# Reavis High School Physics Honors Curriculum Snapshot

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Reavis High School Physics Honors Curriculum Snapshot Unit 1: Mathematical Toolkit Students will be able to: state definition for physics; measure length using a meter stick; measure the time with a stopwatch and photogates; convert between metric and standard measurements; be able to calculate absolute and relative error; be able to differentiate between accuracy and precision; be able to calculate relative and absolute error during an experiment; be able to caclulate propagation of error. Unit 2: Linear Motion 1 Students will be able to: state the definitions and units of velocity, instantaneous velocity, average velocity, speed, distance, displacement, and acceleration, free-fall gravity; be able to differentiate between scalar and vector quantities; be able to create and analyze velocity and acceleration graphs of motion; be able to calculate the initial and final velocities, time, displacement, and acceleration for a body that is experiencing 1D motion and uniform acceleration; be able to measure displacement, time, and velocity of a body experiencing 1D motion; be able to calculate acceleration based on measurements; memorize gravity's quantity; differentiate between free-fall and horizontal motion; calculate time and height for free-fall problems; be able to model 1D motion using technology. Unit 3: Vectors 7-8 Students will be able to: draw vectors tip to tail; add vectors graphically and mathematically; be able to use trigonomety to solve addition of vectors at angles other than at the horizontal and perpendicular; be able to use Pythagorean's Theorem to calculate the resultant of two vectors; be able to resolve vectors into their x and y components; be able to add and subtract more than two vectors each with different angles.

2 Unit 4: Projectiles 1 days Students will be able to: state the definiton of projectile motion, parabolic motion, and two-dimensional motion; differentiate between motion in the Y plane and X plane; draw a picture of an object experiencing 2D motion; identify how the symmetry of a parabola is used to analyze 2D motion; solve for horizontal displacement and vertical displacement given an initial velocity at an angle when the launch and landing are at different heights; be able to use equations to predict where an object experiencing 2D motion will land during an experiment; describe how air resistance affects 2D motion and how it changes its parabolic nature; be able to represent 2D motion with a mathematical model. Unit : Dynamics 1 Students will be able to: state Newton's three laws, key physical quantities associated with each law, and any math sentences associated with the law; state definitions of normal force, applied force, friction force, tension force, air drag force; units for measure of force (Newton); state the difference between weight and mass and provide math sentences to describe the difference; be able to solve F = ma problems for each variable; be able to use trigonometry to solve forces at an angle problem; be able to draw a free-body diagram; calculate tension in two or more cables attached at different angles to a mass; calculate force and acceleration for bodies on an inclined plane; calculate tension when there are at least two different cables and a hanging mass. Unit 6: Momentum Students will be able to: define momentum, impulse, elastic collision and inelastic collision; state conservation of momentum theory and its mathematical sentence; be able to differentiate among the types of collisions and write their correspodning math sentences; be able to calculate the starting state or ending state of objects experiencing elastic or inelastic collisions and do so when angles are involved; be able to differentiate amongst momentum, forces, and impulse using math sentences and mathematical relationships; be able to demonstrate different types of collisions in an experimental setting and that conservation of momentum is observed; be able to create a safety system that reduces the impulse of a body experiencing a change in momentum; create a model that describes the different types of collisions.

3 Unit 7: Rotational Motion Students will be able to: state the definition of rotational motion, angular motion, tangential velocity, centripetal acceleration and centripetal force, torque, center of mass, equilibrium; calculate centripetal force and tangential velocity given period of rotation, mass, or angle; write math sentences representing sums of torques involving at least four different masses; calculate sums of torques; create a system of at least four masses that is in equilibrium about a center of mass; be able to calculate centripetal force and centripetal acceleration. Unit 8: Gravitation Students will be able to: state definitions for aphelion and perihelion, state Newton's Law of Gravitation mathematically; state Inverse Square Law mathematically; solve for gravitational forces given two different masses and distance between them; create a model that demonstrates the Inverse Square Law in terms of a model of gravitational forces; calculate escape velocity. Unit 9: Work & Power Students will be able to: state definitions of work, power, joule, calorie; convert between joules and calories; represent work and power with math sentences; calculate work and power given force, distance, or time; evaluate the energy needed to sustain activity; evaluate caloric intake as it relates to work and power; create a model of energy conservation; evaluate work and power systems in terms of efficiency.

