Phys 201 Fall 2009 Thursday, September 17, 2009 & Tuesday, September 19, Chapter 3: Mo?on in Two and Three Dimensions

Size: px
Start display at page:

Download "Phys 201 Fall 2009 Thursday, September 17, 2009 & Tuesday, September 19, Chapter 3: Mo?on in Two and Three Dimensions"

Transcription

1 Phys 201 Fall 2009 Thursday, September 17, 2009 & Tuesday, September 19, 2009 Chapter 3: Mo?on in Two and Three Dimensions

2 Displacement, Velocity and Acceleration Displacement describes the location of a particle Velocity is rate of change of displacement Acceleration is rate of change of velocity In more than one dimension, displacement, velocity, and acceleration are all vectors.

3 3-D Kinematics x = x(t) v x = dx dt a x = dv x dt = d 2 x dt 2 y = y(t) v y = dy dt a y = dv y dt = d 2 y dt 2 z = z(t) v z = dz dt a z = dv z dt = d 2 z dt 2 r = r t ( ) v = d r dt a = d 2 r d t 2

4 3-D Kinematics x = x(t) v = dx dt a = dv dt = d 2 x dt 2

5 Displacement of a particle in two dimensions r = r = x 2 + y 2 y = r sin θ θ x = x cos θ

6 Change of displacement of a moving particle average velocity is v = Δ r Δt

7 Magnitude of velocity vector: v = v x 2 + v y 2 Direction of velocity vector described by θ: θ = tan 1 v y v x y θ v x v y x

8 Average velocity over time interval Δt: v = v = Δ r Δt Instantaneous velocity: v (t) = lim Δt 0 Δ r Δt = d r dt

9 Relative velocity Velocity is defined relative to a frame of reference. v x = 0 v x 0

10 Example 3-2: Flying plane in wind Wind blows east (along x) with velocity v AG = 90 km/h Pilot of plane that flies 200 km/h wishes to fly due north. What direction should he point?

11 Example 3-2: Flying plane in wind Wind blows east (along x) with velocity v AG = 90 km/h Pilot of plane that flies 200 km/h wishes to fly due north. What direction should he point? Velocity of plane in x-direction = v AG -v pa sinθ. To go due north, this component of the velocity must be zero: sinθ = v AG /v pa = (90 km/hr)/(200 km/hr) sinθ = 0.45 θ = 0.47 radians from N [ or, in degrees, 0.47 radians x (360 degrees)/(2π radians) = 27 W of N]

12 Question Three swimmers can swim equally fast relative to the water. They have a race to see who can swim across a river in the least time. Relative to the water, Beth (C) swims perpendicular to the flow, Ann (A) swims upstream, and Carly (C) swims downstream. Which swimmer wins the race? A) Ann B) Beth C) Carly

13 Question Three swimmers can swim equally fast relative to the water. They have a race to see who can swim across a river in the least time. Relative to the water, Beth (B) swims perpendicular to the flow, Ann (A) swims upstream, and Carly (C) swims downstream. Which swimmer wins the race? A) Ann B) Beth C) Carly correct Time to get across = width of river/perpendicular component of velocity. Beth has the largest perpendicular component of velocity.

14 Question (seagull) A seagull flies through the air with a velocity of 10 m/s in the absence of wind. Assume it can only make the same effort while flying in wind. It makes a daily round-trip to an island one km from shore. Compare the time is takes for the seagull to fly on a calm day to the time it takes when the wind is blowing constantly towards the shore at 5 m/s. a. The round-trip time is the same with and without the wind b. The round-trip time is always longer with the wind. c. It is not possible to calculate this.

15 a. The round-trip time is the same with and without the wind b. The round-trip time is always longer with the wind. c. It is not possible to calculate this. Question (seagull) A seagull flies through the air with a velocity of 10 m/s in the absence of wind. Assume it can only make the same effort while flying in wind. It makes a daily round-trip to an island one km from shore. Compare the time is takes for the seagull to fly on a calm day to the time it takes when the wind is blowing constantly towards the shore at 5 m/s. Total round trip time in the absence of wind is 2 (1000 m)/(10 m/s) = 200 s. In the presence of wind, the seagull s speed going towards shore is 15 m/s and away from shore is 5 m/s. The time to go out to the island is (1000 m)/(5 m/s) = 200 s, and the time to return is (1000 m)/(15 m/s) = 67 s, so the total time in the presence of wind is 267 s.

