The Flow of Genetic Information. MBLG1001 Lecture 9. Replication. Is the process : The Messelson Stahl Experiment. The Messelson Stahl Experiment

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "The Flow of Genetic Information. MBLG1001 Lecture 9. Replication. Is the process : The Messelson Stahl Experiment. The Messelson Stahl Experiment"

Transcription

1 The Flow of Genetic Information MBLG1001 Lecture 9 Replication Chapter 7 Malacinski Chapter 5 Clark Transcription Translation DNA RNA rotein replication DNA Folding, modification, translocation Functional protein Figure 28.1 Watson and Crick s famous paper, in its entirety. (Reprinted with permission from Watson,J.D., and Crick,F..C., Molecular structure of nucleic acid, Nature 171: Copyright 1953 Macmillan ublishers Ltd.) Replication Is the process : Conservative, Semi-conservative R Dispersive? The Messelson Stahl Experiment Cells were grown up on the heavy isotope of N, 15 N, abbreviated as ( 15 N 4 Cl) then the medium was changed to one containing normal 14 N (light or L) as sole nitrogen source. DNA was isolated at various time points after the media change and applied to a CsCl density gradient. The Messelson Stahl Experiment This technique separates by buoyant density DNA containing 2 light strands (L:L) will sediment at a different density to a hybrid eavy:light (:L) nucleic acid or the eavy:eavy (:) form of DNA. ld parent DNA will be heavy () Newly synthesised DNA will be light (L). 1

2 The Messelson Stahl Experiment If replication was conservative LL L Concentrated CsCl solutions, when centrifuged really fast form a gradient. Compounds separate by their buoyant density in such a gradient. The DNA one cell division after medium change would be composed of : and L:L in equal proportions. In the second generation there should be 3 L:L to 1 :. The third generation..7 L:L and 1 : If replication was semi conservative In the first generation after medium change the DNA would be composed of solely :L In the next generation you would expect :L and L:L in a ratio of 1:1. In the following generation the :L and L:L would have a ratio of 1:3. In the next generation it would be 1:7. If replication was dispersive ybrid :L DNA would result but if the individual strands were analysed under denaturing conditions (in CsCl with Na to keep the strands apart) they would also have an intermediate density. The individual DNA strands would always be completely or L in the other models. E. coli Replication: the quintessential example E. coli can, under optimal growth conditions double cell numbers every 20 min. Clark p125 It has 1 large circular chromosome; 4.6 million bp The replication fork moves at a constant 1000 NMs/sec. There are 2 forks which move in opposite directions 2

3 E. coli Replication: the quintessential example At this rate it takes 40 min to copy the whole E. coli genome (4.6 million bases pairs) and another 20 min to separate the cellular components. To double in less than 60 min means the cell must initiate the next round of replication before the previous one had finished. To scale up this process it is a 400 k trip made by 2 machines in 40 min with an error made every 170 k. oric The replication forks E. coli s problems: Replication is bi-directional. The theta model. Bacterial DNA is a closed circle so it will get tangled when it is unwound. Enzymes are needed to copy the DNA The strands must be pulled apart and unwound. What enzymes are involved in copying DNA? As soon as the structure of DNA was elucidated the hunt was on for the enzymes which copy it. These enzymes are known as polymerases ver the past 50 years many such enzymes have been found. Some even copy an RNA. The discovery of DNA polymerases Arthur Kornberg The first DNA polymerase (DNA pol I) was isolated in 1956, only 3 years after the structure of DNA was published. Arthur Kornberg isolated DNA pol I and won the 1959 Nobel prize for his efforts. At the time it was thought to be the main replicative enzyme. 3

4 roblems with DNA pol I It didn t work fast enough to copy the whole genome. John Cairns and aula DeLucia isolated mutants of E. coli which had ~1% of the DNA pol I activity but still divided at normal rates. Moral of the story: get the prize before anyone can prove you wrong. Search for DNA copying enzymes Since then another 4 polymerases have been identified in E. coli: DNA pol II, III, IV and V These have been isolated and purified from pola- mutants. DNA pols II, IV and V are repair enzymes and DNA pol III was the Big one! There have been to date over 15 eukaryotic DNA pols isolated and purified and some interesting viral versions. DNA polymerase III The father and son act! It wasn t until 1970 that DNA pol III was isolated by Arthur s son, Thomas. This is a truly large enzyme with ~10 subunits. It has a circular donut-like pair of subunits which clamp the enzyme to the DNA. This gives it its processivity (ability to remain tightly associated with the template through many nucleotide additions) The main players in E coli Replication. DNA polymerase I has : 5 to 3 exonuclease 3 to 5 exonuclease (proof reading) 5 to 3 polymerase (new strand) DNA polymerase III has; 3 to 5 exonuclease (proof reading) 5 to 3 polymerase (new strand) roperties of DNA polymerases Clark p187, Malacinski p to 3 polymerase activity; All polymerases (DNA and RNA) synthesise the new strand of nucleic acid in a 5 to 3 direction. All DNA polymerases need a primer; a short fragment of single stranded nucleic acid bound to the template which provides a 3 to make the next addition. All DNA polymerases have a 3 to 5 exonuclease activity 4

5 5 to 3 polymerase activity arent strand to 3 polymerase activity arent strand 5 3 dnt 5 dnt 5 The correct dnt which base pairs to the template base is added by the polymerase The correct dnt which base pairs to the template base is added by the polymerase 5 to 3 polymerase activity arent strand to 3 polymerase activity arent strand 5 3 dnt 5 3 Newly synthesised strand 5 The correct dnt which base pairs to the template base is added by the polymerase Eventually the whole strand is copied Growing strand (n) residues long At the molecular level - - : Growing strand now (n+1) residues long Cleaving these phosphodiester bonds provides the energy for the polymerisation - C 2 New incoming nucleotide triphosphate: dnt yrophosphate i

