics Chapter 6: DNA: Hereditary Molecules of Life pg. 268-6.4: DNA Replication and Repair pg. 282-290 The DNA molecule is capable of replicating on its own. This is important for

More information

DNA. Discovery of the DNA double helix

DNA. Discovery of the DNA double helix DNA Replication DNA Discovery of the DNA double helix A. 1950 s B. Rosalind Franklin - X-ray photo of DNA. C. Watson and Crick - described the DNA molecule from Franklin s X-ray. What is DNA? Question:

More information

I) DNA STRUCTURE AND REPLICATION B) DNA REPLICATION

I) DNA STRUCTURE AND REPLICATION B) DNA REPLICATION I) DN SRUURE ND REPLIION B) DN REPLIION I) DN Structure and Replication DN Replication for mitosis and meiosis to occur the DN must make an exact copy itself first (S Phase) this is called DN replication

More information

DNA AND IT S ROLE IN HEREDITY

DNA AND IT S ROLE IN HEREDITY DNA AND IT S ROLE IN HEREDITY Lesson overview and objectives - DNA/RNA structural properties What are DNA and RNA made of What are the structural differences between DNA and RNA What is the structure of

More information

DNA replication (Lecture 28,29)

DNA replication (Lecture 28,29) DNA replication (Lecture 28,29) 1. DNA replication and the cell cycle 2. DNA is Reproduced by Semiconservative Replication 2.1 Conservation of the Original Helix 2.2 The Meselson-Stahl Experiment 2.3 Semiconservative

More information

Nucleic Acids and DNA Replication. I. Biological Background

Nucleic Acids and DNA Replication. I. Biological Background Lecture 14: Nucleic Acids and DNA Replication I. Biological Background A. Types of nucleic acids: 1. Deoxyribonucleic acid (DNA) a. Makes up genes that indirectly direct protein synthesis b. Contain information

More information

During DNA replication, a cell uses a variety of proteins to create a new copy of its genome.

During DNA replication, a cell uses a variety of proteins to create a new copy of its genome. Principles of Biology contents 45 DNA Replication During DNA replication, a cell uses a variety of proteins to create a new copy of its genome. DNA replication is a set of timed processes involving many

More information

Study Guide Chapter 12

Study Guide Chapter 12 Study Guide Chapter 12 1. Know ALL of your vocabulary words! 2. Name the following scientists with their contributions to Discovering DNA: a. Strains can be transformed (or changed) into other forms while

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance Chapter 16 The Molecular Basis of Inheritance Lecture Outline Overview: Life s Operating Instructions In April 1953, James Watson and Francis Crick shook the scientific world with an elegant double-helical

More information

DNA Structure and Replication. Chapter Nine

DNA Structure and Replication. Chapter Nine DNA Structure and Replication Chapter Nine 2005 We know: DNAis the hereditary material DNAhas a double helix structure Made of four bases; A,T,C,G Sugar-Phosphate backbone DNAreplication is semi-conservative

More information

Mice die Mice live Mice live Mice die

Mice die Mice live Mice live Mice die Module 3E DA Structure and Replication In this module, we will examine: the molecular structure of the genetic material how the genetic material replicates how damage to the genetic material is repaired

More information

Chapter 6: Cell Growth and Reproduction Lesson 2: Chromosomes and DNA Replication

Chapter 6: Cell Growth and Reproduction Lesson 2: Chromosomes and DNA Replication Chapter 6: Cell Growth and Reproduction Lesson 2: Chromosomes and DNA Replication Cell reproduction involves a series of steps that always begin with the processes of interphase. During interphase the

More information

DNA Replication Activity Guide

DNA Replication Activity Guide DNA Replication Activity Guide Teacher Key Deoxyribonucleic Acid (DNA) Exploring DNA 1. List at least three reasons why a cell must undergo division. Answers may vary but may include: growth, repair, reproduction,

More information

Bio Factsheet. How Science Works: Meselson and Stahl s Classic Experiment. Number 207.

