Motion Lesson 1: Review of Basic Motion


 Juliana Edwards
 2 years ago
 Views:
Transcription
1 Motion in one and two dimensions: Lesson 1 Seminotes Motion Lesson 1: Review of Basic Motion Note. For these semi notes we will use the bold italics convention to represent vectors. Complete the following table : Term Symbol Unit Definition Distance Displacement x Speed ms 1 The rate of change of distance Velocity Acceleration ms 2 Displacement Vectors The vector x = 39 km East is shown below. Draw the vectors 2x, x and 2x in the space below and give the magnitude and direction of each. 1
2 Vector Addition Motion in one and two dimensions: Lesson 1 Seminotes Vectors add head to tail. Solution Solution 2
3 Motion in one and two dimensions: Lesson 1 Seminotes Solution Vector Subtraction To subtract a vector simply... the... vector. 3
4 Motion in one and two dimensions: Lesson 1 Seminotes Some Basic Facts The SI unit for speed is... An everyday unit for speed is... Conversion factor, 1 ms 1 =...km/h Instaneous speed is... Instantaneous velocity is... Change in Velocity v = Average Acceleration Where a = v v = u = t Solution 4
5 Motion in one and two dimensions: Lesson 1 Seminotes Solution 5
6 Motion in one and two dimensions: Lesson 1 Seminotes Solution 6
7 Centre of Mass Motion in one and two dimensions: Lesson 1 Seminotes The centre of mass is... Locate the centre of mass for each of the following and mark it with a asterix * Additional Notes 7
8 Motion in one and two dimensions: Lesson 1 Seminotes You should now be able to complete questions from your Heinemann text Physics 12 (3rd edition), Chapter section 1.1, page 11, questions 1 and 2. 8
9 Motion in one and two dimensions: Lesson 2 Seminotes Motion Lesson 2: Further Review of Basic Motion Three types of graphs commonly used to describe motion are: Describe in your own words, the motion of the walker indicated on the displacement time graph below. The graph below shows the motion of a swimmer travelling 50m in a pool, then turning and swimming back to the starting position. Find a. The total displacement of the swimmer. b. The distance travelled by the swimmer. c. The velocity for the first 50m lap in ms 1 d. The velocity for the return 50m lap in ms 1 1
10 Motion in one and two dimensions: Lesson 2 Seminotes Describe in your own words, the motion of the walker indicated on the velocity time graph below. The graph below represents the motion of a dancer moving back and forth across a stage. Find a. The velocity at t = 0 seconds (ms 1 ) b. The velocity at t = 2 seconds (ms 1 ) c. Acceleration for first 4 seconds (ms 2 ) d. Displacement after 4 seconds (m) e. Displacement after 6 seconds (m) f. Average velocity over the 6 seconds (ms 1 ) 2
11 Motion in one and two dimensions: Lesson 2 Seminotes Complete the following summary of motion graphs by filling in the blanks. Write the words slope or area under to complete the following summary of motion graphs. Extra Notes 3
12 Motion in one and two dimensions: Lesson 2 Seminotes Worked Example Solution 4
13 Motion in one and two dimensions: Lesson 2 Seminotes Constant Acceleration Equations. Write down the five equations that can be used in problems involving constant acceleration. Where x = displacement (m) t = time (s) u = initial velocity (ms 1 ) v = final velocity (ms 1 ) a = acceleration (ms 2 ) Worked Example Solution 5
14 Motion in one and two dimensions: Lesson 2 Seminotes You should now be able to complete questions from your Heinemann text Physics 12 (3rd edition), Chapter section 1.1, page 11, questions 3,4,5,7 and 9. Extra Notes 6
15 Motion in one and two dimensions: Lesson 3 Seminotes Motion Lesson 3: Newton s Laws of Motion and Forces Describe in your own words the difference between Aristotle s definition of the word force, and Newton s definition of force. What is the natural state of motion?... Newton s Three Laws of Motion are: Newton s First Law of Motion Newton s Second Law of Motion Net force can be written as... or... 1
16 Motion in one and two dimensions: Lesson 3 Seminotes Newton s Third Law of Motion The horse and buggy below are moving with constant velocity motion. a) Draw in and label all the individual forces acting on the buggy. b) Add the force vectors head to tail to show that the net unbalanced force equals zero in this case. Show vector addition below Forces can be classified as either Contact or Actionatadistance. List four actionatadistance forces Which of these is most important in studying the motion topic? Explain why? 2