16 Acceleration vectors Average acceleration over time interval Δt: a = a = Δ v Δt Instantaneous acceleration: a (t) = lim Δt 0 Δv Δt = d v dt

17 Example 3-4 Acceleration for uniform circular motion. Initial velocity has magnitude v and points due east. Final velocity has same magnitude v and points due north. Velocity has changed particle is accelerating! average acceleration = Δ v Δt

18 2-D Kinematics Often, 3-D problems can be reduced to 2-D problems: Choose y axis to be along direction of acceleration. Choose x axis to be along the other direction of motion. Example: Throwing a baseball (neglecting air resistance) Acceleration is constant (gravity) Choose y axis up: a y = -g Choose x axis along the ground in the direction of the throw y x

19 3-2 Projectile motion For projectile motion: Horizontal acceleration is zero (horizontal velocity is constant) Vertical acceleration is -g (magnitude g, directed downward) The horizontal and vertical motions are uncoupled, except that the object stops moving both horizontally and vertically at the instant it hits the ground (or some other object).

20 Without air resistance, an object dropped from a plane flying at constant speed in a straight line will A. Quickly lag behind the plane. B. Remain vertically under the plane. C. Move ahead of the plane.

21 Without air resistance, an object dropped from a plane flying at constant speed in a straight line will A. Quickly lag behind the plane. B. Remain vertically under the plane. C. Move ahead of the plane. There is no acceleration in the horizontal direction object continues to travel with the same horizontal velocity (same as the plane). Due to gravitational acceleration, the object accelerates downward, so its speed downwards increases.

22 Vertical and horizontal motions are independent The vertical positions of these two balls are the same at each time. For projectile motion, vertical motion and horizontal motion are independent. Fig 3-12

23 Horizontal range of a projectile The horizontal range is the product of the horizontal speed (x component of the velocity) and the total time that the projectile is in the air. If object starts at height y=0, then T, the time in the air, is determined by finding when it reaches height y=0 again: The two solutions of this equation are T=0 (as expected) and T=2v 0y /g=2v 0 sinθ/g. The horizontal range is then v 0x T = (v 0 cosθ)(2v 0 sinθ/g) = v 02 sin(2θ)/g.

24 Problem: projectile motion in 2D Two footballs are thrown from the same point on a flat field. Both are thrown at an angle of 30 above the horizontal. Ball 2 has twice the initial speed of ball 1. If ball 1 is caught a distance D 1 from the thrower, how far away from the thrower D 2 will the receiver of ball 2 be when he catches it? (a) D 2 = 2D 1 (b) D 2 = 4D 1 (c) D 2 = 8D 1

25 Problem: projectile motion in 2D Two footballs are thrown from the same point on a flat field. Both are thrown at an angle of 30 above the horizontal. Ball 2 has twice the initial speed of ball 1. If ball 1 is caught a distance D 1 from the thrower, how far away from the thrower D 2 will the receiver of ball 2 be when he catches it? (a) D 2 = 2D 1 (b) D 2 = 4D 1 (c) D 2 = 8D 1 Initial speed doubled time in the air and horizontal velocity both double. So horizontal distance traveled goes up by a factor of 4. range = v 02 sin(2θ)/g

26 The range of a projectile depends on initial angle. Starting at ground level (y=0), the range is maximized for θ=45. fig 3-17 range = v 02 sin(2θ)/g

27 If a projectile lands at an elevation lower than the initial elevation, the maximum horizontal displacement is achieved when the projection angle is somewhat less than 45. fig 3-18

28 A battleship simultaneously fires two shells at enemy ships from identical cannons. If the shells follow the parabolic trajectories shown, which ship gets hit first? 1. Ship A 2. Ship B 3. Both at the same time A B

29 A battleship simultaneously fires two shells at enemy ships from identical cannons. If the shells follow the parabolic trajectories shown, which ship gets hit first? 1. Ship A 2. Ship B 3. Both at the same time The higher the shell flies, the longer the flight takes. A B

30 Example 3-10: ranger and monkey Ranger aims at monkey, and the monkey lets go of branch at the same time that the ranger shoots. Assume the dart comes out fast enough to reach the monkey while it is in the air. Does the ranger hit the monkey? fig 3-20 (a) Yes (b) No

31 Example 3-10: ranger and monkey (demo) Ranger aims at monkey, and the monkey lets go of branch at the same time that the ranger shoots. Assume the dart comes out fast enough to reach the monkey while it is in the air. Does the ranger hit the monkey? fig 3-20 (a) Yes (b) No There is one time T at which the horizontal position of the dart is the same as that of the monkey. If you find the vertical positions of the dart and the monkey at that time, they are also the same. So the dart hits the monkey.

32 Special case 2: Circular motion An object undergoes circular motion when it is always a constant distance from a fixed point.

33 Ex. 3-11, A swinging pendulum; fig 3-22 Along a circular path, the velocity is always changing direction, so circular motion involves constant acceleration (whether or not the speed is changing).

