Basic models: Intertemporal optimization and resource extraction

Size: px
Start display at page:

Download "Basic models: Intertemporal optimization and resource extraction"

Transcription

1 Basic models: Intertemporal optimization and resource extraction Anton Bondarev Department of Economics, Basel University

2 Plan of the lecture Idea of intergenerational optimization: Ramsey leads to Hotelling; theory; Optimal extraction without regeneration: Hotelling-type problems;

3 Introductory remarks Birth of dynamics in Economics In early XX century vast majority of economic models were static; They rested upon the concepts of Walras and Marshall of efficient market allocations; Even the just-born Keynesian Economics operated mainly in static terms; The question of intergenerational efficiency or optimization have not been discussed; Ramsey (1927) was the first to draw attention to this problem.

4 Introductory remarks Ramsey Idea of optimization of consumption over infinite time; Introduction of discount rates; Dynamic choice between consumption c and accumulation k; Goal of maximizing utility over time: max c e ρt U(c); (1) t=0 While consumption is taken from output: c t = Y t k t ; (2) Output grows through investments which are necessary for growth: k t+1 = Y t (1 c t ) δk t. (3)

5 Introductory remarks Modern formulation: Ramsey-type problems J := 0 e rt U(c)dt max c s.t. k = f (k) c (n + δ)k; k(0) = k 0 ; 0 c f (k). (4) This is an optimal control problem with one state variable and one control variable.

6 Introductory remarks From Ramsey to Hotelling: why we need optimal control We need to optimize investments and consumption over many time periods; Exhaustible resources enter production function, and not only capital; Dynamic problem of optimal rate of resource exploitation; Sustainability concept has been born; Hotelling (1931) was the first to apply Ramsey-type analysis to exhaustible resources management.

7 Main features Multi-stage decision-making; Optimization of a dynamic process in time; Optimization is carried over functions, not variables; The planning horizon of an optimizing agent is taken into account (finite or infinite); The problem includes objective and the dynamical system; Some initial and/or terminal conditions are given.

8 Continuous-time problems Assume there is continuous number of stages (real time); State is described by continuous time function, x(t); Initial and terminal states are fixed, x(0) = x 0, x(t ) = x T ; Find a function x(t), minimizing the cost of going from x 0 to x T ; What gives the costs? Concept of objective functional: T { min x(t) + u 2 (t) } dt (5) 0

9 Ingredients of dynamic optimization problem Every dynamic optimization problem should include: Some set of boundary conditions: fixed starting and/or terminal points; A set of admissible paths from initial point to the terminal one; A set of costs, associated with different paths; An objective: what to maximize or minimize.

10 Functionals Definition A functional J is a mapping from the set of paths x(t) into real numbers (value of a functional). J := J(x(t)). Functional is NOT a function of t; x(t) is the unknown function, which have to be found; This is defined in some functional space H; Hence formally J : H R.

11 Types of boundary conditions Fixed-time problem: x(0) = x 0, time length is fixed to t [0,.., T ], terminal state is not fixed; Example: optimal price setting over fixed planning horizon; Fixed endpoint problem: x(0) = x 0, x(t ) = x T, but terminal time is not fixed; Example: production cost minimization without time constraints; Time-optimal problem: x(0) = x 0, x(t ) = x T, T min; Example: producing a product as soon as possible regardless of the costs; Terminal surface problem: x(0) = x 0, and at terminal time f (T ) = x(t ).

12 Transversality In variable endpoint problems as above given boundary conditions are not sufficient to find the optimal path; Additional condition on trajectories is called transversality condition; It defines, how the trajectory crosses the boundary line; The vast majority of economic problems use this type of conditions; Example: shadow costs of investments at the terminal time should be zero.

13 Problem The subject of optimal control is: Maximize (minimize) some objective functional T J = F (x(t), u, t)dt 0 with conditions on: Initial, terminal states and time; x(0) = x 0 ; x(t ) = x T, t [0..T ] Dynamic constraints (define the dynamics of states); ẋ(t) = f (x, u, t) Static constraints on states (nonnegativity, etc.) x(t) 0, u(t) 0.

14 Hamiltonian To solve an optimal control problem one need Hamiltonian function; This is an analog of Lagrangian for static problems; It includes the objective and dynamic constraints; If static constraints are present, the augmented Hamiltonian is used; First order conditions on Hamiltonian provide optimality criteria.