4 Unit : Energy Students will be able to: state defintions of energy, kinetic energy, gravitational potential energy, elastic potential energy, conservation of mechanical energy, Work Energy Theorem; be able to calculate velocity or height in conservation of energy problems; use Hooke's Law to calculate energy of a spring or rubberband; be able to calculate velocity at any point along an object's path that traverses various displacements and heights; evaluate energy systems in terms of efficiency; create a conservation of energy model. Unit 11: Machines Students will be able to: state definition of efficiency and represent efficiency with a math sentence; mechanical advantage and its math representation; identify different simple machines including the pulley and inclined plane; calculate the work done on different pulley systems up to a seven-pulley system when given a force or length of string; create a simple machine that reduces the force needed to move an object over a distance or height; calculate efficiency of machine system. Unit 12: Electricity Students will be able to: state definition of volt, electromotive force, current, amperes, resistance, ohms, capacitance, farads, inductance, battery; state Ohm's Law mathematically; calculate resistance, volts, or current using Ohm's Law; be able to add resistances, voltages, currents, and capacitances in series and parallel; describe the relationship between electricity and energy; be able to create an electrical circuit that has current, voltage, resistance, and capacitance and that does some kind of work; design a circuit using voltage, current, resistance, and capacitance.

5 Unit 13: Capstone Project Students will be able to: demonstrate their knowledge of physics in at least three different areas by creating an experiment, demonstration, device, or consulting service that requires research, speaking with professionals, and applying physics knowledge and the scientific process.

### First Semester Learning Targets

First Semester Learning Targets 1.1.Can define major components of the scientific method 1.2.Can accurately carry out conversions using dimensional analysis 1.3.Can utilize and convert metric prefixes

### 3.6 Solving Problems Involving Projectile Motion

INTRODUCTION 1-2 Physics and its relation to other fields introduction of physics, its importance and scope 1-5 Units, standards, and the SI System description of the SI System description of base and

### Concept Review. Physics 1

Concept Review Physics 1 Speed and Velocity Speed is a measure of how much distance is covered divided by the time it takes. Sometimes it is referred to as the rate of motion. Common units for speed or

### Laws of Motion, Velocity, Displacement, and Acceleration

Physical Science, Quarter 1, Unit 1.1 Laws of Motion, Velocity, Displacement, and Acceleration Overview Number of instructional days: 13 (1 day = 53 minutes) Content to be learned Add distance and displacement

### HOW TO SOLVE KINEMATICS PROBLEMS

HOW TO SOLVE KINEMATICS PROBLEMS To solve problems involving straight line motion with constant acceleration it is important to clearly identify what is known and what we are looking for and choose which

### Phys 111 Fall P111 Syllabus

Phys 111 Fall 2012 Course structure Five sections lecture time 150 minutes per week Textbook Physics by James S. Walker fourth edition (Pearson) Clickers recommended Coursework Complete assignments from

### COMPETENCY GOAL 1: The learner will develop abilities necessary to do and understand scientific inquiry.

North Carolina Standard Course of Study and Grade Level Competencies, Physics I Revised 2004 139 Physics PHYSICS - Grades 9-12 Strands: The strands are: Nature of Science, Science as Inquiry, Science and

### General Physics I Can Statements

General Physics I Can Statements Motion (Kinematics) 1. I can describe motion in terms of position (x), displacement (Δx), distance (d), speed (s), velocity (v), acceleration (a), and time (t). A. I can

### Salem Community College Course Syllabus. Course Title: Physics I. Course Code: PHY 101. Lecture Hours: 2 Laboratory Hours: 4 Credits: 4

Salem Community College Course Syllabus Course Title: Physics I Course Code: PHY 101 Lecture Hours: 2 Laboratory Hours: 4 Credits: 4 Course Description: The basic principles of classical physics are explored

### Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE State law of parallelogram of vector addition and derive expression for resultant of two vectors

### Physics Midterm Review Packet January 2010

Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:

### Prerequisites: Successful completion of Earth Science, Living Environment, & Chemistry.

Physics Honors Course Honors Physics Overview of Course Physics H 4410 Full Year 1 credit Grades 11, 12 Prerequisites: Successful completion of Earth Science, Living Environment, & Chemistry. Honors policy