34 Acceleration along a circular path Centripetal acceleration: acceleration that is perpendicular to the velocity (directed towards center of circle). Tangential acceleration: acceleration directed parallel to the velocity results in a change of the speed of the particle. fig. 3-23

35 Uniform circular motion Uniform circular motion is circular motion at constant speed (no tangential acceleration). There is still centripetal acceleration!

36 What is uniform circular motion? y v R Motion in a circle with: x Constant radius R Constant speed v Velocity is NOT constant (direction is changing) There is acceleration!

37 How can we describe uniform circular motion? In general, one coordinate system is as good as any other: Cartesian: (x, y) [position] (v x, v y ) [velocity] Polar: (R, θ) [position] (v R, ω) [radial velocity, angular velocity] y θ R v x In uniform circular motion: R is constant (hence vr=0) ω (angular velocity) is constant Polar coordinates are a natural way to describe uniform circular motion!

38 Polar coordinates The arc length s (distance along the circumference) is related to the angle via: y s = Rθ, where θ is the angular displacement. The units of θ are radians. v (x,y) For one complete revolution: R θ 2πR = Rθ complete θ complete = 2π x 1 revolution = 2π radians X = R cos θ y = R sin θ

39 Polar coordinates In Cartesian coordinates, we say velocity dx/dt=v x. x = v x t In polar coordinates, angular velocity dθ/dt = ω. θ = ωt. ω has units of radians/second. y R θ=ωt v s x Distance traveled by particle s = vt. Since s = Rθ = Rωt, we have v = ωr

40 Find acceleration during uniform circular motion Δv Δ r Δv Δ r = v r Δ r Δt = v r a = v2 r Δ r Δt acceleration is directed towards center of circle

41 Tangential acceleration If the speed along a circular path is changing, the tangential acceleration is a t = dv dt The tangential acceleration is the time-derivative of the speed.

42 Prob. 3-7 The velocity of a particle is directed towards the east while the acceleration is directed toward the northwest, as shown. The particle is: (a) speeding up and turning toward the north (b) speeding up and turning toward the south (c) slowing down and turning toward the north (e) maintaining constant speed and turning toward the south

43 Prob. 3-7 The velocity of a particle is directed towards the east while the acceleration is directed toward the northwest, as shown. The particle is: (a) speeding up and turning toward the north (b) speeding up and turning toward the south (c) slowing down and turning toward the north (e) maintaining constant speed and turning toward the south

44 Prob Initial and final velocities of a particle are as shown. What is the direction of the average acceleration? a. mostly up b. mostly down

45 Prob Initial and final velocities of a particle are as shown. What is the direction of the average acceleration? a. mostly up b. mostly down

46 Problem 3-75 hitting the monkey What is the minimum initial speed of the dart if it is to hit the monkey before the monkey hits the ground? Monkey is d=11.2 m above the ground; x=50 m, h=10 m. Note that tanθ=h/x.

47 Problem 3-75 hitting the monkey What is the minimum initial speed of the dart if it is to hit the monkey before the monkey hits the ground? Monkey is d=11.2 m above the ground; x=50 m, h=10 m. Note that tanθ=h/x. Amount of time it takes for the monkey to hit the ground is Δt = 2d/ g = / 9.8 = 1.5 s Because dart must move a distance x horizontally in this amount of time, need x/(v 0 cos θ) Δt, or v 0 x Δt cosθ = x Δt h 2 + x 2 x = (10m)2 + (50m) 2 ( 1.5s) = 34m / s

48 Problem A projectile is fired into the air from the top of a 200-m cliff above a valley. Its initial velocity is 60 m/s at 60 above the horizontal. Where does the projectile land? (Ignore air resistance.)

49 Problem A projectile is fired into the air from the top of a 200-m cliff above a valley. Its initial velocity is 60 m/s at 60 above the horizontal. Where does the projectile land? (Ignore air resistance.) Find time when projectile hits ground: Projectile elevation y(t) = h 0 +(v 0 sinθ)t-½gt 2. Find the time when y(t)=0: Positive root is t* = v 0 2 sin 2 θ + 2gh 0 + v 0 sinθ g 1 2 gt2 + ( v 0 sinθ)t + h 0 = 0 Horizontal position at time t* is v 0 t*cosθ = v 0 cosθ t = v 0 sinθ ± v 0 2 sin 2 θ + 2gh 0 g v 0 2 sin 2 θ + 2gh 0 + v 0 sinθ g = 300m

50 Problem 3-97 A projectile is launched over level ground at an initial elevation angle of θ. An observer measures the height of the projectile at the point of its highest elevation and measures the angle ϕ shown in the figure. Show that tan ϕ = ½ tan θ. (Ignore air resistance.)