15 Construction Let the optimal control problem be: J := T 0 F (x, u, t)dt max u ; Then the associated Hamiltonian is given by: s.t. ẋ = f (x, u, t). (6) H(λ, x, u, t) = F (x, u, t) + λ(t) f (x, u, t). (7)

16 Comments In the Hamiltonian λ(t) is called costate variable; It usually represents shadow costs of investments; Investments are the control, u(t); This has to be only piecewise-continuous and not continuous; Hamiltonian includes that many costate variables as many dynamic constraints the system has; Unlike lagrange multipliers, costate variable changes in time; The optimal dynamics is defined by the pair of ODE then: for state, x(t) and costate, λ(t).

17 Example Consider the problem: max u( ) T 0 e rt [ x(t) α 2 u(t)2 ]dt s.t. x(t) = β(t) u(t) x(t), u(t) 0, x(0) = x 0. (8) where β(t) is arbitrary positive-valued function and α, r, T are constants.

18 The Hamiltonian of the problem (8) should be: H CV (λ, x, u, t) = x α 2 u2 + λ CV [β(t) u x]. (9) Where the admissible set of controls include all nonnegative values (u(t) 0). QUESTION: where is the discount term e rt? Transformation e rt λ(t) = λ CV (t) yields current value Hamiltonian. It is used throughout all the economic problems.

19 Optimality To obtain first-order conditions of optimality the Pontryagin s Maximum Principle is used. Let J := s.t. T 0 ẋ = f (x, u, t); be the optimal control problem and F (x, u, t)dt max u ; u(t) 0, x(0) = x 0. (10) H(λ, x, u, t) = F (x, u, t) + λ(t) f (x, u, t). (11) the associated Hamiltonian.

20 Optimality conditions The optimal control u(t) is such that it maximizes the Hamiltonian, (11), and must hold for almost all t. This is maximum condition. Along optimal trajectory u H(λ, x, u, t) : = 0; u H(λ, x, u, t) = H (λ, x, t) (12) λ(t) = rλ(t) H x(λ, x, t). (13) which is the adjoint or costate equation. is transversality condition. λ(t ) = 0 (14)

21 Theorem (Pontryagin s Maximum Principle) Consider the optimal control problem (10) with Hamiltonian (11) and maximized Hamiltonian as above. Assume the state space X is a convex set and there are no scrap value. Let u( ) be a feasible control path with associated state trajectory x(t). If there exists and absolutely continuous function λ : [0, T ] R n such that the maximum condition (12), the adjoint equation (13) and transversality condition (14) are satisfied, and such that the function x H (λ, x, t) is concave and continuously differentiable, then u( ) is an optimal control.

22 Sufficiency The theorem provides only necessary, but not sufficient criteria of optimality; The sufficient condition is given by the concavity of a maximized Hamiltonian H w. r. t. x(t); In our example the Hamiltonian is linear in state and quadratic in control, and hence concave in state; Sufficient condition is satisfied; This is always true for linear-quadratic problems.

23 Main points on optimal control To solve an optimal control problem is: Right down the Hamiltonian of the problem; Derive first-order condition on the control; Derive costate equation; Substitute optimal control candidate into state and costate equations; Solve the canonical system of equations; Define optimal control candidate as a function of time; Determine the concavity of a maximized Hamiltonian.

24 Hotelling model Social optimum Assume the utility depends on resource only; Social planner maximizes utility subject to finiteness of the resource: T max e rt { U(R(t)) br(t) } dt (15) R( ) 0 s. t. T 0 R(t)dt = S 0. (16) After some manipulation this constitutes the standard optimal control problem.

25 Hotelling model Canonical form We set S(t) the new artificial state variable: Ṡ = R(t) (17) Adjoining the new dynamic constraint to the optimization problem; Transformation from rates to stocks.

26 Hotelling model Hotelling in optimal control form Transformation above yields: T max e rt { U(R(t)) br(t) } dt (18) R( ) 0 s. t. Giving the Hotelling s rule: OR Ṡ = R(t). (19) U (R(t)) b = λ(t)e rt (20) ṗ(t) p(t) = λ(t) λ(t) = r (21)

27 Hotelling model Competitive problem There exist n identical resource-extracting firms; The optimization problem is then: { T } nr(t) max e rt p(x)dx nb(r(t), S(t)) dt R( ) 0 0 s.t. nṡ = nr(t), S(0) = S, S(T ) = S T (= 0). (22)

28 Hotelling model Monopolistic problem There exists a monopoly on the resource; Objective is profit maximization: T { } max e rt p(r)r(t) b MONO (R(t), S(t)) dt R( ) 0 s.t. Ṡ = R(t). (23)

29 Hotelling model Time to resource depletion Parameter T above is free; It is defined as an additional choice variable in optimal control problem; The condition for that is zero optimized Hamiltonian value: H(R (T ), S (T ), λ (T ), T ) = 0. (24)

30 Hotelling model Conclusion Resource optimization is essentially intertemporal, i. e. dynamic; Finite resource requires social planning in most cases; With some parameters market can follow optimal path (less frequent than not); Intertemporal discount rate influences heavily the outcome; Optimal control is a versatile tool for solving intertemporal resource extraction problems.