17 Motion in one and two dimensions: Lesson 3 Seminotes Complete the table to summarise contact forces. Name of Force Pushing and pulling forces Tensile Force Normal Reaction Force Thrust Friction Air Resistance Pushing a car Description or example of this type of force Draw in the individual forces acting in each of the situations illustrated below. Give each force a label and show how the vectors add to give the net force, Fnet in each case. Explain why can t Newton s Third Law action reaction pairs of forces be added together. 3
18 Motion in one and two dimensions: Lesson 3 Seminotes Worked Example Solution 4
19 Motion in one and two dimensions: Lesson 3 Seminotes Solution Continue solution on next page 5
20 Motion in one and two dimensions: Lesson 3 Seminotes 6
21 Motion in one and two dimensions: Lesson 3 Seminotes You should now be able to complete questions from your Heinemann text Physics 12 (3rd edition), Chapter section 1.2, page 17, questions 2, 3,4,5,7, 8 and 9. 7
22 Motion in one and two dimensions: Lesson 3 Seminotes Extra Notes 8
23 Motion in one and two dimensions: Lesson 4 Seminotes Motion Lesson 4: Normal Force and the Inclined Plane A normal force acts at right angles to a surface. It is often labelled as either FN or N. Draw in and label the normal force for each of the situations below. In the context of a physics question, the word smooth means... The normal force is sometimes called the normal reaction force. What happens to the normal reaction force when Joe (above) pushes harder on the wall?... 1
24 Motion in one and two dimensions: Lesson 4 Seminotes An object (below) accelerates down a smooth inclined plane. The two forces acting are Normal Reaction N and the force of gravity or weight force, W. Resolve the Weight force, W, into components parallel and perpendicular to the slope and draw these on the diagram above. Indicate the size of each of these components in terms of m, g and θ. Hence write an expression for the net unbalanced force, Fnet, acting on the object. Fnet = Use Newton s second law to write an expression for the acceleration. a = 2
25 Motion in one and two dimensions: Lesson 4 Seminotes In the context of a physics question, the word rough means... Shown below is an object moving down a rough inclined plane. The forces acting are Normal Reaction N, the force of gravity or weight force, W, and the friction force Fr. Resolve the Weight force, W, into components parallel and perpendicular to the slope and draw these on the diagram above. If the object moves down the slope with constant velocity motion, find; a) The Net Force Fnet acting on the object. b) An expression for the size of normal reaction N. c) An expression for the size of the friction force Fr. 3
26 Worked Example Motion in one and two dimensions: Lesson 4 Seminotes Solution Continue solution on next page 4
27 Motion in one and two dimensions: Lesson 4 Seminotes 5
28 Motion in one and two dimensions: Lesson 4 Seminotes Summary The normal force is the force that a... exerts on an object. Normal force is usually designated N or F N The normal force act at... to a surface. Its size changes depending on the size of the force exerted on a surface. To solve inclined plane questions, the weight force is usually resolved into components... and... to the plane. The magnitude of the normal force, N, acting on an object on an inclined plane is the same as the component of the weight force perpendicular to the incline. The steeper the incline, the... the normal force. The acceleration of an object on a smooth inclined plane is given by a =... You should now be able to complete questions from your Heinemann text Physics 12 (3rd edition), Chapter section 1.3, page 22, questions 1, 2, 3, 4, 5, 9 and 10. 6
29 Motion in one and two dimensions: Lesson 5 Seminotes Motion Lesson 5: Projectile Motion What type of force produced the motion of the tennis ball? The trajectory of a projectile motion is... in shape. The diagram below shows a projectile motion, ignoring the effects of air resistance. On this diagram sketch in different colours a) The net force that produces this motion. b) The velocity vectors throughout the motion. c) The trajectory of the projectile. 1
30 Motion in one and two dimensions: Lesson 5 Seminotes Here is a another diagram showing a projectile motion projected horizontally to the right. Successive images show the projectile s position after equal time intervals. The horizontal component of a projectile motions is... The vertical component of a projectile motion is... Write down some motion equations which apply to the horizontal component of the motion. 2
31 Motion in one and two dimensions: Lesson 5 Seminotes Write down some motion equations which apply to the vertical component of the motion. Sketch motion graphs below for the horizontal component of the motion. Sketch motion graphs below for the vertical component of the motion. 3