51 Problem 3-97 A projectile is launched over level ground at an initial elevation angle of θ. An observer measures the height of the projectile at the point of its highest elevation and measures the angle ϕ shown in the figure. Show that tan ϕ = ½ tan θ. (Ignore air resistance.) The initial velocity has a vertical component of vsinθ and a horizontal component of vcosθ (we don t know v, but it will drop out of the final answer). At the point of maximum elevation, the vertical velocity is zero, so the average vertical velocity over that interval is ½vsinθ; the horizontal velocity is constant in time, so the average horizontal velocity over the interval is vcosθ. The angle ϕ thus satisfies tanφ = 1 2 v sinθ v cosθ = 1 2 tanθ.

52 A projectile is fired at an angle of 45º above the horizontal. If air resistance is neglected, the line in the graph that best represents the horizontal displacement of the projectile as a function of travel time is A. 1 B. 2 C. 3 D. 4 E. None of these is correct.

53 A projectile is fired at an angle of 45º above the horizontal. If air resistance is neglected, the line in the graph that best represents the horizontal displacement of the projectile as a function of travel time is A. 1 B. 2 C. 3 D. 4 E. None of these is correct.

54 A ball is thrown horizontally from a cliff with a velocity v 0. A graph of the acceleration of the ball versus the distance fallen could be represented by curve A. 1 B. 2 C. 3 D. 4 E. 5

55 A ball is thrown horizontally from a cliff with a velocity v 0. A graph of the acceleration of the ball versus the distance fallen could be represented by curve A. 1 B. 2 C. 3 D. 4 E. 5

56 A golfer drives her ball from the tee down the fairway in a high arcing shot. When the ball is at the highest point of its flight, A. its velocity and acceleration are both zero. B. its velocity is zero but its acceleration is nonzero. C. its velocity is nonzero but its acceleration is zero. D. its velocity and acceleration are both nonzero. E. Insufficient information is given to answer correctly.

57 A golfer drives her ball from the tee down the fairway in a high arcing shot. When the ball is at the highest point of its flight, A. its velocity and acceleration are both zero. B. its velocity is zero but its acceleration is nonzero. C. its velocity is nonzero but its acceleration is zero. D. its velocity and acceleration are both nonzero. E. Insufficient information is given to answer correctly.

58 The figure shows the motion diagram for a Human Cannonball on the descending portion of the flight. Use the motion diagram to estimate the direction of the acceleration during the interval between points 1 and 3. A. up B. down C. left D. right E. diagonal

59 The figure shows the motion diagram for a Human Cannonball on the descending portion of the flight. Use the motion diagram to estimate the direction of the acceleration during the interval between points 1 and 3. A. up B. down C. left D. right E. diagonal

Exam 1 Review Questions PHY 2425 - Exam 1

Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1H Rev Ques.doc - 1 - Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that

More information

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make

More information

Projectile motion simulator. http://www.walter-fendt.de/ph11e/projectile.htm

Projectile motion simulator. http://www.walter-fendt.de/ph11e/projectile.htm More Chapter 3 Projectile motion simulator http://www.walter-fendt.de/ph11e/projectile.htm The equations of motion for constant acceleration from chapter 2 are valid separately for both motion in the x

More information

Projectile Motion 1:Horizontally Launched Projectiles

Projectile Motion 1:Horizontally Launched Projectiles A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched Projectiles Two

More information

Physics Kinematics Model

Physics Kinematics Model Physics Kinematics Model I. Overview Active Physics introduces the concept of average velocity and average acceleration. This unit supplements Active Physics by addressing the concept of instantaneous

More information

Chapter 3 Practice Test

Chapter 3 Practice Test Chapter 3 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is a physical quantity that has both magnitude and direction?

More information

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE 1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object

More information

Web review - Ch 3 motion in two dimensions practice test

Web review - Ch 3 motion in two dimensions practice test Name: Class: _ Date: _ Web review - Ch 3 motion in two dimensions practice test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which type of quantity

More information

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc. Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

More information

1 of 7 9/5/2009 6:12 PM

1 of 7 9/5/2009 6:12 PM 1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

More information

Welcome back to Physics 211. Physics 211 Spring 2014 Lecture 04-1 1. ask a physicist

Welcome back to Physics 211. Physics 211 Spring 2014 Lecture 04-1 1. ask a physicist Welcome back to Physics 211 Today s agenda: Rotations What s on the exam? Relative motion Physics 211 Spring 2014 Lecture 04-1 1 ask a physicist Why are neutrinos faster than light (photons)? I thought

More information

Supplemental Questions

Supplemental Questions Supplemental Questions The fastest of all fishes is the sailfish. If a sailfish accelerates at a rate of 14 (km/hr)/sec [fwd] for 4.7 s from its initial velocity of 42 km/h [fwd], what is its final velocity?