31 Hotelling model Next time Application of Hotelling s rule; Paper: Ludwig (2014) Hotelling rent, national oil companies and oil supply in the long run.

CHAPTER 7 APPLICATIONS TO MARKETING. Chapter 7 p. 1/54

CHAPTER 7 APPLICATIONS TO MARKETING. Chapter 7 p. 1/54 CHAPTER 7 APPLICATIONS TO MARKETING Chapter 7 p. 1/54 APPLICATIONS TO MARKETING State Equation: Rate of sales expressed in terms of advertising, which is a control variable Objective: Profit maximization

More information

Universidad de Montevideo Macroeconomia II. The Ramsey-Cass-Koopmans Model

Universidad de Montevideo Macroeconomia II. The Ramsey-Cass-Koopmans Model Universidad de Montevideo Macroeconomia II Danilo R. Trupkin Class Notes (very preliminar) The Ramsey-Cass-Koopmans Model 1 Introduction One shortcoming of the Solow model is that the saving rate is exogenous

More information

EXHAUSTIBLE RESOURCES

EXHAUSTIBLE RESOURCES T O U L O U S E S C H O O L O F E C O N O M I C S NATURAL RESOURCES ECONOMICS CHAPTER III EXHAUSTIBLE RESOURCES CHAPTER THREE : EXHAUSTIBLE RESOURCES Natural resources economics M1- TSE INTRODUCTION The

More information

Lecture 11. 3.3.2 Cost functional

Lecture 11. 3.3.2 Cost functional Lecture 11 3.3.2 Cost functional Consider functions L(t, x, u) and K(t, x). Here L : R R n R m R, K : R R n R sufficiently regular. (To be consistent with calculus of variations we would have to take L(t,

More information

15 Kuhn -Tucker conditions

15 Kuhn -Tucker conditions 5 Kuhn -Tucker conditions Consider a version of the consumer problem in which quasilinear utility x 2 + 4 x 2 is maximised subject to x +x 2 =. Mechanically applying the Lagrange multiplier/common slopes

More information

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all.

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all. 1. Differentiation The first derivative of a function measures by how much changes in reaction to an infinitesimal shift in its argument. The largest the derivative (in absolute value), the faster is evolving.

More information

14.451 Lecture Notes 10

14.451 Lecture Notes 10 14.451 Lecture Notes 1 Guido Lorenzoni Fall 29 1 Continuous time: nite horizon Time goes from to T. Instantaneous payo : f (t; x (t) ; y (t)) ; (the time dependence includes discounting), where x (t) 2

More information

This is a simple guide to optimal control theory. In what follows, I borrow freely from Kamien and Shwartz (1981) and King (1986).

This is a simple guide to optimal control theory. In what follows, I borrow freely from Kamien and Shwartz (1981) and King (1986). ECON72: MACROECONOMIC THEORY I Martin Boileau A CHILD'S GUIDE TO OPTIMAL CONTROL THEORY 1. Introduction This is a simple guide to optimal control theory. In what follows, I borrow freely from Kamien and

More information

Functional Optimization Models for Active Queue Management

Functional Optimization Models for Active Queue Management Functional Optimization Models for Active Queue Management Yixin Chen Department of Computer Science and Engineering Washington University in St Louis 1 Brookings Drive St Louis, MO 63130, USA chen@cse.wustl.edu

More information

ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE

ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE YUAN TIAN This synopsis is designed merely for keep a record of the materials covered in lectures. Please refer to your own lecture notes for all proofs.

More information

Lecture 3: Growth with Overlapping Generations (Acemoglu 2009, Chapter 9, adapted from Zilibotti)

Lecture 3: Growth with Overlapping Generations (Acemoglu 2009, Chapter 9, adapted from Zilibotti) Lecture 3: Growth with Overlapping Generations (Acemoglu 2009, Chapter 9, adapted from Zilibotti) Kjetil Storesletten September 10, 2013 Kjetil Storesletten () Lecture 3 September 10, 2013 1 / 44 Growth

More information

Chapter 21: The Discounted Utility Model

Chapter 21: The Discounted Utility Model Chapter 21: The Discounted Utility Model 21.1: Introduction This is an important chapter in that it introduces, and explores the implications of, an empirically relevant utility function representing intertemporal

More information

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0, Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We