32 Motion in one and two dimensions: Lesson 5 Seminotes The strobe photo below show a ball dropped vertically and another projected horizontally at the same time. Explain why both balls hit the ground at the same time. The time in the air, or time of flight, is determined by what? Additional Notes 4
33 Worked Example Motion in one and two dimensions: Lesson 5 Seminotes Solution Continue solution on next page 5
34 Motion in one and two dimensions: Lesson 5 Seminotes 6
35 Motion in one and two dimensions: Lesson 5 Seminotes Oblique Projection Here is a another diagram showing a projectile motion projected obliquely, that is, at an angle to the horizontal to the right. Successive images show the projectile s position after equal time intervals. Again, air resistance is ignored. On this diagram (above) sketch in different colours a) The net force that produces this motion. b) The velocity vectors throughout the motion. c) The trajectory of the projectile. For an oblique projection; The Horizontal component of the motion is... The Vertical component of the motion is... 7
36 Motion in one and two dimensions: Lesson 5 Seminotes For an object (below) projected at a speed v at an angle θ; a) Horizontal velocity =...throughout. b) Initial vertical velocity =... c) Vertical velocity at maximum height =... d) Final vertical velocity =... 8
37 Worked Example Motion in one and two dimensions: Lesson 5 Seminotes Solution Continue solution on next page 9
38 Motion in one and two dimensions: Lesson 5 Seminotes 10
39 Motion in one and two dimensions: Lesson 5 Seminotes The Range Equation The horizontal distance travelled by a projectile is called the... The range equation is a quick way of finding the range. Where: R = R = Range (m) v = initial speed (ms 1 ) θ = angle of projection (degrees) g = acceleration due to gravity = 9.8 ms 2 The range is maximum when θ =... The Effcts of air Resistance Describe the effects of air resistance on projectile motion. 11
40 Motion in one and two dimensions: Lesson 5 Seminotes Summary The trajectory of a projectile motion is... Projectiles can be understood by analysing the...and...components of the motion. If we ignore air resistance, The horizontal component of a projectile motion is constant... The vertical component of a projectile motion is constant... The net force is supplied totally by gravity or the weight force, W = mg. Hence the... is 9.8 ms 2 downwards. An object dropped or projected horizontally from the same height will take the to reach the ground. When air resistance is not negligible, the net force will no longer be constant and directed downwards, and the trajectory will not be parabolic. You should now be able to complete questions from your Heinemann text Physics 12 (3rd edition), Chapter section 1.4, page 29, questions 1, 3, 4, 5, 6, 7, 8 and
Summary Notes. to avoid confusion it is better to write this formula in words. time
National 4/5 Physics Dynamics and Space Summary Notes The coloured boxes contain National 5 material. Section 1 Mechanics Average Speed Average speed is the distance travelled per unit time. distance (m)
More informationTEACHER ANSWER KEY November 12, 2003. Phys  Vectors 11132003
Phys  Vectors 11132003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude
More informationUnit 1: Vectors. a m/s b. 8.5 m/s c. 7.2 m/s d. 4.7 m/s
Multiple Choice Portion 1. A boat which can travel at a speed of 7.9 m/s in still water heads directly across a stream in the direction shown in the diagram above. The water is flowing at 3.2 m/s. What
More informationA Review of Vector Addition
Motion and Forces in Two Dimensions Sec. 7.1 Forces in Two Dimensions 1. A Review of Vector Addition. Forces on an Inclined Plane 3. How to find an Equilibrant Vector 4. Projectile Motion Objectives Determine
More informationChapter 4  Forces and Newton s Laws of Motion w./ QuickCheck Questions
Chapter 4  Forces and Newton s Laws of Motion w./ QuickCheck Questions 2015 Pearson Education, Inc. Anastasia Ierides Department of Physics and Astronomy University of New Mexico September 8, 2015 Review
More informationNewton's laws of motion
Newton's laws of motion Forces Forces as vectors Resolving vectors Explaining motion  Aristotle vs Newton Newton s first law Newton s second law Weight Calculating acceleration Newton s third law Moving
More informationNewton s Laws of Motion
Physics Newton s Laws of Motion Newton s Laws of Motion 4.1 Objectives Explain Newton s first law of motion. Explain Newton s second law of motion. Explain Newton s third law of motion. Solve problems
More information2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.
