Our Earth in Motion Understanding Time, Tides and Seasons

Size: px
Start display at page:

Download "Our Earth in Motion Understanding Time, Tides and Seasons"

Transcription

1 Our Earth in Motion Understanding Time, Tides and Seasons minutes Program Synopsis Why does the sun rise in the east? Why does the moon change shape? How do tides happen? This program explains in detail how the Earth and the Moon move with respect to each other and the Sun, why we have day and night and different time zones. Why we have four seasons every year, two tides and the different phases of the moon. This program will enhance student understanding of key concepts that are effectively demonstrated through clear graphics and animation. For more information please visit or contact customer service at or on or fax

2 Our Earth in Motion: Teacher Notes: Jeannette Jolley B.Sc. (La Trobe University) B.Ed. (La Trobe University) Introduction The program starts by showing how the position of the Sun and the Earth s rotation on its axis once every 24 hours gives us day and night, sunrise in the east, sunset in the west, and the 24 different time zones around the world. Because the Earth's axis is tilted at 23 o and the Earth revolves around the sun once every 365¼ days, the two hemispheres are facing towards the sun at different times of the year, giving us the seasons. The Moon revolves around the Earth once every 29 days, and because we can only see the part of the moon that is lit by the sun, we see the phases of new moon, first quarter, full moon and last quarter over these 29 days. The tides are due to the gravitational pull of the Moon and the Sun on the earth s oceans. The oceans are pulled towards these large bodies, particularly towards the Moon because it is closer. Because the Earth spins on its axis once every day, we experience daily changes to the depth of the oceans when that part of the Earth is pointed towards the Moon. Program Rationale The program is aimed at lower secondary students (may be suitable for upper primary too) to help them understand how the Earth and Moon move with respect to each other and to the Sun, why we have day and night and so the different time zones, why we have four seasons every year, two tides and the different phases of the moon. Background Information The Sun is the centre of our solar system, with the nine planets revolving around it in various elliptical orbits. The Earth is the third planet out from the sun. Most planets have smaller bodies, natural satellites called moons that revolve around them. The Earth has one natural satellite called the moon, which has no light of its own. We only see the moon because it reflects light from the sun back to us. It takes 29 days for the moon to complete one revolution around the Earth. The Earth spins on its axis once in 24 hours, and this axis is tilted at 23½ o from the vertical. It takes the Earth 365¼ days to complete one revolution around the sun. This is the length of one year.

3 Our Earth in Motion: DVD Timeline 00:00:00 Introduction 00:00:54 Day and Night 00:07:14 Seasons 00:11:47 Phases of the Moon 00:15:38 Tides 00:20:57 Credits 00:21:30 End program Program Worksheet Before the Program 1. Initiate a class discussion on the cycles of day & night, the tides, the monthly cycle of the moon s phases and the yearly changes in the seasons. 2. Find an aboriginal dreamtime story relating to these concepts and read it to the class to stimulate discussion or kick off some research. 3. Ask the students to research some dreamtime stories and write a summary about how the story tries to explain the storyteller s experiences. 4. Ask the students to record the phases of the moon several times per week over a month. They could also record some times of sunset and/ or sunrise and compare it to the times given in the daily newspapers. They could note the places on the horizon where the sun rises or sets and compare this over a period of time.

4 During the Program Our Earth in Motion: 1. Exactly how long does it take for the Earth to spin once on its axis? 2. The axis is an imaginary line that passes through which two points on the Earth? 3. How long exactly does it take the Earth to revolve around the Sun once? 4. What do we call the time when the Earth rotates and the first rays of sunlight fall on a particular place? 5. If the sun is high overhead here in the middle of the day, what would you expect to be the situation on the other side of the Earth? 6. What part of Australia sees the sun first at the beginning of each day? 7. How many different times zones are there in the world? 8. How many different time zones are there in Australia? 9. Who came up with the idea of time zones and when was this? 10. What invention made it necessary for different places to have the same time? 11. In which country of the world is Greenwich? 12. What longitude would you expect to see given for Greenwich on a map? 13. What time would it be for astronauts out in space at this moment when they are constantly passing over many different time zones?

5 14. About how many degrees is the Earth s axis tilted from the vertical? Our Earth in Motion: 15. Which hemisphere is pointing towards the Sun in late December? 16. What season will this be in the northern hemisphere? 17. What two places on Earth can experience 24 hours of daylight in summer and 24 hours of darkness in winter? 18. When is the winter solstice in Australia? 19. What is the name of the line drawn to show the most southerly distance the sun can reach from the equator in June? 20. In which months do the two equinoxes occur? 21. What two seasons do we have when it is an equinox? 22. What is the shape of the moon s orbit around the Earth? 23. How many days does it take the moon to complete one orbit? 24. What phase of the moon do we have when the moon is on the opposite side of the Earth to the sun? 25. How many days are there between a full moon and a new moon?