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

More information

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com Class XI Physics Ch. 4: Motion in a Plane NCERT Solutions Page 85 Question 4.1: State, for each of the following physical quantities, if it is a scalar or a vector: Volume, mass, speed, acceleration, density,

More information

Scalar versus Vector Quantities. Speed. Speed: Example Two. Scalar Quantities. Average Speed = distance (in meters) time (in seconds) v =

Scalar versus Vector Quantities. Speed. Speed: Example Two. Scalar Quantities. Average Speed = distance (in meters) time (in seconds) v = Scalar versus Vector Quantities Scalar Quantities Magnitude (size) 55 mph Speed Average Speed = distance (in meters) time (in seconds) Vector Quantities Magnitude (size) Direction 55 mph, North v = Dx

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

Chapter 3 Falling Objects and Projectile Motion

Chapter 3 Falling Objects and Projectile Motion Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan Ground Rules PC11 Fundamentals of Physics I Lectures 3 and 4 Motion in One Dimension Dr Tay Seng Chuan 1 Switch off your handphone and pager Switch off your laptop computer and keep it No talking while

More information

PROBLEM SET. Practice Problems for Exam #1. Math 2350, Fall 2004. Sept. 30, 2004 ANSWERS

PROBLEM SET. Practice Problems for Exam #1. Math 2350, Fall 2004. Sept. 30, 2004 ANSWERS PROBLEM SET Practice Problems for Exam #1 Math 350, Fall 004 Sept. 30, 004 ANSWERS i Problem 1. The position vector of a particle is given by Rt) = t, t, t 3 ). Find the velocity and acceleration vectors

More information

Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion

Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.

More information

III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument

III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument III. Applications of Force and Motion Concepts Concept Review Conflicting Contentions 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument Qualitative Reasoning 1. Dropping Balls 2. Spinning Bug

More information

circular motion & gravitation physics 111N

circular motion & gravitation physics 111N circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would

More information

Chapter 6 Circular Motion

Chapter 6 Circular Motion Chapter 6 Circular Motion 6.1 Introduction... 1 6.2 Cylindrical Coordinate System... 2 6.2.1 Unit Vectors... 3 6.2.2 Infinitesimal Line, Area, and Volume Elements in Cylindrical Coordinates... 4 Example

More information

Uniformly Accelerated Motion

Uniformly Accelerated Motion Uniformly Accelerated Motion Under special circumstances, we can use a series of three equations to describe or predict movement V f = V i + at d = V i t + 1/2at 2 V f2 = V i2 + 2ad Most often, these equations

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

AP Physics C Fall Final Web Review

AP Physics C Fall Final Web Review Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of

More information

Experiment 2 Free Fall and Projectile Motion

Experiment 2 Free Fall and Projectile Motion Name Partner(s): Experiment 2 Free Fall and Projectile Motion Objectives Preparation Pre-Lab Learn how to solve projectile motion problems. Understand that the acceleration due to gravity is constant (9.8

More information

Lecture L5 - Other Coordinate Systems

Lecture L5 - Other Coordinate Systems S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L5 - Other Coordinate Systems In this lecture, we will look at some other common systems of coordinates. We will present polar coordinates

More information

3. KINEMATICS IN TWO DIMENSIONS; VECTORS.

3. KINEMATICS IN TWO DIMENSIONS; VECTORS. 3. KINEMATICS IN TWO DIMENSIONS; VECTORS. Key words: Motion in Two Dimensions, Scalars, Vectors, Addition of Vectors by Graphical Methods, Tail to Tip Method, Parallelogram Method, Negative Vector, Vector

More information

B) 286 m C) 325 m D) 367 m Answer: B

B) 286 m C) 325 m D) 367 m Answer: B Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

More information

Project: OUTFIELD FENCES

Project: OUTFIELD FENCES 1 Project: OUTFIELD FENCES DESCRIPTION: In this project you will work with the equations of projectile motion and use mathematical models to analyze a design problem. Two softball fields in Rolla, Missouri

More information

Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal

Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3-D We have defined the velocit and acceleration of a particle as the first and second

More information

In order to describe motion you need to describe the following properties.

In order to describe motion you need to describe the following properties. Chapter 2 One Dimensional Kinematics How would you describe the following motion? Ex: random 1-D path speeding up and slowing down In order to describe motion you need to describe the following properties.