6 Rapidly breaks down to 2 phosphates Growing strand now (n+1) residues long roof reading or editing Clark p 113 Malcinski p 129 DNA polymerases, and not RNA polymerases, have an editing function. The 3 to 5 exonuclease is a slow acting nuclease It cleaves the newly added nucleotide if it does not base pair properly to the template. yrophosphate i The rimer Clark p115 Malacinski p 135 All DNA polymerases need a primer, even reverse transcriptase and Klenow. RNA polymerases do NT need a primer. They generate the primer for DNA synthesis. The need for a 3 is exploited in drug design and certain techniques e.g. DNA sequencing. A quick journey through the other polymerases Klenow enzyme or fragment. This enzyme comes from DNA pol I. If you digest DNA pol I for a short amount of time with a protease (called limited proteolysis) you get 2 fragments: A ~66 kd fragment with polymerase and 3 to 5 exonuclease activity. A~33 kd fragment with 5 to 3 exonuclease activity. Klenow enzyme or fragment. The larger fragment is the Klenow enzyme. It is very useful as a DNA polymerase. It requires a primer (needs a 3 to add the next nucleotide to). It is very good a copying DNA. It can be used to synthesise a labeled strand of DNA for experiments 6

7 The history of DNA olymerases Reverse Transcriptase roduced by retroviruses e.g. IV Uses an RNA template roduces a DNA copy, known as complementary DNA or cdna Works 5 to 3 and requires a primer. First isolated in 1970 by oward Temin and David Baltimore independently. Figure The structures of AZT (3 -azido-2,3 - dideoxythymidine). This nucleoside was the first approved drug for treatment of AIDS. AZT is phosphorylated in vivo to give AZTT (AZT 5 -triphosphate), a substrate analog that binds to IV reverse transcriptase, IV reverse transcriptase incorporates AZTT into growing DNA chains in place of dtt. Incorporated AZTM blocks further chain elongation because its 3 -azido group cannot form a phosphodiester bond with an incoming nucleotide. ost cell DNA polymerases have little affinity for AZTT. Taq olymerase A thermal stable DNA polymerase isolated form the bacterium, Thermus aquaticus which lives in the hot springs of Yellowstone National ark. Used in a reaction known as olymerase Chain Reaction (CR). CR is able to amplify sections of DNA by copying it over and over. ther DNA polymerases Repair: DNA pol IV and pol V. Eukaryotic DNA polymerases: α, β, δ, and ε with γ found in mitochondria. Then there are the eukaryotic repair enzymes!! ALL WRK to make a new strand in the 5 to 3 orientation. So what do we know there are a lot of DNA polymerases which are capable of copying a strand of DNA, provided they are supplied with nucleotides, template and a primer. But how and when does replication occur? 7

MBLG1001 Lectures 9 & 10 page 1. University of Sydney Library Electronic Item COURSE: MBLG1001. Lecturer: Dale Hancock Lectures 9 & 10

MBLG1001 Lectures 9 & 10 page 1. University of Sydney Library Electronic Item COURSE: MBLG1001. Lecturer: Dale Hancock Lectures 9 & 10 MBLG1001 Lectures 9 & 10 page 1 University of Sydney Library Electronic Item CURSE: MBLG1001 Lecturer: Dale ancock Lectures 9 & 10 CMMNWEALT F AUSTRALIA Copyright Regulation WARNING This material has been

More information

Chapter 6: DNA: Hereditary Molecules of Life pg : DNA Replication and Repair pg

Chapter 6: DNA: Hereditary Molecules of Life pg : DNA Replication and Repair pg UNIT 3: Molecular Genetics Chapter 6: DNA: Hereditary Molecules of Life pg. 268-6.4: DNA Replication and Repair pg. 282-290 The DNA molecule is capable of replicating on its own. This is important for

More information

CHAPTER 3 Molecular Genetics DNA Replication

CHAPTER 3 Molecular Genetics DNA Replication CHAPTER 3 Molecular Genetics DNA Replication Watson and Crick DNA model implies a mechanism for replication: a. Unwind the DNA molecule. b. Separate the two strands. c. Make a complementary copy for each

More information

DNA Replication. (CHAPTER 11- Brooker Text) Sept 16 & 18, 2008 BIO 184 Dr. Tom Peavy. Sequence Complexity in the Genome

DNA Replication. (CHAPTER 11- Brooker Text) Sept 16 & 18, 2008 BIO 184 Dr. Tom Peavy. Sequence Complexity in the Genome DNA Replication (CHAPTER 11- Brooker Text) Sept 16 & 18, 2008 BIO 184 Dr. Tom Peavy Sequence Complexity in the Genome 60-70% of human DNA fragments are unique DNA sequences 1 What are the structural features

More information

DNA replication (Lecture 28,29)

DNA replication (Lecture 28,29) DNA replication (Lecture 28,29) 1. DNA replication and the cell cycle 2. DNA is Reproduced by Semiconservative Replication 2.1 Conservation of the Original Helix 2.2 The Meselson-Stahl Experiment 2.3 Semiconservative

More information

DNA REPLICATION. Genetica per Scienze Naturali a.a prof S. Presciuttini

DNA REPLICATION. Genetica per Scienze Naturali a.a prof S. Presciuttini DNA REPLICATION This document is licensed under the Attribution-NonCommercial-ShareAlike 2.5 Italy license, available at http://creativecommons.org/licenses/by-nc-sa/2.5/it/ 1. DNA Replication In both