More information

Determination of Optimum Fair Premiums in Property-Liability Insurance: An Optimal Control Theoretic Approach

Determination of Optimum Fair Premiums in Property-Liability Insurance: An Optimal Control Theoretic Approach Determination of Optimum Fair Premiums in Property-Liability Insurance: An Optimal Control Theoretic Approach by Amin Ussif and Gregory Jones ABSTRACT Dynamic valuation models for the computation of optimum

More information

ECONOMIC THEORY AND OPERATIONS ANALYSIS

ECONOMIC THEORY AND OPERATIONS ANALYSIS WILLIAM J. BAUMOL Professor of Economics Princeton University ECONOMIC THEORY AND OPERATIONS ANALYSIS Second Edition Prentice-Hall, I Inc. Engkwood Cliffs, New Jersey CONTENTS PART 7 ANALYTIC TOOLS OF

More information

A Detailed Price Discrimination Example

A Detailed Price Discrimination Example A Detailed Price Discrimination Example Suppose that there are two different types of customers for a monopolist s product. Customers of type 1 have demand curves as follows. These demand curves include

More information

Lecture 6: Price discrimination II (Nonlinear Pricing)

Lecture 6: Price discrimination II (Nonlinear Pricing) Lecture 6: Price discrimination II (Nonlinear Pricing) EC 105. Industrial Organization. Fall 2011 Matt Shum HSS, California Institute of Technology November 14, 2012 EC 105. Industrial Organization. Fall

More information

Problem Set 6 - Solutions

Problem Set 6 - Solutions ECO573 Financial Economics Problem Set 6 - Solutions 1. Debt Restructuring CAPM. a Before refinancing the stoc the asset have the same beta: β a = β e = 1.2. After restructuring the company has the same

More information

In this section, we will consider techniques for solving problems of this type.

In this section, we will consider techniques for solving problems of this type. Constrained optimisation roblems in economics typically involve maximising some quantity, such as utility or profit, subject to a constraint for example income. We shall therefore need techniques for solving

More information

SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA

SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA This handout presents the second derivative test for a local extrema of a Lagrange multiplier problem. The Section 1 presents a geometric motivation for the

More information

Lecture 7: Finding Lyapunov Functions 1

Lecture 7: Finding Lyapunov Functions 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Lecture 7: Finding Lyapunov Functions 1

More information

Valuation and Optimal Decision for Perpetual American Employee Stock Options under a Constrained Viscosity Solution Framework

Valuation and Optimal Decision for Perpetual American Employee Stock Options under a Constrained Viscosity Solution Framework Valuation and Optimal Decision for Perpetual American Employee Stock Options under a Constrained Viscosity Solution Framework Quan Yuan Joint work with Shuntai Hu, Baojun Bian Email: candy5191@163.com

More information

Solutions Of Some Non-Linear Programming Problems BIJAN KUMAR PATEL. Master of Science in Mathematics. Prof. ANIL KUMAR

Solutions Of Some Non-Linear Programming Problems BIJAN KUMAR PATEL. Master of Science in Mathematics. Prof. ANIL KUMAR Solutions Of Some Non-Linear Programming Problems A PROJECT REPORT submitted by BIJAN KUMAR PATEL for the partial fulfilment for the award of the degree of Master of Science in Mathematics under the supervision

More information

The Optimal Growth Problem

The Optimal Growth Problem LECTURE NOTES ON ECONOMIC GROWTH The Optimal Growth Problem Todd Keister Centro de Investigación Económica, ITAM keister@itam.mx January 2005 These notes provide an introduction to the study of optimal

More information

Hello, my name is Olga Michasova and I present the work The generalized model of economic growth with human capital accumulation.

Hello, my name is Olga Michasova and I present the work The generalized model of economic growth with human capital accumulation. Hello, my name is Olga Michasova and I present the work The generalized model of economic growth with human capital accumulation. 1 Without any doubts human capital is a key factor of economic growth because

More information

Linear Programming Notes V Problem Transformations

Linear Programming Notes V Problem Transformations Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material

More information

19 LINEAR QUADRATIC REGULATOR

19 LINEAR QUADRATIC REGULATOR 19 LINEAR QUADRATIC REGULATOR 19.1 Introduction The simple form of loopshaping in scalar systems does not extend directly to multivariable (MIMO) plants, which are characterized by transfer matrices instead

More information

Insurance. Michael Peters. December 27, 2013

Insurance. Michael Peters. December 27, 2013 Insurance Michael Peters December 27, 2013 1 Introduction In this chapter, we study a very simple model of insurance using the ideas and concepts developed in the chapter on risk aversion. You may recall

More information

Envelope Theorem. Kevin Wainwright. Mar 22, 2004

Envelope Theorem. Kevin Wainwright. Mar 22, 2004 Envelope Theorem Kevin Wainwright Mar 22, 2004 1 Maximum Value Functions A maximum (or minimum) value function is an objective function where the choice variables have been assigned their optimal values.