Bio Factsheet. How Science Works: Meselson and Stahl s Classic Experiment. Number 207. Number 207 How Science Works: Meselson and Stahl s lassic Experiment n 1953 James Watson and Francis rick built their model of the structure of DNA, which is still accepted today: DNA is an anti-parallel

More information

Lecture 9 DNA Structure & Replication

Lecture 9 DNA Structure & Replication Lecture 9 DNA Structure & Replication What is a Gene? Mendel s work left a key question unanswered: What is a gene? The work of Sutton and Morgan established that genes reside on chromosomes But chromosomes

More information

Appendix C DNA Replication & Mitosis

Appendix C DNA Replication & Mitosis K.Muma Bio 6 Appendix C DNA Replication & Mitosis Study Objectives: Appendix C: DNA replication and Mitosis 1. Describe the structure of DNA and where it is found. 2. Explain complimentary base pairing:

More information

8.1 Identifying DNA as the Genetic Material DNA was identified as the genetic material through a series of experiments.

8.1 Identifying DNA as the Genetic Material DNA was identified as the genetic material through a series of experiments. 8 HER From to roteins etting Ready to Learn review Key oncepts 8.1 Identifying as the enetic Material was identified as the genetic material through a series of experiments. 8.2 Structure of structure

More information

1. True or False? At the DNA level, recombination is initiated by a single stranded break in a DNA molecule. False

1. True or False? At the DNA level, recombination is initiated by a single stranded break in a DNA molecule. False 1. True or False? At the DNA level, recombination is initiated by a single stranded break in a DNA molecule. False 2. True or False? Dideoxy sequencing is a chain initiation method of DNA sequencing. False

More information

12.1 Identifying the Substance of Genes

12.1 Identifying the Substance of Genes 12.1 Identifying the Substance of Genes Lesson Objectives Summarize the process of bacterial transformation. Describe the role of bacteriophages in identifying genetic material. Identify the role of DNA

More information

a. transcription b. duplication c. transformation d. replication a. viruses b. enzymes c. coils of DNA d. form of bacteria

a. transcription b. duplication c. transformation d. replication a. viruses b. enzymes c. coils of DNA d. form of bacteria PRTIE TEST HPTER 12 KEY Name Period ate Seat 1. The process by which one strain of bacterium is apparently changed into another strain is called a. transcription b. duplication c. transformation d. replication

More information

Chromosome Mapping by Recombination

Chromosome Mapping by Recombination Chromosome Mapping by Recombination Genes on the same chromosome are said to be linked. Crossing over: the physical exchange of homologous chromosome segments A given crossover generates two reciprocal

More information

The Race to Discover DNA

The Race to Discover DNA The Race to Discover DNA Scientists call this the: Central Dogma of Molecular Biology! DNA RNA Protein How do we know that all of our genetic information comes from DNA? What type of experiment would you

More information

Think Visually Using the information in this chapter, complete the following concept map about DNA replication: DNA Replication.

Think Visually Using the information in this chapter, complete the following concept map about DNA replication: DNA Replication. 12 Study Guide Information and Heredity, Cellular Basis of Life DNA is a double-stranded protein molecule made up of nucleotide base pairs. DNA stores, copies, and transmits the genetic information in

More information

CHAPTER 3 Molecular Genetics DNA Replication

CHAPTER 3 Molecular Genetics DNA Replication CHAPTER 3 Molecular Genetics DNA Replication Watson and Crick DNA model implies a mechanism for replication: a. Unwind the DNA molecule. b. Separate the two strands. c. Make a complementary copy for each

More information

DNA replication. DNA RNA Protein

DNA replication. DNA RNA Protein DNA replication The central dogma of molecular biology transcription translation DNA RNA Protein replication Revers transcriptase The information stored by DNA: - protein structure - the regulation of

More information

Ch. 12: DNA and RNA 12.1 DNA Chromosomes and DNA Replication

Ch. 12: DNA and RNA 12.1 DNA Chromosomes and DNA Replication Ch. 12: DNA and RNA 12.1 DNA A. To understand genetics, biologists had to learn the chemical makeup of the gene Genes are made of DNA DNA stores and transmits the genetic information from one generation

More information

DNA Replication. (CHAPTER 11- Brooker Text) Sept 16 & 18, 2008 BIO 184 Dr. Tom Peavy. Sequence Complexity in the Genome

DNA Replication. (CHAPTER 11- Brooker Text) Sept 16 & 18, 2008 BIO 184 Dr. Tom Peavy. Sequence Complexity in the Genome DNA Replication (CHAPTER 11- Brooker Text) Sept 16 & 18, 2008 BIO 184 Dr. Tom Peavy Sequence Complexity in the Genome 60-70% of human DNA fragments are unique DNA sequences 1 What are the structural features