More information

DNA synthesis_pic Basic requirements for DNA synthesis Substrates. The four deoxynucleoside triphosphates (dntps) deoxyadenosine triphosphate (datp),

DNA synthesis_pic Basic requirements for DNA synthesis Substrates. The four deoxynucleoside triphosphates (dntps) deoxyadenosine triphosphate (datp), Basic requirements for DNA synthesis Substrates. The four deoxynucleoside triphosphates (dntps) deoxyadenosine triphosphate (datp), deoxyguanosine triphosphate (dgtp), deoxycytidine triphos-phate (dctp),

More information

DNA Replication Activity Guide

DNA Replication Activity Guide DNA Replication Activity Guide Teacher Key Deoxyribonucleic Acid (DNA) Exploring DNA 1. List at least three reasons why a cell must undergo division. Answers may vary but may include: growth, repair, reproduction,

More information

Reminder. The genetic information in a gene is encoded in the sequence of bases on one strand of DNA.

Reminder. The genetic information in a gene is encoded in the sequence of bases on one strand of DNA. DNA Replication Genes are DNA. Reminder DNA is a double-stranded molecule. The genetic information in a gene is encoded in the sequence of bases on one strand of DNA. 1 10 20 30 40 50 60 70 80 90 100 AcatttgcttctgacacaactgtgttcactagcaactcaaacagacaccATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGC

More information

The Central Dogma. Replication as a Process. DNA Replication is Semi-discontinuous!

The Central Dogma. Replication as a Process. DNA Replication is Semi-discontinuous! The Central Dogma DNA structure and DNA replication DNA replication (continued) RNA Synthesis rotein synthesis rof. David McConnell Smurfit Institute of Genetics DNA an emblem of the 20 th century. 1.!

More information

2. The work of Messelson & Stahl showed semi-conservative replication. 4. Cairn's experiments showed chromosomes are semi-conservatively replicated.

2. The work of Messelson & Stahl showed semi-conservative replication. 4. Cairn's experiments showed chromosomes are semi-conservatively replicated. BIOLOGY 207 - Dr.McDermid Lecture#2/3 DNA Structure & Replication Readings: Griffiths et al, 7 th Edition: Ch. 8 pp 243-259 (corrected) Problems: Griffiths et al, 7 th Edition: Ch. 8 Tier 1: # 2,3,5,9,13

More information

1.5 page 3 DNA Replication S. Preston 1

1.5 page 3 DNA Replication S. Preston 1 AS Unit 1: Basic Biochemistry and Cell Organisation Name: Date: Topic 1.5 Nucleic Acids and their functions Page 3 l. DNA Replication 1. Go through PowerPoint 2. Read notes p2 and then watch the animation

More information

DNA Replication. Introduction... 1 The Mechanism of Replication... 2 DNA Replication Rates... 4 References... 5

DNA Replication. Introduction... 1 The Mechanism of Replication... 2 DNA Replication Rates... 4 References... 5 DNA Replication Contents Introduction... 1 The Mechanism of Replication... 2 DNA Replication Rates... 4 References... 5 Introduction In their report announcing the structure of the DNA molecule, Watson

More information

4. DNA replication Pages: 979-984 Difficulty: 2 Ans: C Which one of the following statements about enzymes that interact with DNA is true?

4. DNA replication Pages: 979-984 Difficulty: 2 Ans: C Which one of the following statements about enzymes that interact with DNA is true? Chapter 25 DNA Metabolism Multiple Choice Questions 1. DNA replication Page: 977 Difficulty: 2 Ans: C The Meselson-Stahl experiment established that: A) DNA polymerase has a crucial role in DNA synthesis.

More information

Part III. Genetic information replication and flow

Part III. Genetic information replication and flow Part III Genetic information replication and flow Chapter 16 DNA Biosynthesis and Recombination The biological function of DNA Store genetic information Replicate genetic information Express genetic information

More information

1. True or False? At the DNA level, recombination is initiated by a single stranded break in a DNA molecule. False

1. True or False? At the DNA level, recombination is initiated by a single stranded break in a DNA molecule. False 1. True or False? At the DNA level, recombination is initiated by a single stranded break in a DNA molecule. False 2. True or False? Dideoxy sequencing is a chain initiation method of DNA sequencing. False

More information

DNA replication. DNA RNA Protein

DNA replication. DNA RNA Protein DNA replication The central dogma of molecular biology transcription translation DNA RNA Protein replication Revers transcriptase The information stored by DNA: - protein structure - the regulation of

More information

BCMB Chapters 34 & 35 DNA Replication and Repair

BCMB Chapters 34 & 35 DNA Replication and Repair BCMB 3100 - Chapters 34 & 35 DNA Replication and Repair Semi-conservative DNA replication DNA polymerase DNA replication Replication fork; Okazaki fragments Sanger method for DNA sequencing DNA repair

More information

BCMB Chapters 34 & 35 DNA Replication and Repair

BCMB Chapters 34 & 35 DNA Replication and Repair BCMB 3100 - Chapters 34 & 35 DNA Replication and Repair Semi-conservative DNA replication DNA polymerase DNA replication Replication fork; Okazaki fragments Sanger method for DNA sequencing DNA repair

More information

MOLECULAR BIOLOGY OVERVIEW NUCLEIC ACIDS: THE BASICS

MOLECULAR BIOLOGY OVERVIEW NUCLEIC ACIDS: THE BASICS MOLECULAR BIOLOGY OVERVIEW NUCLEIC ACIDS: THE BASICS Richard L. Hodinka, Ph.D. University of South Carolina School of Medicine Greenville Greenville Health System, Greenville, SC hodinka@greenvillemed.sc.edu

More information

DNA AND IT S ROLE IN HEREDITY

DNA AND IT S ROLE IN HEREDITY DNA AND IT S ROLE IN HEREDITY Lesson overview and objectives - DNA/RNA structural properties What are DNA and RNA made of What are the structural differences between DNA and RNA What is the structure of

More information

Bio Factsheet. How Science Works: Meselson and Stahl s Classic Experiment. Number 207.