2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was
More information2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed?
Physics: Review for Final Exam 1 st Semester Name Hour P2.1A Calculate the average speed of an object using the change of position and elapsed time 1. (P2.1 A) What is your average speed if you run 140
More informationPrinciples and Laws of Motion
2009 19 minutes Teacher Notes: Ian Walter DipAppChem; TTTC; GDipEdAdmin; MEdAdmin (part) Program Synopsis This program begins by looking at the different types of motion all around us. Forces that cause
More information1206EL  Concepts in Physics. Friday, September 18th
1206EL  Concepts in Physics Friday, September 18th Notes There is a WebCT course for students on September 21st More information on library webpage Newton s second law Newton's first law of motion predicts
More informationCHAPTER 4 Motion in 2D and 3D
General Physics 1 (Phys : Mechanics) CHAPTER 4 Motion in 2D and 3D Slide 1 Revision : 2. Displacement vector ( r): 1. Position vector (r): r t = x t i + y t j + z(t)k Particle s motion in 2D Position vector
More informationCOURSE CONTENT. Introduction. Definition of a Force Effect of Forces Measurement of forces. Newton s Laws of Motion
CHAPTER 13  FORCES COURSE CONTENT Introduction Newton s Laws of Motion Definition of a Force Effect of Forces Measurement of forces Examples of Forces A force is just a push or pull. Examples: an object
More informationPS5.1 Explain the relationship among distance, time, direction, and the velocity of an object.
PS5.1 Explain the relationship among distance, time, direction, and the velocity of an object. It is essential for students to Understand Distance and Displacement: Distance is a measure of how far an
More informationExample (1): Motion of a block on a frictionless incline plane
Firm knowledge of vector analysis and kinematics is essential to describe the dynamics of physical systems chosen for analysis through ewton s second law. Following problem solving strategy will allow
More informationAt the skate park on the ramp
At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises
More informationPhysics Exam Q1 Exam, Part A Samples
Physics Exam Q1 Exam, Part A Samples 1. An object starts from rest and accelerates uniformly down an incline. If the object reaches a speed of 40 meters per second in 5 seconds, its average speed is (A)
More informationAN ROINN OIDEACHAIS AGUS EOLAÍOCHTA LEAVING CERTIFICATE EXAMINATION, 2000
M31 AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA LEAVING CERTIFICATE EXAMINATION, 2000 APPLIED MATHEMATICS  ORDINARY LEVEL FRIDAY, 23 JUNE  AFTERNOON, 2.00 to 4.30 Six questions to be answered. All questions
More informationAssignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE State law of parallelogram of vector addition and derive expression for resultant of two vectors
More informationTHE NATURE OF FORCES Forces can be divided into two categories: contact forces and noncontact forces.
SESSION 2: NEWTON S LAWS Key Concepts In this session we Examine different types of forces Review and apply Newton's Laws of motion Use Newton's Law of Universal Gravitation to solve problems Xplanation
More informationChapter 4. Forces and Newton s Laws of Motion
Chapter 4 Forces and Newton s Laws of Motion 4.1 The Concepts of Force and Mass A force is a push or a pull. Contact forces arise from physical contact. Actionatadistance forces do not require contact
More informationMass, energy, power and time are scalar quantities which do not have direction.
Dynamics Worksheet Answers (a) Answers: A vector quantity has direction while a scalar quantity does not have direction. Answers: (D) Velocity, weight and friction are vector quantities. Note: weight and
More informationForce & Motion. Force & Mass. Friction
1 2 3 4 Next Force & Motion The motion of an object can be changed by an unbalanced force. The way that the movement changes depends on the strength of the force pushing or pulling and the mass of the
More informationDescribe the relationship between gravitational force and distance as shown in the diagram.