More information

AP Physics B Practice Workbook Book 1 Mechanics, Fluid Mechanics and Thermodynamics

AP Physics B Practice Workbook Book 1 Mechanics, Fluid Mechanics and Thermodynamics AP Physics B Practice Workbook Book 1 Mechanics, Fluid Mechanics and Thermodynamics. The following( is applicable to this entire document copies for student distribution for exam preparation explicitly

More information

Lecture L6 - Intrinsic Coordinates

Lecture L6 - Intrinsic Coordinates S. Widnall, J. Peraire 16.07 Dynamics Fall 2009 Version 2.0 Lecture L6 - Intrinsic Coordinates In lecture L4, we introduced the position, velocity and acceleration vectors and referred them to a fixed

More information

Physics Section 3.2 Free Fall

Physics Section 3.2 Free Fall Physics Section 3.2 Free Fall Aristotle Aristotle taught that the substances making up the Earth were different from the substance making up the heavens. He also taught that dynamics (the branch of physics

More information

8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight

8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight 1. What is the average speed of an object that travels 6.00 meters north in 2.00 seconds and then travels 3.00 meters east in 1.00 second? 9.00 m/s 3.00 m/s 0.333 m/s 4.24 m/s 2. What is the distance traveled

More information

HSC Mathematics - Extension 1. Workshop E4

HSC Mathematics - Extension 1. Workshop E4 HSC Mathematics - Extension 1 Workshop E4 Presented by Richard D. Kenderdine BSc, GradDipAppSc(IndMaths), SurvCert, MAppStat, GStat School of Mathematics and Applied Statistics University of Wollongong

More information

Catapult Engineering Pilot Workshop. LA Tech STEP 2007-2008

Catapult Engineering Pilot Workshop. LA Tech STEP 2007-2008 Catapult Engineering Pilot Workshop LA Tech STEP 2007-2008 Some Background Info Galileo Galilei (1564-1642) did experiments regarding Acceleration. He realized that the change in velocity of balls rolling

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

Readings this week. 1 Parametric Equations Supplement. 2 Section 10.1. 3 Sections 2.1-2.2. Professor Christopher Hoffman Math 124

Readings this week. 1 Parametric Equations Supplement. 2 Section 10.1. 3 Sections 2.1-2.2. Professor Christopher Hoffman Math 124 Readings this week 1 Parametric Equations Supplement 2 Section 10.1 3 Sections 2.1-2.2 Precalculus Review Quiz session Thursday equations of lines and circles worksheet available at http://www.math.washington.edu/

More information

Physics 1120: Simple Harmonic Motion Solutions

Physics 1120: Simple Harmonic Motion Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured

More information

KINEMATICS OF PARTICLES RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES

KINEMATICS OF PARTICLES RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES KINEMTICS OF PRTICLES RELTIVE MOTION WITH RESPECT TO TRNSLTING XES In the previous articles, we have described particle motion using coordinates with respect to fixed reference axes. The displacements,

More information

Determination of Acceleration due to Gravity

Determination of Acceleration due to Gravity Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two

More information

Physics Midterm Review Packet January 2010

Physics Midterm Review Packet January 2010 Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:

More information

Review Assessment: Lec 02 Quiz

Review Assessment: Lec 02 Quiz COURSES > PHYSICS GUEST SITE > CONTROL PANEL > 1ST SEM. QUIZZES > REVIEW ASSESSMENT: LEC 02 QUIZ Review Assessment: Lec 02 Quiz Name: Status : Score: Instructions: Lec 02 Quiz Completed 20 out of 100 points

More information

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. PHYS 117- Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels

More information

2After completing this chapter you should be able to

2After completing this chapter you should be able to After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time

More information

Physics 2048 Test 1 Solution (solutions to problems 2-5 are from student papers) Problem 1 (Short Answer: 20 points)

Physics 2048 Test 1 Solution (solutions to problems 2-5 are from student papers) Problem 1 (Short Answer: 20 points) Physics 248 Test 1 Solution (solutions to problems 25 are from student papers) Problem 1 (Short Answer: 2 points) An object's motion is restricted to one dimension along the distance axis. Answer each

More information

AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s

AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s Answer the multiple choice questions (2 Points Each) on this sheet with capital

More information

Problem Set V Solutions

Problem Set V Solutions Problem Set V Solutions. Consider masses m, m 2, m 3 at x, x 2, x 3. Find X, the C coordinate by finding X 2, the C of mass of and 2, and combining it with m 3. Show this is gives the same result as 3

More information

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26 Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

More information

Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point.

Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point. 6.1 Vectors in the Plane PreCalculus 6.1 VECTORS IN THE PLANE Learning Targets: 1. Find the component form and the magnitude of a vector.. Perform addition and scalar multiplication of two vectors. 3.

More information

Chapter 10: Linear Kinematics of Human Movement

Chapter 10: Linear Kinematics of Human Movement Chapter 10: Linear Kinematics of Human Movement Basic Biomechanics, 4 th edition Susan J. Hall Presentation Created by TK Koesterer, Ph.D., ATC Humboldt State University Objectives Discuss the interrelationship

More information

Tennessee State University

Tennessee State University Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

More information

Midterm Exam 1 October 2, 2012

Midterm Exam 1 October 2, 2012 Midterm Exam 1 October 2, 2012 Name: Instructions 1. This examination is closed book and closed notes. All your belongings except a pen or pencil and a calculator should be put away and your bookbag should

More information

Curso2012-2013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.