Bio Factsheet. How Science Works: Meselson and Stahl s Classic Experiment. Number 207. Number 207 How Science Works: Meselson and Stahl s lassic Experiment n 1953 James Watson and Francis rick built their model of the structure of DNA, which is still accepted today: DNA is an anti-parallel

More information

3/23/2012. DNA Replication. DNA Replication. DNA Replication. Steps in DNA Replication. SBI4U1 Molecular Genetics

3/23/2012. DNA Replication. DNA Replication. DNA Replication. Steps in DNA Replication. SBI4U1 Molecular Genetics SBI4U1 Molecular Genetics Recall: mitosis requires that each daughter cell has an exact copy of parent DNA. Ms. Ponvia The Watson-Crick model suggests how this occurs: Parent DNA molecule unzips, creating

More information

MBLG1001 Lecture 8 page 1. University of Sydney Library Electronic Item COURSE: MBLG1001. Lecturer: Dale Hancock Lecture 8

MBLG1001 Lecture 8 page 1. University of Sydney Library Electronic Item COURSE: MBLG1001. Lecturer: Dale Hancock Lecture 8 MBLG1001 Lecture 8 page 1 University of Sydney Library Electronic Item CURSE: MBLG1001 Lecturer: Dale ancock Lecture 8 CMMNWEALT F AUSTRALIA Copyright Regulation WARNING This material has been reproduced

More information

2. Why did biologists used to think that proteins are the genetic material?

2. Why did biologists used to think that proteins are the genetic material? Chapter 16: DNA: The Genetic Material 1. What must genetic material do? 2. Why did biologists used to think that proteins are the genetic material? 3. Describe Griffith s experiments with genetic transformation

More information

Lectures 19 and 20. Chapter 12: DNA Replication and Recombination. Problem set 3A: due at beginning of lecture on Monday, Oct.

Lectures 19 and 20. Chapter 12: DNA Replication and Recombination. Problem set 3A: due at beginning of lecture on Monday, Oct. Lectures 19 and 20 Chapter 12: DNA Replication and Recombination DNA Replication is semiconservative Meselson-Stahl experiment: 15 N-labeling and CsCl density gradient centrifugation. Problem set 3A: due

More information

DNA Replication in Prokaryotes

DNA Replication in Prokaryotes OpenStax-CNX module: m44488 1 DNA Replication in Prokaryotes OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section,

More information

Some comments on biochemistry

Some comments on biochemistry BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 13: DNA replication and repair http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Some comments on biochemistry The last

More information

Introduction. Chapter 11 DNA replication, repair and recombination. Overview. DNA replication is essential for life. Short on DNA structure

Introduction. Chapter 11 DNA replication, repair and recombination. Overview. DNA replication is essential for life. Short on DNA structure Chapter 11 DNA replication, repair and recombination Overview Brief introduction DNA replication DNA repair DNA recombination DNA replication is essential for life Introduction Cells divide and make copies

More information

Every time a cell divides the genome must be duplicated and passed on to the offspring. That is:

Every time a cell divides the genome must be duplicated and passed on to the offspring. That is: DNA Every time a cell divides the genome must be duplicated and passed on to the offspring. That is: Original molecule yields 2 molecules following DNA replication. Our topic in this section is how is

More information

POGIL Cell Biology Activity 6 DNA Replication MODEL 1: "Replication Bubble"

POGIL Cell Biology Activity 6 DNA Replication MODEL 1: Replication Bubble POGIL Cell Biology Activity 6 DNA Replication MODEL 1: "Replication Bubble" The circle is an E. coli chromosome at the beginning of DNA synthesis. The original DNA strands are called "parental strands".

More information

DNA. Form and Function

DNA. Form and Function DNA Form and Function DNA: Structure and replication Understanding DNA replication and the resulting transmission of genetic information from cell to cell, and generation to generation lays the groundwork

More information

Chapter 6 DNA Replication

Chapter 6 DNA Replication Chapter 6 DNA Replication Each strand of the DNA double helix contains a sequence of nucleotides that is exactly complementary to the nucleotide sequence of its partner strand. Each strand can therefore

More information

DNA: Structure and Replication

DNA: Structure and Replication 7 DNA: Structure and Replication WORKING WITH THE FIGURES 1. In Table 7-1, why are there no entries for the first four tissue sources? For the last three entries, what is the most likely explanation for

More information

Bio 102 Practice Problems Chromosomes and DNA Replication

Bio 102 Practice Problems Chromosomes and DNA Replication Bio 102 Practice Problems Chromosomes and DNA Replication Multiple choice: Unless otherwise directed, circle the one best answer: 1. Which one of the following enzymes is NT a key player in the process

More information

2.7 DNA replication, transcription and translation

2.7 DNA replication, transcription and translation 2.7 DNA replication, transcription and translation Essential Idea: Genetic information in DNA can be accurately copied and can be translated to make the proteins needed by the cell. The image shows an

More information

Chapter 10 Manipulating Genes

Chapter 10 Manipulating Genes How DNA Molecules Are Analyzed Chapter 10 Manipulating Genes Until the development of recombinant DNA techniques, crucial clues for understanding how cell works remained lock in the genome. Important advances

More information

BIOTECHNOLOGY. What can we do with DNA?