6 Our Earth in Motion: 26. When we have had a new moon and so the moon appears to get bigger every day, do we say that the moon is waxing or waning? 27. The force that pulls on the oceans to form the tides is called a pull. 28. How many high tides does each place have in one day? 29. The high tides that are experienced when both the Sun and Moon are on the same side as the earth are called tides. 30. What do people living on the coast see when it is a neap tide?

7 After the Program Our Earth in Motion: 1. Wordsearch: The letters that remain, once you have found all the words below, spell out a sentence if written down in the order they are listed from top to bottom. ANTARCTIC ARCTIC AUTUMN AXIS DARKNESS DAYLIGHT EARTH EQUATOR EQUINOX GRAVITATIONAL GREENWICH HEMISPHERE ILLUMINATION LATITUDE LONGITUDE MOON NEAP PHASE REVOLVE ROTATE SEASON SOLSTICE SPRING SUMMER SUN TIDES TILT TIMEZONE WANING WAXING WINTER G R E E N W I C H R E M M U S T R H N O I T A N I M U L L I E W A N I N G E N O Z E M I T V A E V L O V E R I N U S E I A X I S I W E T H G I L Y A D E I N M U T U A F R O H W S E D N M E A P A E N A E I E A S U G S T R T D T P M N A N P S T H O T I U S H I T S T R E E I R L L T N A S E O A I O Q N G T S I D S P R N R N I U U K N F T T E H N F C G I A C I R O A I U E O L T T T T T L N A L O C R O U I N D O I E R O D S T E M A C H T R A E C N X D Hidden Sentence:

8 Our Earth in Motion: 2. Student-created Crossword: Instructions to student: Write meanings for any 10 words listed above, then make them into an interlocking crossword where your meanings become the clues. Swap with a friend and see if you can solve each other s puzzles. 3. Expert Groups: Instruction to teacher Divide the class into 5 equally sized groups (5 groups of 5 students is ideal) Give each group one of the topics listed below to become very familiar with, so that they can teach the principle to others. Topics: Day & night Time zones Seasons Phases of the Moon Tides Each group should spend minutes preparing some basic notes and selecting suitable balls, which the teacher has provided, to represent the Earth and Moon, and a torch or other light source to represent the sun. After minutes the groups should break up and form new groups so that each group has someone in it who has become an expert in that topic. This could be done in a second lesson. The experts now in turn teach the new group what they have learnt in their original group. If each expert takes about 10 minutes to teach their topic, then this part of the lesson will take about 50 minutes. If the class is smaller than 25, the first two topics could be combined creating only 4 topics. If one group has more than 4 people, it could be organized so that in these groups two students share the first large topic and break it into two as written above.

9 Suggested Student Responses During the Program Our Earth in Motion: 1. Exactly how long does it take for the Earth to spin once on its axis? 23 hrs 56 mins 2. The axis is an imaginary line that passes through which two points on the Earth? North and south poles 3. How long exactly does it take the Earth to revolve around the Sun once? 365¼ days 4. What do we call the time when the Earth rotates and the first rays of sunlight fall on a particular place? Sunrise 5. If the sun is high overhead here in the middle of the day, what would you expect to be the situation on the other side of the Earth? Night time, darkness or midnight 6. What part of Australia sees the sun first at the beginning of each day? East coast 7. How many different times zones are there in the world? How many different time zones are there in Australia? 3 9. Who came up with the idea of time zones and when was this? Canadian Sir Sanford Fleming in What invention made it necessary for different places to have the same time? Railways 11. In which country of the world is Greenwich? England 12. What longitude would you expect to see given for Greenwich on a map? What time would it be for astronauts out in space at this moment when they are constantly passing over many different time zones? Greenwich Mean Time (GMT) 14. About how many degrees is the Earth s axis tilted from the vertical? Which hemisphere is pointing towards the Sun in late December? Southern 16. What season will this be in the northern hemisphere? Winter