Name Period Chapter 2 The Laws of Motion Review Describe the relationship between gravitational force and distance as shown in the diagram. Assess the information about gravity, mass, and weight. Read
More informationPhysics 2101, First Exam, Fall 2007
Physics 2101, First Exam, Fall 2007 September 4, 2007 Please turn OFF your cell phone and MP3 player! Write down your name and section number in the scantron form. Make sure to mark your answers in the
More informationChapter 4 Dynamics: Newton s Laws of Motion
Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal
More informationProjectile Motion 1:Horizontally Launched Projectiles
A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched Projectiles Two
More informationChapter 3 Kinematics in Two or Three Dimensions; Vectors. Copyright 2009 Pearson Education, Inc.
Chapter 3 Kinematics in Two or Three Dimensions; Vectors Vectors and Scalars Units of Chapter 3 Addition of Vectors Graphical Methods Subtraction of Vectors, and Multiplication of a Vector by a Scalar
More informationProjectile Motion. directions simultaneously. deal with is called projectile motion. ! An object may move in both the x and y
Projectile Motion! An object may move in both the x and y directions simultaneously! The form of twodimensional motion we will deal with is called projectile motion Assumptions of Projectile Motion! The
More informationChapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.
Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal
More informationPhysics Exam 1 Review  Chapter 1,2
Physics 1401  Exam 1 Review  Chapter 1,2 13. Which of the following is NOT one of the fundamental units in the SI system? A) newton B) meter C) kilogram D) second E) All of the above are fundamental
More informationChapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting
More informationChapter 5 Newton s Laws of Motion
Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions
More informationNewton s Laws of Motion. Chapter 4
Newton s Laws of Motion Chapter 4 Changes in Motion Section 4.1 Force is simply a push or pull It is an interaction between two or more objects Force is a vector so it has magnitude and direction In the
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed
More informationExam 1 Review Questions PHY 2425  Exam 1
Exam 1 Review Questions PHY 2425  Exam 1 Exam 1H Rev Ques.doc  1  Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that
More informationMechanics 1. Revision Notes
Mechanics 1 Revision Notes July 2012 MECHANICS 1... 2 1. Mathematical Models in Mechanics... 2 Assumptions and approximations often used to simplify the mathematics involved:... 2 2. Vectors in Mechanics....
More informationphysics 111N motion in a plane
physics 111N motion in a plane position & displacement vectors ym! the position vector points from the origin to the object t2.83 s 15 10 5 0 5 10 15 xm we re plotting the plane (e.g. billiard table viewed
More information5. Forces and MotionI. Force is an interaction that causes the acceleration of a body. A vector quantity.
5. Forces and MotionI 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will
More informationNewton s Laws of Motion
Section 3.2 Newton s Laws of Motion Objectives Analyze relationships between forces and motion Calculate the effects of forces on objects Identify force pairs between objects New Vocabulary Newton s first
More informationB) 286 m C) 325 m D) 367 m Answer: B
Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of
More informationWorksheet #1 Free Body or Force diagrams
Worksheet #1 Free Body or Force diagrams Drawing FreeBody Diagrams Freebody diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.
More informationPHYSICS MIDTERM REVIEW
1. The acceleration due to gravity on the surface of planet X is 19.6 m/s 2. If an object on the surface of this planet weighs 980. newtons, the mass of the object is 50.0 kg 490. N 100. kg 908 N 2. If
More informationCHAPTER 3 NEWTON S LAWS OF MOTION
CHAPTER 3 NEWTON S LAWS OF MOTION NEWTON S LAWS OF MOTION 45 3.1 FORCE Forces are calssified as contact forces or gravitational forces. The forces that result from the physical contact between the objects
More informationPhysics 101 Prof. Ekey. Chapter 5 Force and motion (Newton, vectors and causing commotion)
Physics 101 Prof. Ekey Chapter 5 Force and motion (Newton, vectors and causing commotion) Goal of chapter 5 is to establish a connection between force and motion This should feel like chapter 1 Questions
More informationChapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Class: Date: Chapter 07 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An example of a vector quantity is: a. temperature. b. length. c. velocity.
More informationPSI AP Physics B Kinematics MultipleChoice Questions
PSI AP Physics B Kinematics MultipleChoice Questions 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle.