More information

Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725

Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725 Duality in General Programs Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: duality in linear programs Given c R n, A R m n, b R m, G R r n, h R r : min x R n c T x max u R m, v R r b T

More information

Optimal Investment. Government policy is typically targeted heavily on investment; most tax codes favor it.

Optimal Investment. Government policy is typically targeted heavily on investment; most tax codes favor it. Douglas Hibbs L, L3: AAU Macro Theory 0-0-9/4 Optimal Investment Why Care About Investment? Investment drives capital formation, and the stock of capital is a key determinant of output and consequently

More information

Economics 121b: Intermediate Microeconomics Problem Set 2 1/20/10

Economics 121b: Intermediate Microeconomics Problem Set 2 1/20/10 Dirk Bergemann Department of Economics Yale University s by Olga Timoshenko Economics 121b: Intermediate Microeconomics Problem Set 2 1/20/10 This problem set is due on Wednesday, 1/27/10. Preliminary

More information

Politecnico di Torino, Short Course on: Optimal Control Problems: the Dynamic Programming Approach

Politecnico di Torino, Short Course on: Optimal Control Problems: the Dynamic Programming Approach Politecnico di Torino, Short Course on: Optimal Control Problems: the Dynamic Programming Approach Fausto Gozzi Dipartimento di Economia e Finanza Università Luiss - Guido Carli, viale Romania 32, 00197

More information

Economics 2020a / HBS 4010 / HKS API-111 FALL 2010 Solutions to Practice Problems for Lectures 1 to 4

Economics 2020a / HBS 4010 / HKS API-111 FALL 2010 Solutions to Practice Problems for Lectures 1 to 4 Economics 00a / HBS 4010 / HKS API-111 FALL 010 Solutions to Practice Problems for Lectures 1 to 4 1.1. Quantity Discounts and the Budget Constraint (a) The only distinction between the budget line with

More information

Chapter 4 Inflation and Interest Rates in the Consumption-Savings Framework

Chapter 4 Inflation and Interest Rates in the Consumption-Savings Framework Chapter 4 Inflation and Interest Rates in the Consumption-Savings Framework The lifetime budget constraint (LBC) from the two-period consumption-savings model is a useful vehicle for introducing and analyzing

More information

OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN. E.V. Grigorieva. E.N. Khailov

OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN. E.V. Grigorieva. E.N. Khailov DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS Supplement Volume 2005 pp. 345 354 OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN E.V. Grigorieva Department of Mathematics

More information

Nonlinear Programming Methods.S2 Quadratic Programming

Nonlinear Programming Methods.S2 Quadratic Programming Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective

More information

Real Business Cycle Models

Real Business Cycle Models Real Business Cycle Models Lecture 2 Nicola Viegi April 2015 Basic RBC Model Claim: Stochastic General Equlibrium Model Is Enough to Explain The Business cycle Behaviour of the Economy Money is of little

More information

The integrating factor method (Sect. 2.1).

The integrating factor method (Sect. 2.1). The integrating factor method (Sect. 2.1). Overview of differential equations. Linear Ordinary Differential Equations. The integrating factor method. Constant coefficients. The Initial Value Problem. Variable

More information

An Introduction to Optimal Control

An Introduction to Optimal Control An Introduction to Optimal Control Ugo Boscain Benetto Piccoli The aim of these notes is to give an introduction to the Theory of Optimal Control for finite dimensional systems and in particular to the

More information

Constrained optimization.

Constrained optimization. ams/econ 11b supplementary notes ucsc Constrained optimization. c 2010, Yonatan Katznelson 1. Constraints In many of the optimization problems that arise in economics, there are restrictions on the values

More information

The Graphical Method: An Example

The Graphical Method: An Example The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,

More information

Practical Guide to the Simplex Method of Linear Programming

Practical Guide to the Simplex Method of Linear Programming Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear

More information

Solving Linear Programs in Excel

Solving Linear Programs in Excel Notes for AGEC 622 Bruce McCarl Regents Professor of Agricultural Economics Texas A&M University Thanks to Michael Lau for his efforts to prepare the earlier copies of this. 1 http://ageco.tamu.edu/faculty/mccarl/622class/

More information

Optimal Paternalism: Sin Taxes and Health Subsidies

Optimal Paternalism: Sin Taxes and Health Subsidies Optimal Paternalism: Sin Taxes and Health Subsidies Thomas Aronsson and Linda Thunström Department of Economics, Umeå University SE - 901 87 Umeå, Sweden April 2005 Abstract The starting point for this

More information

Current Accounts in Open Economies Obstfeld and Rogoff, Chapter 2

Current Accounts in Open Economies Obstfeld and Rogoff, Chapter 2 Current Accounts in Open Economies Obstfeld and Rogoff, Chapter 2 1 Consumption with many periods 1.1 Finite horizon of T Optimization problem maximize U t = u (c t ) + β (c t+1 ) + β 2 u (c t+2 ) +...