10 Our Earth in Motion: 17. What two places on Earth can experience 24 hours of daylight in summer and 24 hours of darkness in winter? Places inside the Artic and Antarctic circles 18. When is the winter solstice in Australia? June What is the name of the line drawn to show the most southerly distance the sun can reach from the equator in June? Tropic of Capricorn 20. In which months do the two equinoxes occur? March and September 21. What two seasons do we have when it is an equinox? Spring and autumn 22. What is the shape of the moon s orbit around the Earth? Ellipse or oval shape 23. How many days does it take the moon to complete one orbit? What phase of the moon do we have when the moon is on the opposite side of the Earth to the sun? Full moon 25. How many days are there between a full moon and a new moon? When we have had a new moon and so the moon appears to get bigger every day, do we say that the moon is waxing or waning? Waxing 27. The force that pulls on the oceans to form the tides is called a gravitational pull. 28. How many high tides does each place have in one day? The high tides that are experienced when both the Sun and Moon are on the same side as the earth are called spring tides. 30. What do people living on the coast see when it is a neap tide? A smaller difference in heights between high and low tides

11 After the Program Our Earth in Motion: 4. Wordsearch: The letters that remain, once you have found all the words below, spell out a sentence if written down in the order they are listed from top to bottom. G R E E N W I C H R E M M U S T R H N O I T A N I M U L L I E W A N I N G E N O Z E M I T V A E V L O V E R I N U S E I A X I S I W E T H G I L Y A D E I N M U T U A F R O H W S E D N M E A P A E N A E I E A S U G S T R T D T P M N A N P S T H O T I U S H I T S T R E E I R L L T N A S E O A I O Q N G T S I D S P R N R N I U U K N F T T E H N F C G I A C I R O A I U E O L T T T T T L N A L O C R O U I N D O I E R O D S T E M A C H T R A E C N X D Hidden Sentence: _T H E V I E W F R O M E A R T H I S N O T D I F F I C U L _T T O U N D E R S T A N D_

Relationship Between the Earth, Moon and Sun

Relationship Between the Earth, Moon and Sun Relationship Between the Earth, Moon and Sun Rotation A body turning on its axis The Earth rotates once every 24 hours in a counterclockwise direction. Revolution A body traveling around another The Earth

More information

Lab Activity on the Causes of the Seasons

Lab Activity on the Causes of the Seasons Lab Activity on the Causes of the Seasons 2002 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Objectives When you have completed this lab you

More information

FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF FIRST GRADE UNIVERSE WEEK 1. PRE: Describing the Universe. LAB: Comparing and contrasting bodies that reflect light. POST: Exploring

More information

Earth-Sun Relationships. The Reasons for the Seasons

Earth-Sun Relationships. The Reasons for the Seasons Earth-Sun Relationships The Reasons for the Seasons Solar Radiation The earth intercepts less than one two-billionth of the energy given off by the sun. However, the radiation is sufficient to provide

More information

Noon Sun Angle = 90 Zenith Angle

Noon Sun Angle = 90 Zenith Angle Noon Sun Angle Worksheet Name Name Date Subsolar Point (Latitude where the sun is overhead at noon) Equinox March 22 nd 0 o Equinox September 22 nd 0 o Solstice June 22 nd 23.5 N Solstice December 22 nd

More information

Solar energy and the Earth s seasons

Solar energy and the Earth s seasons Solar energy and the Earth s seasons Name: Tilt of the Earth s axis and the seasons We now understand that the tilt of Earth s axis makes it possible for different parts of the Earth to experience different

More information

Answers for the Study Guide: Sun, Earth and Moon Relationship Test

Answers for the Study Guide: Sun, Earth and Moon Relationship Test Answers for the Study Guide: Sun, Earth and Moon Relationship Test 1) It takes one day for the Earth to make one complete on its axis. a. Rotation 2) It takes one year for the Earth to make one around

More information

Study Guide: Sun, Earth and Moon Relationship Assessment

Study Guide: Sun, Earth and Moon Relationship Assessment I can 1. Define rotation, revolution, solstice and equinox. *Rotation and Revolution Review Worksheet 2. Describe why we experience days and years due to the rotation and r evolution of the Earth around

More information

Tropical Horticulture: Lecture 2

Tropical Horticulture: Lecture 2 Lecture 2 Theory of the Tropics Earth & Solar Geometry, Celestial Mechanics The geometrical relationship between the earth and sun is responsible for the earth s climates. The two principal movements of

More information

1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram?

1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram? 1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram? 5. During how many days of a calendar year is the Sun directly overhead

More information

Earth, Sun and Moon is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - 'Earth, Sun and Moon'.