More informationPhysics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More informationChapter 5 Newton s Laws of Motion
Chapter 5 Newton s Laws of Motion Sir Isaac Newton (1642 1727) Developed a picture of the universe as a subtle, elaborate clockwork slowly unwinding according to welldefined rules. The book Philosophiae
More informationGeneral Physics I Can Statements
General Physics I Can Statements Motion (Kinematics) 1. I can describe motion in terms of position (x), displacement (Δx), distance (d), speed (s), velocity (v), acceleration (a), and time (t). A. I can
More informationPH2213 : Examples from Chapter 4 : Newton s Laws of Motion. Key Concepts
PH2213 : Examples from Chapter 4 : Newton s Laws of Motion Key Concepts Newton s First and Second Laws (basically Σ F = m a ) allow us to relate the forces acting on an object (lefthand side) to the motion
More informationCHAPTER 6 WORK AND ENERGY
CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From
More informationSection 3 Newton s Laws of Motion
Section 3 Newton s Laws of Motion Key Concept Newton s laws of motion describe the relationship between forces and the motion of an object. What You Will Learn Newton s first law of motion states that
More information1 of 7 10/2/2009 1:13 PM
1 of 7 10/2/2009 1:13 PM Chapter 6 Homework Due: 9:00am on Monday, September 28, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]
More informationPhysics term 1 reviewsheet
Name: ate: 1. The length of line shown is closest to one. millimeter. centimeter. meter. kilometer 5. The diagram shown represents a rectangle composed of squares with sides one meter long. What is the
More informationChapter 6A. Acceleration. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University
Chapter 6A. Acceleration A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 The Cheetah: : A cat that is built for speed. Its strength and agility
More information2Elastic collisions in
After completing this chapter you should be able to: solve problems about the impact of a smooth sphere with a fixed surface solve problems about the impact of smooth elastic spheres. In this chapter you
More informationPHYSICS 149: Lecture 4
PHYSICS 149: Lecture 4 Chapter 2 2.3 Inertia and Equilibrium: Newton s First Law of Motion 2.4 Vector Addition Using Components 2.5 Newton s Third Law 1 Net Force The net force is the vector sum of all
More informationChapter Test. Teacher Notes and Answers Forces and the Laws of Motion. Assessment
Assessment Chapter Test A Teacher Notes and Answers Forces and the Laws of Motion CHAPTER TEST A (GENERAL) 1. c 2. d 3. d 4. c 5. c 6. c 7. c 8. b 9. d 10. d 11. c 12. a 13. d 14. d 15. b 16. d 17. c 18.
More informationSOLID MECHANICS DYNAMICS TUTORIAL INERTIA FORCES IN MECHANISMS
SOLID MECHANICS DYNAMICS TUTORIAL INERTIA FORCES IN MECHANISMS This work covers elements of the syllabus for the Engineering Council Exam D225 Dynamics of Mechanical Systems C103 Engineering Science. This
More information6. Note that the following question has only three choices.
1. A 5.0newton force and a 7.0newton force act concurrently on a point. As the angle between the forces is increased from 0 to 180, the magnitude of the resultant of the two forces changes from 0.0 N
More informationConcept Review. Physics 1
Concept Review Physics 1 Speed and Velocity Speed is a measure of how much distance is covered divided by the time it takes. Sometimes it is referred to as the rate of motion. Common units for speed or
More informationCh.4 Forces. Conceptual questions #1, 2, 12 Problem 1, 2, 5, 6, 7, 10, 12, 15, 16, 19, 20, 21, 23, 24, 26, 27, 30, 38, 39, 41, 42, 47, 50, 56, 66
Ch.4 Forces Conceptual questions #1, 2, 12 Problem 1, 2, 5, 6, 7, 10, 12, 15, 16, 19, 20, 21, 23, 24, 26, 27, 30, 38, 39, 41, 42, 47, 50, 56, 66 Forces Forces  vector quantity that changes the velocity
More information1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v.
1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v. The magnitude of the change in momentum of the ball is A.