More information

OPRE 6201 : 2. Simplex Method

OPRE 6201 : 2. Simplex Method OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2

More information

Linear Programming. Solving LP Models Using MS Excel, 18

Linear Programming. Solving LP Models Using MS Excel, 18 SUPPLEMENT TO CHAPTER SIX Linear Programming SUPPLEMENT OUTLINE Introduction, 2 Linear Programming Models, 2 Model Formulation, 4 Graphical Linear Programming, 5 Outline of Graphical Procedure, 5 Plotting

More information

Big Data - Lecture 1 Optimization reminders

Big Data - Lecture 1 Optimization reminders Big Data - Lecture 1 Optimization reminders S. Gadat Toulouse, Octobre 2014 Big Data - Lecture 1 Optimization reminders S. Gadat Toulouse, Octobre 2014 Schedule Introduction Major issues Examples Mathematics

More information

6. Budget Deficits and Fiscal Policy

6. Budget Deficits and Fiscal Policy Prof. Dr. Thomas Steger Advanced Macroeconomics II Lecture SS 2012 6. Budget Deficits and Fiscal Policy Introduction Ricardian equivalence Distorting taxes Debt crises Introduction (1) Ricardian equivalence

More information

Graduate Macroeconomics 2

Graduate Macroeconomics 2 Graduate Macroeconomics 2 Lecture 1 - Introduction to Real Business Cycles Zsófia L. Bárány Sciences Po 2014 January About the course I. 2-hour lecture every week, Tuesdays from 10:15-12:15 2 big topics

More information

Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS

Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS Sensitivity Analysis 3 We have already been introduced to sensitivity analysis in Chapter via the geometry of a simple example. We saw that the values of the decision variables and those of the slack and

More information

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction Module 1 : Conduction Lecture 5 : 1D conduction example problems. 2D conduction Objectives In this class: An example of optimization for insulation thickness is solved. The 1D conduction is considered

More information

Schooling, Political Participation, and the Economy. (Online Supplementary Appendix: Not for Publication)

Schooling, Political Participation, and the Economy. (Online Supplementary Appendix: Not for Publication) Schooling, Political Participation, and the Economy Online Supplementary Appendix: Not for Publication) Filipe R. Campante Davin Chor July 200 Abstract In this online appendix, we present the proofs for

More information

Math 53 Worksheet Solutions- Minmax and Lagrange

Math 53 Worksheet Solutions- Minmax and Lagrange Math 5 Worksheet Solutions- Minmax and Lagrange. Find the local maximum and minimum values as well as the saddle point(s) of the function f(x, y) = e y (y x ). Solution. First we calculate the partial

More information

2007/8. The problem of non-renewable energy resources in the production of physical capital. Agustin Pérez-Barahona

2007/8. The problem of non-renewable energy resources in the production of physical capital. Agustin Pérez-Barahona 2007/8 The problem of non-renewable energy resources in the production of physical capital Agustin Pérez-Barahona CORE DISCUSSION PAPER 2007/8 The problem of non-renewable energy resources in the production

More information

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

More information

Prep. Course Macroeconomics

Prep. Course Macroeconomics Prep. Course Macroeconomics Intertemporal consumption and saving decision; Ramsey model Tom-Reiel Heggedal tom-reiel.heggedal@bi.no BI 2014 Heggedal (BI) Savings & Ramsey 2014 1 / 30 Overview this lecture

More information

4.6 Linear Programming duality

4.6 Linear Programming duality 4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal

More information

2.3 Convex Constrained Optimization Problems

2.3 Convex Constrained Optimization Problems 42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

More information

MA Advanced Macroeconomics: 7. The Real Business Cycle Model

MA Advanced Macroeconomics: 7. The Real Business Cycle Model MA Advanced Macroeconomics: 7. The Real Business Cycle Model Karl Whelan School of Economics, UCD Spring 2015 Karl Whelan (UCD) Real Business Cycles Spring 2015 1 / 38 Working Through A DSGE Model We have