More information

The Structure, Replication, and Chromosomal Organization of DNA

The Structure, Replication, and Chromosomal Organization of DNA Michael Cummings Chapter 8 The Structure, Replication, and Chromosomal Organization of DNA David Reisman University of South Carolina History of DNA Discoveries Friedrich Miescher Isolated nuclein from

More information

DNA. Form and Function

DNA. Form and Function DNA Form and Function DNA: Structure and replication Understanding DNA replication and the resulting transmission of genetic information from cell to cell, and generation to generation lays the groundwork

More information

INTRODUCTION TO DNA Replication

INTRODUCTION TO DNA Replication INTRODUCTION TO DNA Replication - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Chapter 13 covers a descriptive explanation of Deoxyribose nucleic Acid

More information

1.5 page 3 DNA Replication S. Preston 1

1.5 page 3 DNA Replication S. Preston 1 AS Unit 1: Basic Biochemistry and Cell Organisation Name: Date: Topic 1.5 Nucleic Acids and their functions Page 3 l. DNA Replication 1. Go through PowerPoint 2. Read notes p2 and then watch the animation

More information

3/23/2012. DNA Replication. DNA Replication. DNA Replication. Steps in DNA Replication. SBI4U1 Molecular Genetics

3/23/2012. DNA Replication. DNA Replication. DNA Replication. Steps in DNA Replication. SBI4U1 Molecular Genetics SBI4U1 Molecular Genetics Recall: mitosis requires that each daughter cell has an exact copy of parent DNA. Ms. Ponvia The Watson-Crick model suggests how this occurs: Parent DNA molecule unzips, creating

More information

DNA Replication. Introduction... 1 The Mechanism of Replication... 2 DNA Replication Rates... 4 References... 5

DNA Replication. Introduction... 1 The Mechanism of Replication... 2 DNA Replication Rates... 4 References... 5 DNA Replication Contents Introduction... 1 The Mechanism of Replication... 2 DNA Replication Rates... 4 References... 5 Introduction In their report announcing the structure of the DNA molecule, Watson

More information

Ch 16 and Introduction of Ch 17. This PowerPoint is posted. Replication Transcription Translation Protein!

Ch 16 and Introduction of Ch 17. This PowerPoint is posted. Replication Transcription Translation Protein! Ch 16 and Introduction of Ch 17 This PowerPoint is posted. Replication Transcription Translation Protein! In the start of things lin the 1950 s scientists knew that chromosomes carry hereditary material

More information

DNA Replication in Prokaryotes

DNA Replication in Prokaryotes OpenStax-CNX module: m44488 1 DNA Replication in Prokaryotes OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section,

More information

DNA, genes and chromosomes

DNA, genes and chromosomes DNA, genes and chromosomes Learning objectives By the end of this learning material you would have learnt about the components of a DNA and the process of DNA replication, gene types and sequencing and

More information

DNA REPLICATION. Genetica per Scienze Naturali a.a prof S. Presciuttini

DNA REPLICATION. Genetica per Scienze Naturali a.a prof S. Presciuttini DNA REPLICATION This document is licensed under the Attribution-NonCommercial-ShareAlike 2.5 Italy license, available at http://creativecommons.org/licenses/by-nc-sa/2.5/it/ 1. DNA Replication In both

More information

DNA: Structure and Replication

DNA: Structure and Replication 7 DNA: Structure and Replication WORKING WITH THE FIGURES 1. In Table 7-1, why are there no entries for the first four tissue sources? For the last three entries, what is the most likely explanation for

More information

Chapter 11: Molecular Structure of DNA and RNA

Chapter 11: Molecular Structure of DNA and RNA Chapter 11: Molecular Structure of DNA and RNA Student Learning Objectives Upon completion of this chapter you should be able to: 1. Understand the major experiments that led to the discovery of DNA as

More information

DNA synthesis_pic Basic requirements for DNA synthesis Substrates. The four deoxynucleoside triphosphates (dntps) deoxyadenosine triphosphate (datp),

DNA synthesis_pic Basic requirements for DNA synthesis Substrates. The four deoxynucleoside triphosphates (dntps) deoxyadenosine triphosphate (datp), Basic requirements for DNA synthesis Substrates. The four deoxynucleoside triphosphates (dntps) deoxyadenosine triphosphate (datp), deoxyguanosine triphosphate (dgtp), deoxycytidine triphos-phate (dctp),

More information

Choose the response which best answers the question or completes the statement.