More informationMotion in OneDimension
This test covers onedimensional kinematics, including speed, velocity, acceleration, motion graphs, with some problems requiring a knowledge of basic calculus. Part I. Multiple Choice 1. A rock is released
More informationNewton s Law of Motion
chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating
More informationNewton s 3 rd Law Study Guide Chapter 7
1. The Big Idea is for every force there is an equal and opposite force 2. If you lean over and push on a wall, why don t you fall over? The wall pushes back on you 3. When you paddle a kayak, your paddle
More informationPhysics 2A Chapter 3: Kinematics in Two Dimensions. Problem Solving
Physics 2A Chapter 3: Kinematics in Two Dimensions The only thing in life that is achieved without effort is failure. Source unknown "We are what we repeatedly do. Excellence, therefore, is not an act,
More informationPhysics 11 Assignment KEY Dynamics Chapters 4 & 5
Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problemsolving questions, draw appropriate free body diagrams and use the aforementioned problemsolving method.. Define the following
More informationAP Physics Newton's Laws Practice Test
AP Physics Newton's Laws Practice Test Answers: A,D,C,D,C,E,D,B,A,B,C,C,A,A 15. (b) both are 2.8 m/s 2 (c) 22.4 N (d) 1 s, 2.8 m/s 16. (a) 12.5 N, 3.54 m/s 2 (b) 5.3 kg 1. Two blocks are pushed along a
More information5.1 Vector and Scalar Quantities. A vector quantity includes both magnitude and direction, but a scalar quantity includes only magnitude.
Projectile motion can be described by the horizontal ontal and vertical components of motion. In the previous chapter we studied simple straightline motion linear motion. Now we extend these ideas to
More informationMeasurements of Speed. Speed. v = d t. PowerPoint Lectures to accompany Physical Science, 6e
PowerPoint Lectures to accompany Physical Science, 6e Chapter 2 Motion Homework: All the multiple choice questions in Applying the Concepts and Group A questions in Parallel Exercises. Motion is.. A change
More informationVectors and the Inclined Plane
Vectors and the Inclined Plane Introduction: This experiment is designed to familiarize you with the concept of force as a vector quantity. The inclined plane will be used to demonstrate how one force
More informationPhysics 11 Chapter 4 HW Solutions
Physics 11 Chapter 4 HW Solutions Chapter 4 Conceptual Question: 5, 8, 10, 18 Problems: 3, 3, 35, 48, 50, 54, 61, 65, 66, 68 Q4.5. Reason: No. If you know all of the forces than you know the direction
More informationChapter 3 Practice Test
Chapter 3 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is a physical quantity that has both magnitude and direction?
More informationConcepts in Physics. Wednesday, September 16th
1206  Concepts in Physics Wednesday, September 16th Notes First assignment has two errors: 1.) d is obsolete and 1.) b iii had a mistake. It is now fixed on the webpage Please bring the completed assignments
More informationTwoBody System: Two Hanging Masses
Specific Outcome: i. I can apply Newton s laws of motion to solve, algebraically, linear motion problems in horizontal, vertical and inclined planes near the surface of Earth, ignoring air resistance.
More informationForces. Isaac Newton was the first to discover that the laws that govern motions on the Earth also applied to celestial bodies.
Forces Now we will discuss the part of mechanics known as dynamics. We will introduce Newton s three laws of motion which are at the heart of classical mechanics. We must note that Newton s laws describe
More informationPhysics 160 Biomechanics. Projectiles
Physics 160 Biomechanics Projectiles What is a Projectile? A body in free fall that is subject only to the forces of gravity and air resistance. Air resistance can often be ignored in shotput, long jump
More informationLecture PowerPoints. Chapter 3 Physics: Principles with Applications, 6 th edition Giancoli
Lecture PowerPoints Chapter 3 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the
More informationPhysics 2048 Test 1 Solution (solutions to problems 25 are from student papers) Problem 1 (Short Answer: 20 points)
Physics 248 Test 1 Solution (solutions to problems 25 are from student papers) Problem 1 (Short Answer: 2 points) An object's motion is restricted to one dimension along the distance axis. Answer each
More informationPhysics 201 Homework 5
Physics 201 Homework 5 Feb 6, 2013 1. The (nonconservative) force propelling a 1500kilogram car up a mountain 1.21 10 6 joules road does 4.70 10 6 joules of work on the car. The car starts from rest
More informationat v = u + 2as 6. Carry out calculations using the above kinematic relationships.
MECHANICS AND PROPERTIES OF MATTER The knowledge and understanding content for this unit is given below. Vectors 1. Distinguish between distance and displacement. 2. Distinguish between speed and velocity.