### Here is a guide if you are looking for practice questions in the old Physics 111 tests. SUMMARY

31 May 11 1 phys115_in_phys111_exams-new.docx PHYSICS 115 MATERIAL IN OLD PHYSICS 111 EXAMS Here is a guide if you are looking for practice questions in the old Physics 111 tests. SUMMARY Giambattista

### BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science.

BHS Freshman Physics Review Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. Galileo (1564-1642): 1 st true scientist and 1 st person to use

### Unit (Section 3) Represent and analyze the motion of an object graphically. Analyze the speed of two objects in terms of distance and time

Curriculum: Physics A Curricular Unit: One Dimensional Kinematics Instructional Unit: A. Describe the relationship of an object s position, velocity and acceleration over time when it moves in one dimension

### Grade/Course: Pre-AP Physics Unit 2

Grade/Course: Pre-AP Physics Unit 2 Unit Concepts: Newton s Law of Motion, Forces, Equilibrium, Work, Power, & Energy, Simple Machines, Kinetic Energy & Potential Energy, Conservation of Energy, Momentum

### Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

### Online Courses for High School Students 1-888-972-6237

Online Courses for High School Students 1-888-972-6237 PHYSICS Course Description: This course provides a comprehensive survey of all key areas: physical systems, measurement, kinematics, dynamics, momentum,

### Physics. Essential Question How can one explain and predict interactions between objects and within systems of objects?

Physics Special Note for the 2014-15 School Year: In 2013, the Maryland State Board of Education adopted the Next Generation Science Standards (NGSS) that set forth a vision for science education where

### Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in

### Principles and Laws of Motion

2009 19 minutes Teacher Notes: Ian Walter DipAppChem; TTTC; GDipEdAdmin; MEdAdmin (part) Program Synopsis This program begins by looking at the different types of motion all around us. Forces that cause

### Essential Standards: Physics Unpacked Content For the new Essential Standards that will be effective in all North Carolina schools in the

This document is designed to help North Carolina educators teach the Essential Standards (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers.

### Lecture PowerPoints. Chapter 3 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints Chapter 3 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

### School of Biotechnology

Physics reference slides Donatello Dolce Università di Camerino a.y. 2014/2015 mail: donatello.dolce@unicam.it School of Biotechnology Program and Aim Introduction to Physics Kinematics and Dynamics; Position

### KERN COMMUNITY COLLEGE DISTRICT CERRO COSO COLLEGE PHYS C111 COURSE OUTLINE OF RECORD

KERN COMMUNITY COLLEGE DISTRICT CERRO COSO COLLEGE PHYS C111 COURSE OUTLINE OF RECORD 1. DISCIPLINE AND COURSE NUMBER: PHYS C111 2. COURSE TITLE: Mechanics 3. SHORT BANWEB TITLE: Mechanics 4. COURSE AUTHOR:

### AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

### Lesson 5 Rotational and Projectile Motion

Lesson 5 Rotational and Projectile Motion Introduction: Connecting Your Learning The previous lesson discussed momentum and energy. This lesson explores rotational and circular motion as well as the particular

APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

### Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER

1 P a g e Work Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER When a force acts on an object and the object actually moves in the direction of force, then the work is said to be done by the force.

### CHAPTER REVIEWS ARE GIVEN AS HOMEWORK AT THE END OF EACH CHAPTER AND QUIZZES EVERY OTHER FRIDAY WITH AP STYLE QUESTIONS ON WORK SO FAR.

CONCEPTUAL PHYSICS TEXTBOOK CONCEPTUAL PHYSICS BY PAUL HEWITT. CHAPTER REVIEWS ARE GIVEN AS HOMEWORK AT THE END OF EACH CHAPTER AND QUIZZES EVERY OTHER FRIDAY WITH AP STYLE QUESTIONS ON WORK SO FAR. LAB

### Projectile Motion. directions simultaneously. deal with is called projectile motion. ! An object may move in both the x and y

Projectile Motion! An object may move in both the x and y directions simultaneously! The form of two-dimensional motion we will deal with is called projectile motion Assumptions of Projectile Motion! The

### Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

### Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

### Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems

### VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

### Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

### Center of Mass/Momentum

Center of Mass/Momentum 1. 2. An L-shaped piece, represented by the shaded area on the figure, is cut from a metal plate of uniform thickness. The point that corresponds to the center of mass of the L-shaped

### Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Conservation of Energy is one of Nature s fundamental laws that is not violated. Energy can take on different forms in a given system. This chapter we will discuss work

### AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

### Utilize the scientific method to solve physics related problems. Use mathematical reasoning to correctly interpret physics related problems.