Curso2012-2013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía. 1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2.

More information

3600 s 1 h. 24 h 1 day. 1 day

3600 s 1 h. 24 h 1 day. 1 day Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Problem Set 5 Work and Kinetic Energy Solutions

Problem Set 5 Work and Kinetic Energy Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics Physics 8.1 Fall 1 Problem Set 5 Work and Kinetic Energy Solutions Problem 1: Work Done by Forces a) Two people push in opposite directions on

More information

Newton s Laws. Newton s Imaginary Cannon. Michael Fowler Physics 142E Lec 6 Jan 22, 2009

Newton s Laws. Newton s Imaginary Cannon. Michael Fowler Physics 142E Lec 6 Jan 22, 2009 Newton s Laws Michael Fowler Physics 142E Lec 6 Jan 22, 2009 Newton s Imaginary Cannon Newton was familiar with Galileo s analysis of projectile motion, and decided to take it one step further. He imagined

More information

Chapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Class: Date: Chapter 07 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An example of a vector quantity is: a. temperature. b. length. c. velocity.

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

More information

2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to :

2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to : Candidates should be able to : Derive the equations of motion for constant acceleration in a straight line from a velocity-time graph. Select and use the equations of motion for constant acceleration in

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed

More information

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc. Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems

More information

AP Physics 1 Midterm Exam Review

AP Physics 1 Midterm Exam Review AP Physics 1 Midterm Exam Review 1. The graph above shows the velocity v as a function of time t for an object moving in a straight line. Which of the following graphs shows the corresponding displacement

More information

Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.

Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad. Centripetal Force 1 Introduction In classical mechanics, the dynamics of a point particle are described by Newton s 2nd law, F = m a, where F is the net force, m is the mass, and a is the acceleration.

More information

Physics 590 Homework, Week 6 Week 6, Homework 1

Physics 590 Homework, Week 6 Week 6, Homework 1 Physics 590 Homework, Week 6 Week 6, Homework 1 Prob. 6.1.1 A descent vehicle landing on the moon has a vertical velocity toward the surface of the moon of 35 m/s. At the same time it has a horizontal

More information

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s Problem Set 1 1.1 A bicyclist starts from rest and after traveling along a straight path a distance of 20 m reaches a speed of 30 km/h. Determine her constant acceleration. How long does it take her to

More information

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013 PHYSICS 111 HOMEWORK SOLUTION #9 April 5, 2013 0.1 A potter s wheel moves uniformly from rest to an angular speed of 0.16 rev/s in 33 s. Find its angular acceleration in radians per second per second.

More information

Mechanics 1: Conservation of Energy and Momentum

Mechanics 1: Conservation of Energy and Momentum Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

More information

5. Unable to determine. 6. 4 m correct. 7. None of these. 8. 1 m. 9. 1 m. 10. 2 m. 1. 1 m/s. 2. None of these. 3. Unable to determine. 4.

5. Unable to determine. 6. 4 m correct. 7. None of these. 8. 1 m. 9. 1 m. 10. 2 m. 1. 1 m/s. 2. None of these. 3. Unable to determine. 4. Version PREVIEW B One D Kine REVIEW burke (1111) 1 This print-out should have 34 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Jogging

More information

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION This tutorial covers pre-requisite material and should be skipped if you are

More information

Physics 160 Biomechanics. Angular Kinematics

Physics 160 Biomechanics. Angular Kinematics Physics 160 Biomechanics Angular Kinematics Questions to think about Why do batters slide their hands up the handle of the bat to lay down a bunt but not to drive the ball? Why might an athletic trainer

More information

G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M

G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M CONTENTS Foreword... 2 Forces... 3 Circular Orbits... 8 Energy... 10 Angular Momentum... 13 FOREWORD

More information

1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D

1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be

More information

11. Describing Angular or Circular Motion

11. Describing Angular or Circular Motion 11. Describing Angular or Circular Motion Introduction Examples of angular motion occur frequently. Examples include the rotation of a bicycle tire, a merry-go-round, a toy top, a food processor, a laboratory

More information

KE =? v o. Page 1 of 12

KE =? v o. Page 1 of 12 Page 1 of 12 CTEnergy-1. A mass m is at the end of light (massless) rod of length R, the other end of which has a frictionless pivot so the rod can swing in a vertical plane. The rod is initially horizontal

More information

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

More information

11. Rotation Translational Motion: Rotational Motion:

11. Rotation Translational Motion: Rotational Motion: 11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational

More information

Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

More information

1.3.1 Position, Distance and Displacement

1.3.1 Position, Distance and Displacement In the previous section, you have come across many examples of motion. You have learnt that to describe the motion of an object we must know its position at different points of time. The position of an

More information

10.1 Quantitative. Answer: A Var: 50+

10.1 Quantitative. Answer: A Var: 50+ Chapter 10 Energy and Work 10.1 Quantitative 1) A child does 350 J of work while pulling a box from the ground up to his tree house with a rope. The tree house is 4.8 m above the ground. What is the mass

More information

Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6. Instructions: 1. In the formula F = qvxb:

Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6. Instructions: 1. In the formula F = qvxb: Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6 Signature Name (Print): 4 Digit ID: Section: Instructions: Answer all questions 24 multiple choice questions. You may need to do some calculation.