Choose the response which best answers the question or completes the statement. Choose the response which best answers the question or completes the statement. 1. The process of transformation in bacteria involves (1.) transfer of genes for making a capsule. (2.) infection with a

More information

Structure and Function of DNA

Structure and Function of DNA Structure and Function of DNA DNA and RNA Structure DNA and RNA are nucleic acids. They consist of chemical units called nucleotides. The nucleotides are joined by a sugar-phosphate backbone. The four

More information

DNA, RNA AND PROTEIN SYNTHESIS

DNA, RNA AND PROTEIN SYNTHESIS DNA, RNA AND PROTEIN SYNTHESIS Evolution of Eukaryotic Cells Eukaryotes are larger, more complex cells that contain a nucleus and membrane bound organelles. Oldest eukarytotic fossil is 1800 million years

More information

Sample Questions for Exam 3

Sample Questions for Exam 3 Sample Questions for Exam 3 1. All of the following occur during prometaphase of mitosis in animal cells except a. the centrioles move toward opposite poles. b. the nucleolus can no longer be seen. c.

More information

Bio 102 Practice Problems Chromosomes and DNA Replication

Bio 102 Practice Problems Chromosomes and DNA Replication Bio 102 Practice Problems Chromosomes and DNA Replication Multiple choice: Unless otherwise directed, circle the one best answer: 1. Which one of the following enzymes is NT a key player in the process

More information

DNA (Deoxyribonucleic Acid)

DNA (Deoxyribonucleic Acid) DNA (Deoxyribonucleic Acid) Genetic material of cells GENES units of genetic material that CODES FOR A SPECIFIC TRAIT Called NUCLEIC ACIDS DNA is made up of repeating molecules called NUCLEOTIDES Phosphate

More information

Nucleic Acids: DNA and RNA

Nucleic Acids: DNA and RNA Nucleic Acids: DNA and RNA Nucleic Acids Responsible for the transfer of genetic information. Two forms of nucleic acids: Ribonucleic Acid (RNA) Mainly found in cytoplasm Deoxyribonucleic Acid (DNA) Found

More information

Genetics. Chapter 9. Chromosome. Genes Three categories. Flow of Genetics/Information The Central Dogma. DNA RNA Protein

Genetics. Chapter 9. Chromosome. Genes Three categories. Flow of Genetics/Information The Central Dogma. DNA RNA Protein Chapter 9 Topics - Genetics - Flow of Genetics/Information - Regulation - Mutation - Recombination gene transfer Genetics Genome - the sum total of genetic information in a organism Genotype - the A's,

More information

Chapter 6 DNA Replication

Chapter 6 DNA Replication Chapter 6 DNA Replication Each strand of the DNA double helix contains a sequence of nucleotides that is exactly complementary to the nucleotide sequence of its partner strand. Each strand can therefore

More information

Unit 9: DNA, RNA, and Proteins. Pig and elephant DNA just don t splice, but why?

Unit 9: DNA, RNA, and Proteins. Pig and elephant DNA just don t splice, but why? Unit 9: DNA, RNA, and Proteins Pig and elephant DNA just don t splice, but why? BONUS - History of DNA Structure of DNA 3.3.1 - Outline DNA nucleotide structure in terms of sugar (deoxyribose), base and

More information

INTRODUCTION TO DNA. DNA, CHROMOSOMES AND GENES How do these terms relate to one another?

INTRODUCTION TO DNA. DNA, CHROMOSOMES AND GENES How do these terms relate to one another? INTRODUCTION TO DNA You've probably heard the term a million times. You know that DNA is something inside cells; you probably know that DNA has something to do with who we are and how we get to look the

More information

Chapter 4.2 (textbook: Molecular Cell Biology 6 ed, Lodish section: ) DNA Replication, Repair, and Recombination

Chapter 4.2 (textbook: Molecular Cell Biology 6 ed, Lodish section: ) DNA Replication, Repair, and Recombination Chapter 4.2 (textbook: Molecular Cell Biology 6 ed, Lodish section: 4.5-4.6) DNA Replication, Repair, and Recombination Cell division - mitosis S-phase is tightly regulated by kinases Mitosis can be divided

More information

4. DNA replication Pages: 979-984 Difficulty: 2 Ans: C Which one of the following statements about enzymes that interact with DNA is true?