AP Physics Course Syllabus: Advanced Placement Physics is a year long course that prepares students to take the AP Physics B exam in May of the school year. Students are expected to be excellent math students

### SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595. l. Course #: PHYSC 111 2. NAME OF ORIGINATOR /REVISOR: Dr.

SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595 l. Course #: PHYSC 111 2. NAME OF ORIGINATOR /REVISOR: Dr. Neil Basescu NAME OF COURSE: College Physics 1 with Lab 3. CURRENT DATE: 4/24/13

### AP Physics 1 Syllabus

2015-2016 3 AP Physics 1 Syllabus Courtland High School Mr. Hurrell Courtland High School - Physics Teacher Room: 313 Phone: 540-898-4445 ext. 2313 Email: jhurrell@spotsylvania.k12.va.us Website: www.hurrellclassroom.com

### Chapter 6 Work and Energy

Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

### Momentum and Energy. Ron Robertson

Momentum and Energy Ron Robertson Momentum Momentum is inertia in motion. Momentum = mass x velocity Unit kg meters/second Momentum is changed by force. The amount of momentum change is also affected by

### physics 111N motion in a plane

physics 111N motion in a plane position & displacement vectors ym! the position vector points from the origin to the object t2.83 s 15 10 5 0 5 10 15 xm we re plotting the plane (e.g. billiard table viewed

### Measurements of Speed. Speed. v = d t. PowerPoint Lectures to accompany Physical Science, 6e

PowerPoint Lectures to accompany Physical Science, 6e Chapter 2 Motion Homework: All the multiple choice questions in Applying the Concepts and Group A questions in Parallel Exercises. Motion is.. A change

### Physics 1000 Final Examination. December A) 87 m B) 46 m C) 94 m D) 50 m

Answer all questions. The multiple choice questions are worth 4 marks and problems 10 marks each. 1. You walk 55 m to the north, then turn 60 to your right and walk another 45 m. How far are you from where

### Figure 1.1 Vector A and Vector F

CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

### Explaining Motion:Forces

Explaining Motion:Forces Chapter Overview (Fall 2002) A. Newton s Laws of Motion B. Free Body Diagrams C. Analyzing the Forces and Resulting Motion D. Fundamental Forces E. Macroscopic Forces F. Application

### Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

### Spinning Stuff Review

Spinning Stuff Review 1. A wheel (radius = 0.20 m) is mounted on a frictionless, horizontal axis. A light cord wrapped around the wheel supports a 0.50-kg object, as shown in the figure below. When released

### Lecture PowerPoints. Chapter 7 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints Chapter 7 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

### Physics of Sports CTY Course Syllabus

Physics of Sports CTY Course Syllabus Texts: 1. Gold Medal Physics: The Science of Sports, by Arthur John Eric Goff 2. Active Physics: An Inquiry Approach to Physics, by Arthur Eisenkraft Course Schedule:

### Ground Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. Dr Tay Seng Chuan

PC1221 Fundamentals of Physics I Lectures 9 and 10 he Laws of Motion Dr ay Seng Chuan 1 Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while lecture

### Problem Set 9 Angular Momentum Solution

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 801 Fall 01 Problem 1 Sedna Problem Set 9 Angular Momentum Solution 90377 Sedna is a large trans-neptunian object, which as of 01 was

### Chapter 4 - Forces and Newton s Laws of Motion w./ QuickCheck Questions

Chapter 4 - Forces and Newton s Laws of Motion w./ QuickCheck Questions 2015 Pearson Education, Inc. Anastasia Ierides Department of Physics and Astronomy University of New Mexico September 8, 2015 Review

### Physics-1 Recitation-7

Physics-1 Recitation-7 Rotation of a Rigid Object About a Fixed Axis 1. The angular position of a point on a wheel is described by. a) Determine angular position, angular speed, and angular acceleration

### Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws and the Mousetrap Racecar Simple version of Newton s three laws of motion 1 st Law: objects at rest stay at rest, objects in motion stay in motion 2 nd Law: force

### Chapter 3 Kinematics in Two or Three Dimensions; Vectors. Copyright 2009 Pearson Education, Inc.

Chapter 3 Kinematics in Two or Three Dimensions; Vectors Vectors and Scalars Units of Chapter 3 Addition of Vectors Graphical Methods Subtraction of Vectors, and Multiplication of a Vector by a Scalar

### PHYS 1111L LAB 2. The Force Table

In this laboratory we will investigate the vector nature of forces. Specifically, we need to answer this question: What happens when two or more forces are exerted on the same object? For instance, in

### A2 Physics - Electric Fields Q&A Revision Sheet

Give the equation relating to the force between point charges in a vacuum If 'F' (the force) is negative what does that mean? If 'F' (the force) is positive what does that mean? State Coulomb's Law F is

### Work, Energy and Power Practice Test 1

Name: ate: 1. How much work is required to lift a 2-kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill

### BIG IDEAS. 1D Momentum. Electric Circuits Kinematics allows us to predict, describe, and analyze an object s motion.

Area of Learning: SCIENCE Physics Grade 11 Ministry of Education BIG IDEAS 1D Kinematics 1D Dynamics 1D Momentum Energy Electric Circuits Kinematics allows us to predict, describe, and analyze an object

### Acceleration due to Gravity

Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

### CHAPTER 3 NEWTON S LAWS OF MOTION

CHAPTER 3 NEWTON S LAWS OF MOTION NEWTON S LAWS OF MOTION 45 3.1 FORCE Forces are calssified as contact forces or gravitational forces. The forces that result from the physical contact between the objects

### Glossary of Physics Formulas

Glossary of Physics Formulas 1. Kinematic relations in 1-D at constant velocity Mechanics, velocity, position x - x o = v (t -t o ) or x - x o = v t x o is the position at time = t o (this is the beginning

### Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

### Lab 7: Rotational Motion

Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125

### AP1 Rotation. ! τ net. = I! α = 0 (50)(g)(3 x) (40)(g)(x) = 0 500(3 x) 400x = x 400x = 0

1. A 50-kg boy and a 40-kg girl sit on opposite ends of a 3-meter see-saw. How far from the girl should the fulcrum be placed in order for the boy and girl to balance on opposite ends of the see-saw? Answer:

### charge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the

This test covers momentum, impulse, conservation of momentum, elastic collisions, inelastic collisions, perfectly inelastic collisions, 2-D collisions, and center-of-mass, with some problems requiring

### Vectors and the Inclined Plane

Vectors and the Inclined Plane Introduction: This experiment is designed to familiarize you with the concept of force as a vector quantity. The inclined plane will be used to demonstrate how one force

### 04-1. Newton s First Law Newton s first law states: Sections Covered in the Text: Chapters 4 and 8 F = ( F 1 ) 2 + ( F 2 ) 2.

Force and Motion Sections Covered in the Text: Chapters 4 and 8 Thus far we have studied some attributes of motion. But the cause of the motion, namely force, we have essentially ignored. It is true that

### Chapter 5 Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion Sir Isaac Newton (1642 1727) Developed a picture of the universe as a subtle, elaborate clockwork slowly unwinding according to well-defined rules. The book Philosophiae

### PC1221 Fundamentals of Physics I Inertia Wheel

PC1221 Fundamentals of Physics I Inertia Wheel 1 Purpose Determination of the angular acceleration of the inertial wheel as a function of the applied torque Determination of the moment of inertia I of

### Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

### AP Physics 1: Algebra-Based 2015 Free-Response Questions

AP Physics 1: Algebra-Based 015 Free-Response Questions 015 The College Board. College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board.