BIOTECHNOLOGY. What can we do with DNA? BIOTECHNOLOGY What can we do with DNA? Biotechnology Manipulation of biological organisms or their components for research and industrial purpose Usually manipulate DNA itself How to study individual gene?

More information

Chapter 16: DNA Structure & Replication

Chapter 16: DNA Structure & Replication hapter 16: DN Structure & Replication 1. DN Structure 2. DN Replication 1. DN Structure hapter Reading pp. 313-318 enetic Material: Protein or DN? Until the early 1950 s no one knew for sure, but it was

More information

TTGGHTGUTGG CCAAACACCAA AACCCACAACC HHUUTHUGHUU

TTGGHTGUTGG CCAAACACCAA AACCCACAACC HHUUTHUGHUU Conceptual Questions C1. Answer: It is a double-stranded structure that follows the AT/GC rule. C2. Answer: Bidirectional replication refers to DNA replication in both directions starting from one origin.

More information

Structure and Function of DNA

Structure and Function of DNA Structure and Function of DNA DNA and RNA Structure DNA and RNA are nucleic acids. They consist of chemical units called nucleotides. The nucleotides are joined by a sugar-phosphate backbone. The four

More information

The correct answer is c B. Answer b is incorrect. Type II enzymes recognize and cut a specific site, not at random sites.

The correct answer is c B. Answer b is incorrect. Type II enzymes recognize and cut a specific site, not at random sites. 1. A recombinant DNA molecules is one that is a. produced through the process of crossing over that occurs in meiosis b. constructed from DNA from different sources c. constructed from novel combinations

More information

During DNA replication, a cell uses a variety of proteins to create a new copy of its genome.

During DNA replication, a cell uses a variety of proteins to create a new copy of its genome. Principles of Biology contents 45 DNA Replication During DNA replication, a cell uses a variety of proteins to create a new copy of its genome. DNA replication is a set of timed processes involving many

More information

Central Dogma. Lecture 10. Discussing DNA replication. DNA Replication. DNA mutation and repair. Transcription

Central Dogma. Lecture 10. Discussing DNA replication. DNA Replication. DNA mutation and repair. Transcription Central Dogma transcription translation DNA RNA Protein replication Discussing DNA replication (Nucleus of eukaryote, cytoplasm of prokaryote) Recall Replication is semi-conservative and bidirectional

More information

Structure. Structural Components of Nucleotides Base. Introduction Nucleotide to Cells & Microscopy and Nucleic Acid. Sugar. Phosphate Glycosidic bond

Structure. Structural Components of Nucleotides Base. Introduction Nucleotide to Cells & Microscopy and Nucleic Acid. Sugar. Phosphate Glycosidic bond 11 Introduction Nucleotide to Cells & Microscopy and Nucleic Acid Structure Structural Components of Nucleotides Base Sugar Phosphate Glycosidic bond H NUCLEOTIDE H 1 RNA DNA Table 3-1 Nucleic acid polymer

More information

DNA Structure and Replication. Chapter Nine

DNA Structure and Replication. Chapter Nine DNA Structure and Replication Chapter Nine 2005 We know: DNAis the hereditary material DNAhas a double helix structure Made of four bases; A,T,C,G Sugar-Phosphate backbone DNAreplication is semi-conservative

More information

Recombinant DNA & Genetic Engineering. Tools for Genetic Manipulation

Recombinant DNA & Genetic Engineering. Tools for Genetic Manipulation Recombinant DNA & Genetic Engineering g Genetic Manipulation: Tools Kathleen Hill Associate Professor Department of Biology The University of Western Ontario Tools for Genetic Manipulation DNA, RNA, cdna

More information

Lecture 9 DNA Structure & Replication

Lecture 9 DNA Structure & Replication Lecture 9 DNA Structure & Replication What is a Gene? Mendel s work left a key question unanswered: What is a gene? The work of Sutton and Morgan established that genes reside on chromosomes But chromosomes

More information

OUTCOMES. PROTEIN SYNTHESIS IB Biology Core Topic 3.5 Transcription and Translation OVERVIEW ANIMATION CONTEXT RIBONUCLEIC ACID (RNA)

OUTCOMES. PROTEIN SYNTHESIS IB Biology Core Topic 3.5 Transcription and Translation OVERVIEW ANIMATION CONTEXT RIBONUCLEIC ACID (RNA) OUTCOMES PROTEIN SYNTHESIS IB Biology Core Topic 3.5 Transcription and Translation 3.5.1 Compare the structure of RNA and DNA. 3.5.2 Outline DNA transcription in terms of the formation of an RNA strand

More information

SESSION 2. Possible answer:

SESSION 2. Possible answer: UPDATED CLONE THAT GENE ACTIVITY 2014 TEACHER GUIDE SESSION 2 Key ideas: When creating a recombinant plasmid, it is important to examine the sequences of the plasmid DNA and of the human DNA that contains

More information

Transcription Study Guide

Transcription Study Guide Transcription Study Guide This study guide is a written version of the material you have seen presented in the transcription unit. The cell s DNA contains the instructions for carrying out the work of

More information

1. Which of the following correctly organizes genetic material from the broadest category to the most specific category?

1. Which of the following correctly organizes genetic material from the broadest category to the most specific category? DNA and Genetics 1. Which of the following correctly organizes genetic material from the broadest category to the most specific category? A. genome chromosome gene DNA molecule B. genome chromosome DNA

More information

CHAPTER 14 LECTURE NOTES: RECOMBINANT DNA TECHNOLOGY

CHAPTER 14 LECTURE NOTES: RECOMBINANT DNA TECHNOLOGY CHAPTER 14 LECTURE NOTES: RECOMBINANT DNA TECHNOLOGY I. General Info A. Landmarks in modern genetics 1. Rediscovery of Mendel s work 2. Chromosomal theory of inheritance 3. DNA as the genetic material

More information

DNA TECHNOLOGY- methods for studying and manipulating genetic material.