More informationChapter 4 Newton s Laws: Explaining Motion
Chapter 4 Newton s s Laws: Explaining Motion Newton s Laws of Motion The concepts of force, mass, and weight play critical roles. A Brief History! Where do our ideas and theories about motion come from?!
More informationChapter 2  Representing Motion w./ QuickCheck Questions
Chapter 2  Representing Motion w./ QuickCheck Questions 2015 Pearson Education, Inc. Anastasia Ierides Department of Physics and Astronomy University of New Mexico August 27, 2015 Review of Last Time
More informationPROJECTILE MOTION. Objective: To calculate the initial velocity of a projectile and verify the equations of projectile motion.
PROJECTILE MOTION Objective: To calculate the initial velocity of a projectile and verify the equations of projectile motion. Apparatus: Spring gun with ball, plumb bob, level, meter stick, target paper,
More informationNewton s First Law (Law of Inertia) An object will remain at rest or in a constant state of motion unless acted upon by net external forces.
Newton s Third Law Newton s First Law (Law of Inertia) F = 0 An object will remain at rest or in a constant state of motion unless acted upon by net external forces. Newton s First Law If F = 0 => No Change
More informationQ3.1. A. 100 m B. 200 m C. 600 m D m. 500 m. 400 m. 300 m Pearson Education, Inc.
Q3.1 P 400 m Q A bicyclist starts at point P and travels around a triangular path that takes her through points Q and R before returning to point P. What is the magnitude of her net displacement for the
More informationGround Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. Dr Tay Seng Chuan
PC1221 Fundamentals of Physics I Lectures 9 and 10 he Laws of Motion Dr ay Seng Chuan 1 Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while lecture
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The following four forces act on a 4.00 kg object: 1) F 1 = 300 N east F 2 = 700 N north
More informationPhysics Midterm Review Packet January 2010
Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:1510:15 Room:
More informationUnits DEMO spring scales masses
Dynamics the study of the causes and changes of motion Force Force Categories ContactField 4 fundamental Force Types 1 Gravity 2 Weak Nuclear Force 3 Electromagnetic 4 Strong Nuclear Force Units DEMO spring
More informationPhysics 101. Chapter 5: Newton s Third Law
Physics 101 Today Chapter 5: Newton s Third Law First, let s clarify notion of a force: Previously defined force as a push or pull. Better to think of force as an interaction between two objects. You can
More information1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All of the movies A B C. PHYS 11: Chap. 2, Pg 2
1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All of the movies A B C PHYS 11: Chap. 2, Pg 2 1 1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All three A B PHYS 11: Chap. 2, Pg 3 C 1) more than
More informationSpeed, velocity and acceleration
Chapter Speed, velocity and acceleration Figure.1 What determines the maximum height that a polevaulter can reach? 1 In this chapter we look at moving bodies, how their speeds can be measured and how
More informationNewton s Laws of Motion
Newton s Laws of Motion FIZ101E Kazım Yavuz Ekşi My contact details: Name: Kazım Yavuz Ekşi Email: eksi@itu.edu.tr Notice: Only emails from your ITU account are responded. Office hour: Wednesday 10.0012.00
More informationBROCK UNIVERSITY. PHYS 1P21/1P91 Solutions to Midterm test 26 October 2013 Instructor: S. D Agostino
BROCK UNIVERSITY PHYS 1P21/1P91 Solutions to Midterm test 26 October 2013 Instructor: S. D Agostino 1. [10 marks] Clearly indicate whether each statement is TRUE or FALSE. Then provide a clear, brief,
More informationMotion in Two Dimensions
Motion in Two Dimensions 1. The position vector at t i is r i and the position vector at t f is r f. The average velocity of the particle during the time interval is a.!!! ri + rf v = 2 b.!!! ri rf v =
More informationCHAPTER 2, Lsn 21 to 25 TEST REVIEW
IB PHYSICS Name: DEVIL PHYSICS Period: Date: BADDEST CLASS ON CAMPUS CHAPTER 2, Lsn 21 to 25 TEST REVIE 1. The graph shows the variation with time t of the acceleration a of an object. hich of the following
More information2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to :
Candidates should be able to : Derive the equations of motion for constant acceleration in a straight line from a velocitytime graph. Select and use the equations of motion for constant acceleration in
More information