### 7. Kinetic Energy and Work

Kinetic Energy: 7. Kinetic Energy and Work The kinetic energy of a moving object: k = 1 2 mv 2 Kinetic energy is proportional to the square of the velocity. If the velocity of an object doubles, the kinetic

### physics 111N forces & Newton s laws of motion

physics 111N forces & Newton s laws of motion forces (examples) a push is a force a pull is a force gravity exerts a force between all massive objects (without contact) (the force of attraction from the

### 2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was

### PHY121 #8 Midterm I 3.06.2013

PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

### Simple Harmonic Motion Concepts

Simple Harmonic Motion Concepts INTRODUCTION Have you ever wondered why a grandfather clock keeps accurate time? The motion of the pendulum is a particular kind of repetitive or periodic motion called

### Summary Notes. to avoid confusion it is better to write this formula in words. time

National 4/5 Physics Dynamics and Space Summary Notes The coloured boxes contain National 5 material. Section 1 Mechanics Average Speed Average speed is the distance travelled per unit time. distance (m)

### DISPLACEMENT AND FORCE IN TWO DIMENSIONS

DISPLACEMENT AND FORCE IN TWO DIMENSIONS Vocabulary Review Write the term that correctly completes the statement. Use each term once. coefficient of kinetic friction equilibrant static friction coefficient

### AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA LEAVING CERTIFICATE EXAMINATION, 2000

M31 AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA LEAVING CERTIFICATE EXAMINATION, 2000 APPLIED MATHEMATICS - ORDINARY LEVEL FRIDAY, 23 JUNE - AFTERNOON, 2.00 to 4.30 Six questions to be answered. All questions

### 1206EL - Concepts in Physics. Friday, September 18th

1206EL - Concepts in Physics Friday, September 18th Notes There is a WebCT course for students on September 21st More information on library webpage Newton s second law Newton's first law of motion predicts

### Physical Quantities, Symbols and Units

Table 1 below indicates the physical quantities required for numerical calculations that are included in the Access 3 Physics units and the Intermediate 1 Physics units and course together with the SI

### Mechanics 1. Revision Notes

Mechanics 1 Revision Notes July 2012 MECHANICS 1... 2 1. Mathematical Models in Mechanics... 2 Assumptions and approximations often used to simplify the mathematics involved:... 2 2. Vectors in Mechanics....

### Calculate the centripetal acceleration of the boot just before impact

(ii) alculate the centripetal acceleration of the boot just before impact....... (iii) iscuss briefly the radial force on the knee joint before impact and during the impact................. (4) (Total

### People s Physics book 3e Ch 25-1

The Big Idea: In most realistic situations forces and accelerations are not fixed quantities but vary with time or displacement. In these situations algebraic formulas cannot do better than approximate

### A Review of Vector Addition

Motion and Forces in Two Dimensions Sec. 7.1 Forces in Two Dimensions 1. A Review of Vector Addition. Forces on an Inclined Plane 3. How to find an Equilibrant Vector 4. Projectile Motion Objectives Determine

### Forces. -using a consistent system of units, such as the metric system, we can define force as:

Forces Force: -physical property which causes masses to accelerate (change of speed or direction) -a push or pull -vector possessing both a magnitude and a direction and adds according to the Parallelogram

### 9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

### AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA LEAVING CERTIFICATE EXAMINATION, 2001 APPLIED MATHEMATICS HIGHER LEVEL

M3 AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA LEAVING CERTIFICATE EXAMINATION, 00 APPLIED MATHEMATICS HIGHER LEVEL FRIDAY, JUNE AFTERNOON,.00 to 4.30 Six questions to be answered. All questions carry equal marks.

### Higher Physics Our Dynamic Universe Notes

Higher Physics Our Dynamic Universe Notes Teachers Booklet Previous knowledge This section builds on the knowledge from the following key areas from Dynamics and Space Booklet 1 - Dynamics Velocity and

### Conservation of Momentum and Energy

Conservation of Momentum and Energy OBJECTIVES to investigate simple elastic and inelastic collisions in one dimension to study the conservation of momentum and energy phenomena EQUIPMENT horizontal dynamics

### Rotational Motion & Moment of Inertia

Rotational Motion & Moment of nertia Physics 161 ntroduction n this experiment we will study motion of objects is a circular path as well as the effect of a constant torque on a symmetrical body. n Part

### Chapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Class: Date: Chapter 07 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An example of a vector quantity is: a. temperature. b. length. c. velocity.

### End-of-Chapter Exercises

End-of-Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. Figure 11.20 shows four different cases involving a