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

More information

WWW.MIAMI-BEST-MATH-TUTOR.COM E-MAIL: MIAMIMATHTUTOR@GMAIL.COM CONTACT NUMBER: (786)556-4839 PHYSICS I

WWW.MIAMI-BEST-MATH-TUTOR.COM E-MAIL: MIAMIMATHTUTOR@GMAIL.COM CONTACT NUMBER: (786)556-4839 PHYSICS I WWW.MIAMI-BEST-MATH-TUTOR.COM PAGE 1 OF 10 WWW.MIAMI-BEST-MATH-TUTOR.COM E-MAIL: MIAMIMATHTUTOR@GMAIL.COM CONTACT NUMBER: (786)556-4839 PHYSICS I PROJECTILE MOTION 4.1 1. A physics book slides off a horizontal

More information

Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

More information

TIME OF COMPLETION DEPARTMENT OF NATURAL SCIENCES. PHYS 1111, Exam 2 Section 1 Version 1 October 30, 2002 Total Weight: 100 points

TIME OF COMPLETION DEPARTMENT OF NATURAL SCIENCES. PHYS 1111, Exam 2 Section 1 Version 1 October 30, 2002 Total Weight: 100 points TIME OF COMPLETION NAME DEPARTMENT OF NATURAL SCIENCES PHYS 1111, Exam 2 Section 1 Version 1 October 30, 2002 Total Weight: 100 points 1. Check your examination for completeness prior to starting. There

More information

Phys222 Winter 2012 Quiz 4 Chapters 29-31. Name

Phys222 Winter 2012 Quiz 4 Chapters 29-31. Name Name If you think that no correct answer is provided, give your answer, state your reasoning briefly; append additional sheet of paper if necessary. 1. A particle (q = 5.0 nc, m = 3.0 µg) moves in a region

More information

= f x 1 + h. 3. Geometrically, the average rate of change is the slope of the secant line connecting the pts (x 1 )).

= f x 1 + h. 3. Geometrically, the average rate of change is the slope of the secant line connecting the pts (x 1 )). Math 1205 Calculus/Sec. 3.3 The Derivative as a Rates of Change I. Review A. Average Rate of Change 1. The average rate of change of y=f(x) wrt x over the interval [x 1, x 2 ]is!y!x ( ) - f( x 1 ) = y

More information

CHAPTER. Motion in Two and Three Dimensions

CHAPTER. Motion in Two and Three Dimensions CHAPTER 3 1* Can the magnitude of the displacement of a particle be less than the distance traveled by the particle along its path? Can its magnitude be more than the distance traveled? Explain. The magnitude

More information

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true? 1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

More information

DISPLACEMENT & VELOCITY

DISPLACEMENT & VELOCITY PHYSICS HOMEWORK #1 DISPLACEMENT & VELOCITY KINEMATICS d v average t v ins d t verysmall / error d t d t v a ave t 1. You walk exactly 50 steps North, turn around, and then walk exactly 400 steps South.

More information

Review Chapters 2, 3, 4, 5

Review Chapters 2, 3, 4, 5 Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freely-falling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string

More information

Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa.

Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa. Newton s Laws Physics 1425 lecture 6 Michael Fowler, UVa. Newton Extended Galileo s Picture of Galileo said: Motion to Include Forces Natural horizontal motion is at constant velocity unless a force acts:

More information

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Lecture L22-2D Rigid Body Dynamics: Work and Energy J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

More information

MFF 2a: Charged Particle and a Uniform Magnetic Field... 2

MFF 2a: Charged Particle and a Uniform Magnetic Field... 2 MFF 2a: Charged Particle and a Uniform Magnetic Field... 2 MFF2a RT1: Charged Particle and a Uniform Magnetic Field... 3 MFF2a RT2: Charged Particle and a Uniform Magnetic Field... 4 MFF2a RT3: Charged

More information

CS100B Fall 1999. Professor David I. Schwartz. Programming Assignment 5. Due: Thursday, November 18 1999

CS100B Fall 1999. Professor David I. Schwartz. Programming Assignment 5. Due: Thursday, November 18 1999 CS100B Fall 1999 Professor David I. Schwartz Programming Assignment 5 Due: Thursday, November 18 1999 1. Goals This assignment will help you develop skills in software development. You will: develop software

More information

Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

More information