4. DNA replication Pages: 979-984 Difficulty: 2 Ans: C Which one of the following statements about enzymes that interact with DNA is true? Chapter 25 DNA Metabolism Multiple Choice Questions 1. DNA replication Page: 977 Difficulty: 2 Ans: C The Meselson-Stahl experiment established that: A) DNA polymerase has a crucial role in DNA synthesis.

More information

DNA Structure and Replication How is genetic information stored and copied?

DNA Structure and Replication How is genetic information stored and copied? Why? DN Structure and Replication How is genetic information stored and copied? Deoxyribonucleic acid or DN is the molecule of heredity. It contains the genetic blueprint for life. For organisms to grow

More information

I. DNA, Chromosomes, Chromatin, and Genes. II. DNA Deoxyribonucleic Acid Located in the of the cell Codes for your - discovered DNA in 1928

I. DNA, Chromosomes, Chromatin, and Genes. II. DNA Deoxyribonucleic Acid Located in the of the cell Codes for your - discovered DNA in 1928 Name: Period: Date: = passing on of characteristics from parents to offspring How?...! I. DNA, Chromosomes, Chromatin, and Genes = blueprint of life (has the instructions for making an organism) = uncoiled

More information

Reminder. The genetic information in a gene is encoded in the sequence of bases on one strand of DNA.

Reminder. The genetic information in a gene is encoded in the sequence of bases on one strand of DNA. DNA Replication Genes are DNA. Reminder DNA is a double-stranded molecule. The genetic information in a gene is encoded in the sequence of bases on one strand of DNA. 1 10 20 30 40 50 60 70 80 90 100 AcatttgcttctgacacaactgtgttcactagcaactcaaacagacaccATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGC

More information

Chapter 10 Molecular Biology of the Gene

Chapter 10 Molecular Biology of the Gene Chapter 10 Molecular Biology of the Gene PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009 Pearson Education, Inc. Lecture

More information

Copyright 2012 Nelson Education Ltd. Chapter 6: DNA Hereditary Molecules of Life 6-2

Copyright 2012 Nelson Education Ltd. Chapter 6: DNA Hereditary Molecules of Life 6-2 Chapter 6 Review, pages 304 309 Knowledge 1. c 2. d 3. b 4. c 5. b 6. d 7. b 8. a 9. b 10. c 11. c 12. d 13. a 14. False. Bacteria do not possess membrane-bound organelles to store their DNA. 15. False.

More information

Chapter 10 THE STRUCTURE OF THE GENETIC MATERIAL Experiments showed that DNA is the genetic material

Chapter 10 THE STRUCTURE OF THE GENETIC MATERIAL Experiments showed that DNA is the genetic material Chapter 10 Molecular Biology of the Gene THE STRUCTURE OF THE GENETIC MATERIAL oweroint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Lecture by

More information

TTGGHTGUTGG CCAAACACCAA AACCCACAACC HHUUTHUGHUU

TTGGHTGUTGG CCAAACACCAA AACCCACAACC HHUUTHUGHUU Conceptual Questions C1. Answer: It is a double-stranded structure that follows the AT/GC rule. C2. Answer: Bidirectional replication refers to DNA replication in both directions starting from one origin.

More information

DNA: Molecule of Life

DNA: Molecule of Life DNA: Molecule of Life History DNA Structure Protein Synthesis Gene Regulation History of DNA H I S T O By the 1940 s, scientists knew that chromosomes consisted of both DNA and protein but did not know

More information

The Nucleus and DNA Replication

The Nucleus and DNA Replication The Nucleus and DNA Replication Bởi: OpenStaxCollege The nucleus is the largest and most prominent of a cell s organelles ([link]). The nucleus is generally considered the control center of the cell because

More information

BCOR 011, Exam 3. Multiple Choice: Select the best possible answer. Name KEY Section

BCOR 011, Exam 3. Multiple Choice: Select the best possible answer. Name KEY Section BCOR 011, Exam 3 Name KEY Section Multiple Choice: Select the best possible answer. 1. A parent cell divides to form two genetically identical daughter cells in the nuclear process of mitosis. For mitosis

More information

7. 3. replication. Unit 7: Molecular biology and genetics

7. 3. replication. Unit 7: Molecular biology and genetics 7. 3 DN replication he fact that DN is a self-replicating molecule and can make copies of itself is the basis of all life forms. It is the essence of what life is. Indeed, according to Richard Dawkins

More information

DNA Replication & Protein Synthesis. This isn t a baaaaaaaddd chapter!!!