DNA TECHNOLOGY- methods for studying and manipulating genetic material. 1 DNA TECHNOLOGY- methods for studying and manipulating genetic material. BIOTECHNOLOGY, the manipulation of organisms or their components to make useful products. Biotechnology today usually refers to

More information

Solutions to Problem Set 5

Solutions to Problem Set 5 Question 1 Solutions to 7.014 Problem Set 5 a) Which of the following molecules functions directly to transfer information from the nucleus to the cytoplasm? ircle all that apply. DN mrn trn transporter

More information

Genetics Faculty of Agriculture and Veterinary Medicine

Genetics Faculty of Agriculture and Veterinary Medicine Genetics 10201232 Faculty of Agriculture and Veterinary Medicine Instructor: Dr. Jihad Abdallah Topic 15:Recombinant DNA Technology 1 Recombinant DNA Technology Recombinant DNA Technology is the use of

More information

Chapter 12 - DNA Technology

Chapter 12 - DNA Technology Bio 100 DNA Technology 1 Chapter 12 - DNA Technology Among bacteria, there are 3 mechanisms for transferring genes from one cell to another cell: transformation, transduction, and conjugation 1. Transformation

More information

I) DNA STRUCTURE AND REPLICATION B) DNA REPLICATION

I) DNA STRUCTURE AND REPLICATION B) DNA REPLICATION I) DN SRUURE ND REPLIION B) DN REPLIION I) DN Structure and Replication DN Replication for mitosis and meiosis to occur the DN must make an exact copy itself first (S Phase) this is called DN replication

More information

2.1 Nucleic acids the molecules of life

2.1 Nucleic acids the molecules of life 1 2.1 Nucleic acids the molecules of life Nucleic acids information molecules of the cells form new cells stored in chromosomes in nucleus of the cell in the form of a code in DNA / parts of the code are

More information

Ch. 12: DNA and RNA 12.1 DNA Chromosomes and DNA Replication

Ch. 12: DNA and RNA 12.1 DNA Chromosomes and DNA Replication Ch. 12: DNA and RNA 12.1 DNA A. To understand genetics, biologists had to learn the chemical makeup of the gene Genes are made of DNA DNA stores and transmits the genetic information from one generation

More information

Genes DNA Replication

Genes DNA Replication Genes DNA Replication Classwork 1. Explain why it is necessary to be able to replicate DNA in order to sustain life. 2. What is the appropriate scientific term used to describe a series of bases that code

More information

Study Guide Chapter 12

Study Guide Chapter 12 Study Guide Chapter 12 1. Know ALL of your vocabulary words! 2. Name the following scientists with their contributions to Discovering DNA: a. Strains can be transformed (or changed) into other forms while

More information

Complementary Base Pairs: A and T. DNA contains complementary base pairs in which adenine is always linked by two hydrogen bonds to thymine (A T).

Complementary Base Pairs: A and T. DNA contains complementary base pairs in which adenine is always linked by two hydrogen bonds to thymine (A T). Complementary Base Pairs: A and T DNA contains complementary base pairs in which adenine is always linked by two hydrogen bonds to thymine (A T). Complementary Base Pairs: G and C DNA contains complementary

More information

Polymerase Chain Reaction (PCR)

Polymerase Chain Reaction (PCR) Polymerase Chain Reaction (PCR) Paul C Winter, Belfast City Hospital, Belfast, UK The polymerase chain reaction is a technique that allows DNA molecules of interest (usually gene sequences) to be copied

More information

Tools and Techniques. Chapter 10. Genetic Engineering. Restriction endonuclease. 1. Enzymes

Tools and Techniques. Chapter 10. Genetic Engineering. Restriction endonuclease. 1. Enzymes Chapter 10. Genetic Engineering Tools and Techniques 1. Enzymes 2. 3. Nucleic acid hybridization 4. Synthesizing DNA 5. Polymerase Chain Reaction 1 2 1. Enzymes Restriction endonuclease Ligase Reverse

More information

DNA Replication & Protein Synthesis. This isn t a baaaaaaaddd chapter!!!

DNA Replication & Protein Synthesis. This isn t a baaaaaaaddd chapter!!! DNA Replication & Protein Synthesis This isn t a baaaaaaaddd chapter!!! The Discovery of DNA s Structure Watson and Crick s discovery of DNA s structure was based on almost fifty years of research by other

More information

Polymerase Chain Reaction (PCR)

Polymerase Chain Reaction (PCR) PR037 G-Biosciences 1-800-628-7730 1-314-991-6034 technical@gbiosciences.com A Geno Technology, Inc. (USA) brand name Polymerase Chain Reaction (PCR) Teacher s Guidebook (Cat. # BE 305) think proteins!