More information

constraint. Let us penalize ourselves for making the constraint too big. We end up with a

constraint. Let us penalize ourselves for making the constraint too big. We end up with a Chapter 4 Constrained Optimization 4.1 Equality Constraints (Lagrangians) Suppose we have a problem: Maximize 5, (x 1, 2) 2, 2(x 2, 1) 2 subject to x 1 +4x 2 =3 If we ignore the constraint, we get the

More information

Support Vector Machine (SVM)

Support Vector Machine (SVM) Support Vector Machine (SVM) CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10 Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 10 Boundary Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction

More information

14.452 Economic Growth: Lectures 6 and 7, Neoclassical Growth

14.452 Economic Growth: Lectures 6 and 7, Neoclassical Growth 14.452 Economic Growth: Lectures 6 and 7, Neoclassical Growth Daron Acemoglu MIT November 15 and 17, 211. Daron Acemoglu (MIT) Economic Growth Lectures 6 and 7 November 15 and 17, 211. 1 / 71 Introduction

More information

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization 2.1. Introduction Suppose that an economic relationship can be described by a real-valued

More information

The valuation of oil and gas reserves

The valuation of oil and gas reserves The valuation of oil and gas reserves Paper by Environmental Accounts branch, Office for National Statistics Executive summary This paper explores a number of issues involved in making a valuation of the

More information

Quality Ladders, Competition and Endogenous Growth Michele Boldrin and David K. Levine

Quality Ladders, Competition and Endogenous Growth Michele Boldrin and David K. Levine Quality Ladders, Competition and Endogenous Growth Michele Boldrin and David K. Levine 1 The Standard Schumpeterian Competition Monopolistic Competition innovation modeled as endogenous rate of movement

More information

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

More information

Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example.

Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example. An Example 2 3 4 Outline Objective: Develop methods and algorithms to mathematically model shape of real world objects Categories: Wire-Frame Representation Object is represented as as a set of points

More information

Unit #14 - Integral Applications in Physics and Economics Section 8.6

Unit #14 - Integral Applications in Physics and Economics Section 8.6 Unit #14 - Integral Applications in Physics and Economics Section 8.6 Some material from Calculus, Single and MultiVariable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 25 by John Wiley & Sons,

More information

10. Proximal point method

10. Proximal point method L. Vandenberghe EE236C Spring 2013-14) 10. Proximal point method proximal point method augmented Lagrangian method Moreau-Yosida smoothing 10-1 Proximal point method a conceptual algorithm for minimizing

More information

Chapter 2 Solving Linear Programs

Chapter 2 Solving Linear Programs Chapter 2 Solving Linear Programs Companion slides of Applied Mathematical Programming by Bradley, Hax, and Magnanti (Addison-Wesley, 1977) prepared by José Fernando Oliveira Maria Antónia Carravilla A

More information

Lecture 6 Black-Scholes PDE

Lecture 6 Black-Scholes PDE Lecture 6 Black-Scholes PDE Lecture Notes by Andrzej Palczewski Computational Finance p. 1 Pricing function Let the dynamics of underlining S t be given in the risk-neutral measure Q by If the contingent

More information

Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t.

Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t. LECTURE 7: BLACK SCHOLES THEORY 1. Introduction: The Black Scholes Model In 1973 Fisher Black and Myron Scholes ushered in the modern era of derivative securities with a seminal paper 1 on the pricing

More information

The Goldberg Rao Algorithm for the Maximum Flow Problem

The Goldberg Rao Algorithm for the Maximum Flow Problem The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }

More information

ECG590I Asset Pricing. Lecture 2: Present Value 1

ECG590I Asset Pricing. Lecture 2: Present Value 1 ECG59I Asset Pricing. Lecture 2: Present Value 1 2 Present Value If you have to decide between receiving 1$ now or 1$ one year from now, then you would rather have your money now. If you have to decide

More information

3.1 Solving Systems Using Tables and Graphs

3.1 Solving Systems Using Tables and Graphs Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system

More information

Multi-variable Calculus and Optimization

Multi-variable Calculus and Optimization Multi-variable Calculus and Optimization Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Multi-variable Calculus and Optimization 1 / 51 EC2040 Topic 3 - Multi-variable Calculus

More information

Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints

Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints Chapter 6 Linear Programming: The Simplex Method Introduction to the Big M Method In this section, we will present a generalized version of the simplex method that t will solve both maximization i and

More information

COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS

COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS NICOLE BÄUERLE AND STEFANIE GRETHER Abstract. In this short note we prove a conjecture posed in Cui et al. 2012): Dynamic mean-variance problems in

More information

What is Linear Programming?