DNA Replication & Protein Synthesis. This isn t a baaaaaaaddd chapter!!! DNA Replication & Protein Synthesis This isn t a baaaaaaaddd chapter!!! The Discovery of DNA s Structure Watson and Crick s discovery of DNA s structure was based on almost fifty years of research by other

More information

GENETICS OF BACTERIA AND VIRUSES

GENETICS OF BACTERIA AND VIRUSES GENETICS OF BACTERIA AND VIRUSES 1 Genes of bacteria are found in bacterial chromosomes Usually a single type of chromosome May have more than one copy of that chromosome Number of copies depends on the

More information

BINF6201/8201. Basics of Molecular Biology

BINF6201/8201. Basics of Molecular Biology BINF6201/8201 Basics of Molecular Biology 08-26-2016 Linear structure of nucleic acids Ø Nucleic acids are polymers of nucleotides Ø Nucleic acids Deoxyribonucleic acids (DNA) Ribonucleic acids (RNA) Phosphate

More information

Answer: 2. Uracil. Answer: 2. hydrogen bonds. Adenine, Cytosine and Guanine are found in both RNA and DNA.

Answer: 2. Uracil. Answer: 2. hydrogen bonds. Adenine, Cytosine and Guanine are found in both RNA and DNA. Answer: 2. Uracil Adenine, Cytosine and Guanine are found in both RNA and DNA. Thymine is found only in DNA; Uracil takes its (Thymine) place in RNA molecules. Answer: 2. hydrogen bonds The complementary

More information

2. The number of different kinds of nucleotides present in any DNA molecule is A) four B) six C) two D) three

2. The number of different kinds of nucleotides present in any DNA molecule is A) four B) six C) two D) three Chem 121 Chapter 22. Nucleic Acids 1. Any given nucleotide in a nucleic acid contains A) two bases and a sugar. B) one sugar, two bases and one phosphate. C) two sugars and one phosphate. D) one sugar,

More information

The Cell Cycle, Chromosomes and Mitosis

The Cell Cycle, Chromosomes and Mitosis SIM uition he ell ycle, hromosomes and Mitosis Biology S he DN in a diploid human cell is nearly 2 m long. he diameter of a cell is only 30 10-6 m. With this in mind, it is obvious, that eukaryotic DN

More information

2. The work of Messelson & Stahl showed semi-conservative replication. 4. Cairn's experiments showed chromosomes are semi-conservatively replicated.

2. The work of Messelson & Stahl showed semi-conservative replication. 4. Cairn's experiments showed chromosomes are semi-conservatively replicated. BIOLOGY 207 - Dr.McDermid Lecture#2/3 DNA Structure & Replication Readings: Griffiths et al, 7 th Edition: Ch. 8 pp 243-259 (corrected) Problems: Griffiths et al, 7 th Edition: Ch. 8 Tier 1: # 2,3,5,9,13

More information

POGIL Cell Biology Activity 6 DNA Replication MODEL 1: "Replication Bubble"

POGIL Cell Biology Activity 6 DNA Replication MODEL 1: Replication Bubble POGIL Cell Biology Activity 6 DNA Replication MODEL 1: "Replication Bubble" The circle is an E. coli chromosome at the beginning of DNA synthesis. The original DNA strands are called "parental strands".