More information

Proteomics: Principles and Techniques Prof: Sanjeeva Srivastava Department of Biosciences and Bioengineering Indian Institute of Technology, Bombay

Proteomics: Principles and Techniques Prof: Sanjeeva Srivastava Department of Biosciences and Bioengineering Indian Institute of Technology, Bombay (Refer Slide Time: 00:29) Proteomics: Principles and Techniques Prof: Sanjeeva Srivastava Department of Biosciences and Bioengineering Indian Institute of Technology, Bombay Lecture No. # 02 Central Dogma:

More information

The Watson-Crick Proposal. DNA Replication. Semiconservative DNA replication

The Watson-Crick Proposal. DNA Replication. Semiconservative DNA replication Cell and Molecular Biology The Watson-Crick Proposal DNA Replication DNA strands are complementary Nucleotides are lined up on templates according to base pair rules Kanokporn Boonsirichai ksatima@live.com

More information

Lecture 37: Polymerase Chain Reaction

Lecture 37: Polymerase Chain Reaction Lecture 37: Polymerase Chain Reaction We have already studied basics of DNA/RNA structure and recombinant DNA technology in previous classes. Polymerase Chain Reaction (PCR) is another revolutionary method

More information

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in DNA, RNA, Protein Synthesis Keystone 1. During the process shown above, the two strands of one DNA molecule are unwound. Then, DNA polymerases add complementary nucleotides to each strand which results

More information

Transcription Activity Guide

Transcription Activity Guide Transcription Activity Guide Teacher Key Ribonucleic Acid (RNA) Introduction Central Dogma: DNA to RNA to Protein Almost all dynamic functions in a living organism depend on proteins. Proteins are molecular

More information

DNA Replication Case Study Dasgupta (2013) In-Class Exercise: DNA Replication: A Case Discussion of a Landmark Paper by Meselson and Stahl

DNA Replication Case Study Dasgupta (2013) In-Class Exercise: DNA Replication: A Case Discussion of a Landmark Paper by Meselson and Stahl In-Class Exercise: DNA Replication: A Case Discussion of a Landmark Paper by Meselson and Stahl Shoumita Dasgupta Boston University School of Medicine 72 East. Concord Street, L-317 H Boston, MA 02118

More information

Transcription and Translation of DNA

Transcription and Translation of DNA Transcription and Translation of DNA Genotype our genetic constitution ( makeup) is determined (controlled) by the sequence of bases in its genes Phenotype determined by the proteins synthesised when genes

More information

1. In the experiments of Griffith, the conversion of nonlethal R-strain bacteria to lethal S- strain bacteria:

1. In the experiments of Griffith, the conversion of nonlethal R-strain bacteria to lethal S- strain bacteria: Name Chapter 12: DNA: The Carrier of Genetic Information Mrs. Laux AP Biology Take home test #10 on Chaps. 12 and 13 DUE: MONDAY, DECEMBER 14, 2009 MULTIPLE CHOICE QUESTIONS 1. In the experiments of Griffith,

More information

Ch 16 and Introduction of Ch 17. This PowerPoint is posted. Replication Transcription Translation Protein!

Ch 16 and Introduction of Ch 17. This PowerPoint is posted. Replication Transcription Translation Protein! Ch 16 and Introduction of Ch 17 This PowerPoint is posted. Replication Transcription Translation Protein! In the start of things lin the 1950 s scientists knew that chromosomes carry hereditary material

More information

DNA to Protein BIOLOGY INSTRUCTIONAL TASKS

DNA to Protein BIOLOGY INSTRUCTIONAL TASKS BIOLOGY INSTRUCTIONAL TASKS DNA to Protein Grade-Level Expectations The exercises in these instructional tasks address content related to the following science grade-level expectations: Contents LS-H-B1

More information

DNA. Discovery of the DNA double helix

DNA. Discovery of the DNA double helix DNA Replication DNA Discovery of the DNA double helix A. 1950 s B. Rosalind Franklin - X-ray photo of DNA. C. Watson and Crick - described the DNA molecule from Franklin s X-ray. What is DNA? Question:

More information

2. The number of different kinds of nucleotides present in any DNA molecule is A) four B) six C) two D) three

2. The number of different kinds of nucleotides present in any DNA molecule is A) four B) six C) two D) three Chem 121 Chapter 22. Nucleic Acids 1. Any given nucleotide in a nucleic acid contains A) two bases and a sugar. B) one sugar, two bases and one phosphate. C) two sugars and one phosphate. D) one sugar,

More information

Lecture 10. mrna: Transcription Translation Start Translation Stop Transcription Start (AUG) (UAG, UAA, or UGA) Terminator S-D Sequence

Lecture 10. mrna: Transcription Translation Start Translation Stop Transcription Start (AUG) (UAG, UAA, or UGA) Terminator S-D Sequence Lecture 10 Analysis of Gene Sequences Anatomy of a bacterial gene: Promoter Coding Sequence (no stop codons) mrna: Transcription Translation Start Translation Stop Transcription Start (AUG) (UAG, UAA,

More information

Chapter 11: Molecular Structure of DNA and RNA

Chapter 11: Molecular Structure of DNA and RNA Chapter 11: Molecular Structure of DNA and RNA Student Learning Objectives Upon completion of this chapter you should be able to: 1. Understand the major experiments that led to the discovery of DNA as

More information

DNA, RNA AND PROTEIN SYNTHESIS

DNA, RNA AND PROTEIN SYNTHESIS DNA, RNA AND PROTEIN SYNTHESIS Evolution of Eukaryotic Cells Eukaryotes are larger, more complex cells that contain a nucleus and membrane bound organelles. Oldest eukarytotic fossil is 1800 million years

More information

Figure During transcription, RNA nucleotides base-pair one by one with DNA

Figure During transcription, RNA nucleotides base-pair one by one with DNA Objectives Describe the process of DNA transcription. Explain how an RNA message is edited. Describe how RNA is translated to a protein. Summarize protein synthesis. Key Terms messenger RNA (mrna) RNA