What is Linear Programming? Chapter 1 What is Linear Programming? An optimization problem usually has three essential ingredients: a variable vector x consisting of a set of unknowns to be determined, an objective function of x to

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

More information

Question 2: How do you solve a linear programming problem with a graph?

Question 2: How do you solve a linear programming problem with a graph? Question 2: How do you solve a linear programming problem with a graph? Now that we have several linear programming problems, let s look at how we can solve them using the graph of the system of inequalities.

More information

Certainty Equivalent in Capital Markets

Certainty Equivalent in Capital Markets Certainty Equivalent in Capital Markets Lutz Kruschwitz Freie Universität Berlin and Andreas Löffler 1 Universität Hannover version from January 23, 2003 1 Corresponding author, Königsworther Platz 1,

More information

Technological Leadership and Persistence of Monopoly under Endogenous Entry: Static versus Dynamic Analysis

Technological Leadership and Persistence of Monopoly under Endogenous Entry: Static versus Dynamic Analysis Technological Leadership and Persistence of Monopoly under Endogenous Entry: Static versus Dynamic Analysis Eugen Kováč a,b Krešimir Viatcheslav Vinogradov b,c Žigić b,d December 2009 Abstract We build

More information

The Real Business Cycle Model

The Real Business Cycle Model The Real Business Cycle Model Ester Faia Goethe University Frankfurt Nov 2015 Ester Faia (Goethe University Frankfurt) RBC Nov 2015 1 / 27 Introduction The RBC model explains the co-movements in the uctuations

More information

Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

More information

Health Insurance and Retirement Incentives

Health Insurance and Retirement Incentives Health Insurance and Retirement Incentives Daniele Marazzina Joint work with Emilio Barucci and Enrico Biffis Emilio Barucci and Daniele Marazzina Dipartimento di Matematica F. Brioschi Politecnico di

More information

Numerisches Rechnen. (für Informatiker) M. Grepl J. Berger & J.T. Frings. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl J. Berger & J.T. Frings. Institut für Geometrie und Praktische Mathematik RWTH Aachen (für Informatiker) M. Grepl J. Berger & J.T. Frings Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2010/11 Problem Statement Unconstrained Optimality Conditions Constrained

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

The RBC methodology also comes down to two principles:

The RBC methodology also comes down to two principles: Chapter 5 Real business cycles 5.1 Real business cycles The most well known paper in the Real Business Cycles (RBC) literature is Kydland and Prescott (1982). That paper introduces both a specific theory

More information

CITY AND REGIONAL PLANNING 7230. Consumer Behavior. Philip A. Viton. March 4, 2015. 1 Introduction 2

CITY AND REGIONAL PLANNING 7230. Consumer Behavior. Philip A. Viton. March 4, 2015. 1 Introduction 2 CITY AND REGIONAL PLANNING 7230 Consumer Behavior Philip A. Viton March 4, 2015 Contents 1 Introduction 2 2 Foundations 2 2.1 Consumption bundles........................ 2 2.2 Preference relations.........................

More information

Method To Solve Linear, Polynomial, or Absolute Value Inequalities:

Method To Solve Linear, Polynomial, or Absolute Value Inequalities: Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with

More information

3. Reaction Diffusion Equations Consider the following ODE model for population growth

3. Reaction Diffusion Equations Consider the following ODE model for population growth 3. Reaction Diffusion Equations Consider the following ODE model for population growth u t a u t u t, u 0 u 0 where u t denotes the population size at time t, and a u plays the role of the population dependent

More information

An Analysis of Allowance Banking in the EU ETS

An Analysis of Allowance Banking in the EU ETS An Analysis of Allowance Banking in the EU ETS Aleksandar ZAKLAN, Vanessa VALERO and Denny ELLERMAN EUI - DIW Berlin and EUI AWEEE, 26/07/2014 Allowance Banking in the EU ETS ( AWEEE, EUI - DIW26/07/2014

More information

Solutions to Linear First Order ODE s

Solutions to Linear First Order ODE s First Order Linear Equations In the previous session we learned that a first order linear inhomogeneous ODE for the unknown function x = x(t), has the standard form x + p(t)x = q(t) () (To be precise we

More information

Linear Programming in Matrix Form

Linear Programming in Matrix Form Linear Programming in Matrix Form Appendix B We first introduce matrix concepts in linear programming by developing a variation of the simplex method called the revised simplex method. This algorithm,

More information

Pricing American Options without Expiry Date

Pricing American Options without Expiry Date Pricing American Options without Expiry Date Carisa K. W. Yu Department of Applied Mathematics The Hong Kong Polytechnic University Hung Hom, Hong Kong E-mail: carisa.yu@polyu.edu.hk Abstract This paper

More information