More information

Cells, DNA, Cell Division, Mitosis, Meiosis...Practice

Cells, DNA, Cell Division, Mitosis, Meiosis...Practice Name: Class: _ Date: _ Cells, DNA, Cell Division, Mitosis, Meiosis...Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Normal human body cells contain

More information

Some comments on biochemistry

Some comments on biochemistry BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 13: DNA replication and repair http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Some comments on biochemistry The last

More information

The Watson-Crick Proposal. DNA Replication. Semiconservative DNA replication

The Watson-Crick Proposal. DNA Replication. Semiconservative DNA replication Cell and Molecular Biology The Watson-Crick Proposal DNA Replication DNA strands are complementary Nucleotides are lined up on templates according to base pair rules Kanokporn Boonsirichai ksatima@live.com

More information

II. DNA Deoxyribonucleic Acid Located in the nucleus of the cell Codes for your genes

II. DNA Deoxyribonucleic Acid Located in the nucleus of the cell Codes for your genes HEREDITY = passing on of characteristics from parents to offspring How?...DNA! I. DNA, Chromosomes, Chromatin, and Genes DNA = blueprint of life (has the instructions for making an organism) Chromatin=

More information

Biology - Student Reader & Workbook Unit 3, Chapter 4: Molecular Genetics - DNA Structure and Protein Synthesis

Biology - Student Reader & Workbook Unit 3, Chapter 4: Molecular Genetics - DNA Structure and Protein Synthesis Biology - Student Reader & Workbook Unit 3, Chapter 4: Molecular Genetics - DNA Structure and Protein Synthesis UNIT 3, CHAPTER 4: MOLECULAR GENETICS: DNA STRUCTURE AND... 3 PROTEIN SYNTHESIS... 3 LESSON

More information

DNA AND IT S STRUCTURE, FUNCTION, TYPES, MODES OF REPLICATION AND REPAIR

DNA AND IT S STRUCTURE, FUNCTION, TYPES, MODES OF REPLICATION AND REPAIR DNA AND IT S STRUCTURE, FUNCTION, TYPES, MODES OF REPLICATION AND REPAIR The discovery that DNA is the prime genetic molecule, carrying all the hereditary information within chromosomes, immediately had

More information

7 Nucleic acids. Chapter summary a reminder of the issues to be revised

7 Nucleic acids. Chapter summary a reminder of the issues to be revised 7 Nucleic acids Chapter summary a reminder of the issues to be revised 1 DNA, an extremely long, thread-like macromolecule, consists of two anti-parallel polynucleotide strands, paired together and held

More information

Chapter 10 Cell Growth and Division

Chapter 10 Cell Growth and Division Chapter Outline Chapter 10 Cell Growth and Division Section 1: Cell Reproduction KEY IDEAS > Why do cells divide? > How is DNA packaged into the nucleus? > How do cells prepare for division? WHY CELLS

More information

(DNA) 2 = = RNA - DNA

(DNA) 2 = = RNA - DNA Genetics and Cellular Function Genes and nucleic acids Protein synthesis and secretion DNA replication and the cell cycle Chromosomes and heredity Organization of the Chromatin Threadlike chromatin = chromosomes

More information

Introduction. Chapter 11 DNA replication, repair and recombination. Overview. DNA replication is essential for life. Short on DNA structure

Introduction. Chapter 11 DNA replication, repair and recombination. Overview. DNA replication is essential for life. Short on DNA structure Chapter 11 DNA replication, repair and recombination Overview Brief introduction DNA replication DNA repair DNA recombination DNA replication is essential for life Introduction Cells divide and make copies

More information

Chapter 2. Introduction to some basic features of genetic information: From DNA to proteins

Chapter 2. Introduction to some basic features of genetic information: From DNA to proteins Chapter 2 Introduction to some basic features of genetic information: From DNA to proteins DAVID QUIST, 1 KAARE M. NIELSEN 1, 2 AND TERJE TRAAVIK 1, 3 1 THE NORWEGIAN INSTITUTE OF GENE ECOLOGY (GENØK),

More information

Part III. Genetic information replication and flow

Part III. Genetic information replication and flow Part III Genetic information replication and flow Chapter 16 DNA Biosynthesis and Recombination The biological function of DNA Store genetic information Replicate genetic information Express genetic information

More information

DNA TM Review And EXAM Review. Ms. Martinez

DNA TM Review And EXAM Review. Ms. Martinez DNA TM Review And EXAM Review Ms. Martinez 1. Write out the full name for DNA molecule. Deoxyribonucleic acid 2. What are chromosomes? threadlike strands made of DNA and PROTEIN 3. What does DNA control

More information

Cells, DNA, Cell Cycle...Practice

Cells, DNA, Cell Cycle...Practice Name: Period: Date: Cells, DNA, Cell Cycle...Practice Multiple Choice Identify the choice that best completes the statement or answers the question. Indicate your answer choice with an UPPER CASE letter