More information

Chapter 8: Recombinant DNA 2002 by W. H. Freeman and Company Chapter 8: Recombinant DNA 2002 by W. H. Freeman and Company

Chapter 8: Recombinant DNA 2002 by W. H. Freeman and Company Chapter 8: Recombinant DNA 2002 by W. H. Freeman and Company Biotechnology and reporter genes Here, a lentivirus is used to carry foreign DNA into chickens. A reporter gene (GFP)indicates that foreign DNA has been successfully transferred. Recombinant DNA continued

More information

Replication Study Guide

Replication Study Guide Replication Study Guide This study guide is a written version of the material you have seen presented in the replication unit. Self-reproduction is a function of life that human-engineered systems have

More information

Viral Infection: Receptors

Viral Infection: Receptors Viral Infection: Receptors Receptors: Identification of receptors has come from expressing the gene for the receptor in a cell to which a virus does not normally bind -OR- By blocking virus attachment

More information

DNA (Deoxyribonucleic Acid)

DNA (Deoxyribonucleic Acid) DNA (Deoxyribonucleic Acid) Genetic material of cells GENES units of genetic material that CODES FOR A SPECIFIC TRAIT Called NUCLEIC ACIDS DNA is made up of repeating molecules called NUCLEOTIDES Phosphate

More information

Translation Study Guide

Translation Study Guide Translation Study Guide This study guide is a written version of the material you have seen presented in the replication unit. In translation, the cell uses the genetic information contained in mrna to

More information

Transcription in prokaryotes. Elongation and termination

Transcription in prokaryotes. Elongation and termination Transcription in prokaryotes Elongation and termination After initiation the σ factor leaves the scene. Core polymerase is conducting the elongation of the chain. The core polymerase contains main nucleotide

More information

Chapter 4.2 (textbook: Molecular Cell Biology 6 ed, Lodish section: ) DNA Replication, Repair, and Recombination

Chapter 4.2 (textbook: Molecular Cell Biology 6 ed, Lodish section: ) DNA Replication, Repair, and Recombination Chapter 4.2 (textbook: Molecular Cell Biology 6 ed, Lodish section: 4.5-4.6) DNA Replication, Repair, and Recombination Cell division - mitosis S-phase is tightly regulated by kinases Mitosis can be divided

More information

Section 12 3 RNA and Protein Synthesis

Section 12 3 RNA and Protein Synthesis Name Class Date Section 12 3 RNA and Protein Synthesis (pages 300 306) Key Concepts What are the three main types of RNA? What is transcription? What is translation? The Structure of RNA (page 300) 1.

More information

INTRODUCTION TO DNA Replication

INTRODUCTION TO DNA Replication INTRODUCTION TO DNA Replication - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Chapter 13 covers a descriptive explanation of Deoxyribose nucleic Acid

More information

DNA TM Review And EXAM Review. Ms. Martinez

DNA TM Review And EXAM Review. Ms. Martinez DNA TM Review And EXAM Review Ms. Martinez 1. Write out the full name for DNA molecule. Deoxyribonucleic acid 2. What are chromosomes? threadlike strands made of DNA and PROTEIN 3. What does DNA control

More information

The Genetic Code There are 20 amino acids, but there are only four nucleotide bases in DNA. How many nucleotides correspond to an amino acid?

The Genetic Code There are 20 amino acids, but there are only four nucleotide bases in DNA. How many nucleotides correspond to an amino acid? CH 17 Transcription & Translation Basic Principles of Transcription & Translation RNA is the bridge between genes and the proteins for which they code. Transcription is the synthesis of RNA under the direction

More information

Chapter 2. Introduction to some basic features of genetic information: From DNA to proteins

Chapter 2. Introduction to some basic features of genetic information: From DNA to proteins Chapter 2 Introduction to some basic features of genetic information: From DNA to proteins DAVID QUIST, 1 KAARE M. NIELSEN 1, 2 AND TERJE TRAAVIK 1, 3 1 THE NORWEGIAN INSTITUTE OF GENE ECOLOGY (GENØK),

More information

HIV-1 Reverse Transcriptase

HIV-1 Reverse Transcriptase HIV-1 Reverse Transcriptase Human immunodeficiency virus (HIV) is the etiologic agent causing the Acquired Immunodeficiency Syndrome (AIDS), the world's most deadly infectious disease. According to the

More information

Chapter 20: Biotechnology: DNA Technology & Genomics

Chapter 20: Biotechnology: DNA Technology & Genomics Biotechnology Chapter 20: Biotechnology: DNA Technology & Genomics The BIG Questions How can we use our knowledge of DNA to: o Diagnose disease or defect? o Cure disease or defect? o Change/improve organisms?

More information

Recombinant DNA technology (genetic engineering) involves combining genes from different sources into new cells that can express the genes.

Recombinant DNA technology (genetic engineering) involves combining genes from different sources into new cells that can express the genes. Recombinant DNA technology (genetic engineering) involves combining genes from different sources into new cells that can express the genes. Recombinant DNA technology has had-and will havemany important

More information

Bioinformatics: Network Analysis

Bioinformatics: Network Analysis Bioinformatics: Network Analysis Molecular Cell Biology: A Brief Review COMP 572 (BIOS 572 / BIOE 564) - Fall 2013 Luay Nakhleh, Rice University 1 The Tree of Life 2 Prokaryotic vs. Eukaryotic Cell Structure

More information

The vast majority of RNA functions are concerned with protein synthesis.

The vast majority of RNA functions are concerned with protein synthesis. RNA Structure, Function, and Synthesis RNA RNA differs from DNA in both structural and functional respects. RNA has two major structural differences: each of the ribose rings contains a 2 -hydroxyl, and

More information