More information

DNA Synthesis KEY CONCEPTS

DNA Synthesis KEY CONCEPTS FREEM14_1409417_F_303-324 11/6/04 1:10 M age 303 14 DN Synthesis KEY NES enes are made of DN. When DN is copied, each strand of a DN double helix serves as the template for the synthesis of a complementary

More information

Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism )

Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism ) Biology 1406 Exam 3 Notes Structure of DNA Ch. 10 Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism ) Proteins

More information

1. In the experiments of Griffith, the conversion of nonlethal R-strain bacteria to lethal S- strain bacteria:

1. In the experiments of Griffith, the conversion of nonlethal R-strain bacteria to lethal S- strain bacteria: Name Chapter 12: DNA: The Carrier of Genetic Information Mrs. Laux AP Biology Take home test #10 on Chaps. 12 and 13 DUE: MONDAY, DECEMBER 14, 2009 MULTIPLE CHOICE QUESTIONS 1. In the experiments of Griffith,

More information

Molecular Genetics. The branch of genetics that deals with the molecules responsible for the transmission of traits from parent to offspring.

Molecular Genetics. The branch of genetics that deals with the molecules responsible for the transmission of traits from parent to offspring. Page 1 of 23 Molecular Genetics The branch of genetics that deals with the molecules responsible for the transmission of traits from parent to offspring. Discovering DNA as the material of heredity DNA

More information

DNA (genetic information in genes) RNA (copies of genes) proteins (functional molecules) directionality along the backbone 5 (phosphate) to 3 (OH)

DNA (genetic information in genes) RNA (copies of genes) proteins (functional molecules) directionality along the backbone 5 (phosphate) to 3 (OH) DNA, RNA, replication, translation, and transcription Overview Recall the central dogma of biology: DNA (genetic information in genes) RNA (copies of genes) proteins (functional molecules) DNA structure

More information

Structure of DNA Remember: genes control certain traits, genes are sections of DNA

Structure of DNA Remember: genes control certain traits, genes are sections of DNA tructure of DNA Remember: genes control certain traits, genes are sections of DNA I. tructure of DNA (deoxyribonucleic acid) A. Made of nucleotides 1. nucleotides have 3 main parts a. sugar (deoxyribose)

More information

Target Practice. Cellular Divisions, Molecular Basis of Inheritance, Gene to Protein, and Regulation of Gene Expression. Critical Vocabulary

Target Practice. Cellular Divisions, Molecular Basis of Inheritance, Gene to Protein, and Regulation of Gene Expression. Critical Vocabulary Target Practice Cellular Divisions, Molecular Basis of Inheritance, Gene to Protein, and Regulation of Gene Expression Critical Vocabulary Chapter 12: Cell cycle, genome, chromosomes, somatic cells, gametes,

More information

4.1 Cell Division and Genetic Material pg The Cell Theory is a central idea to Biology and it evolved in the 1800 s. The Cell Theory States:

4.1 Cell Division and Genetic Material pg The Cell Theory is a central idea to Biology and it evolved in the 1800 s. The Cell Theory States: 4.1 Cell Division and Genetic Material pg. 160 The Cell Theory is a central idea to Biology and it evolved in the 1800 s. The Cell Theory States: 1. All living things are composed of one or more cells.

More information

2.1 Nucleic acids the molecules of life

2.1 Nucleic acids the molecules of life 1 2.1 Nucleic acids the molecules of life Nucleic acids information molecules of the cells form new cells stored in chromosomes in nucleus of the cell in the form of a code in DNA / parts of the code are

More information

Genetics Notes C. Molecular Genetics

Genetics Notes C. Molecular Genetics Genetics Notes C Molecular Genetics Vocabulary central dogma of molecular biology Chargaff's rules messenger RNA (mrna) ribosomal RNA (rrna) transfer RNA (trna) Your DNA, or deoxyribonucleic acid, contains

More information

These machines catalyze some of the most rapid and accurate processes that take place within cells and Their mechanisms clearly demonstrate the

These machines catalyze some of the most rapid and accurate processes that take place within cells and Their mechanisms clearly demonstrate the DNA Replication: The ability of cells to maintain a high degree of order in a chaotic universe depends upon the accurate duplication of vast quantities of genetic information carried in chemical form as

More information