Earth, Sun and Moon is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - 'Earth, Sun and Moon'. is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - ''. Learning Connections Primary Science Interactives are teaching tools which have been created

More information

Earth, Sun and Moon. Table of Contents

Earth, Sun and Moon. Table of Contents Earth, Sun and Moon Table of Contents 0. Unit Challenge 1. Earth and Its Motion 2. Earth s Rotation and Revolution 3. Earth s Tilt and Seasons 4. Seasons 5. The Moon 6. The Lunar Cycle 7. Lunar Geography

More information

Cycles in the Sky. Teacher Guide: Cycles in the Sky Page 1 of 8 2008 Discovery Communications, LLC

Cycles in the Sky. Teacher Guide: Cycles in the Sky Page 1 of 8 2008 Discovery Communications, LLC Cycles in the Sky What is a Fun damental? Each Fun damental is designed to introduce your younger students to some of the basic ideas about one particular area of science. The activities in the Fun damental

More information

The following words and their definitions should be addressed before completion of the reading:

The following words and their definitions should be addressed before completion of the reading: Seasons Vocabulary: The following words and their definitions should be addressed before completion of the reading: sphere any round object that has a surface that is the same distance from its center

More information

Celestial Observations

Celestial Observations Celestial Observations Earth experiences two basic motions: Rotation West-to-East spinning of Earth on its axis (v rot = 1770 km/hr) (v rot Revolution orbit of Earth around the Sun (v orb = 108,000 km/hr)

More information

EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1

EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 Instructor: L. M. Khandro EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 1. An arc second is a measure of a. time interval between oscillations of a standard clock b. time

More information

Earth, Moon, and Sun Study Guide. (Test Date: )

Earth, Moon, and Sun Study Guide. (Test Date: ) Earth, Moon, and Sun Study Guide Name: (Test Date: ) Essential Question #1: How are the Earth, Moon, and Sun alike and how are they different? 1. List the Earth, Moon, and Sun, in order from LARGEST to

More information

Moon Phases & Eclipses Notes

Moon Phases & Eclipses Notes Moon Phases & Eclipses Notes Melka 2014-2015 The Moon The Moon is Earth s one natural satellite. Due to its smaller size and slower speed of rotation, the Moon s gravity is 1/6 of the Earth s gravitational

More information

Sun Earth Relationships

Sun Earth Relationships 1 ESCI-61 Introduction to Photovoltaic Technology Sun Earth Relationships Ridha Hamidi, Ph.D. Spring (sun aims directly at equator) Winter (northern hemisphere tilts away from sun) 23.5 2 Solar radiation

More information

Basic Coordinates & Seasons Student Guide

Basic Coordinates & Seasons Student Guide Name: Basic Coordinates & Seasons Student Guide There are three main sections to this module: terrestrial coordinates, celestial equatorial coordinates, and understanding how the ecliptic is related to

More information

The Reasons for the Seasons

The Reasons for the Seasons The Reasons for the Seasons (The Active Learning Approach) Materials: 4 Globes, One light on stand with soft white bulb, 4 flashlights, Four sets of "Seasons" Cards, Four laminated black cards with 1 inch

More information

MULTI-LEVEL LESSON PLAN GUIDE Earth, Moon, and Beyond

MULTI-LEVEL LESSON PLAN GUIDE Earth, Moon, and Beyond 1 MULTI-LEVEL LESSON PLAN GUIDE Earth, Moon, and Beyond Jeni Gonzales e-mail: JeniLG7@aol.com SED 5600 Dr. Michael Peterson December 18, 2001 1 2 Unit Plan: Multi-level- Earth, Moon, and Beyond Theme:

More information

Today FIRST HOMEWORK DUE NEXT TIME. Seasons/Precession Recap. Phases of the Moon. Eclipses. Lunar, Solar. Ancient Astronomy

Today FIRST HOMEWORK DUE NEXT TIME. Seasons/Precession Recap. Phases of the Moon. Eclipses. Lunar, Solar. Ancient Astronomy Today FIRST HOMEWORK DUE NEXT TIME Seasons/Precession Recap Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy How do we mark the progression of the seasons? We define four special points: summer

More information

Today. Solstices & Equinoxes Precession Phases of the Moon Eclipses. Ancient Astronomy. Lunar, Solar FIRST HOMEWORK DUE NEXT TIME

Today. Solstices & Equinoxes Precession Phases of the Moon Eclipses. Ancient Astronomy. Lunar, Solar FIRST HOMEWORK DUE NEXT TIME Today Solstices & Equinoxes Precession Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy FIRST HOMEWORK DUE NEXT TIME The Reason for Seasons Hypothesis check: How would seasons in the northern

More information

Name Period 4 th Six Weeks Notes 2015 Weather

Name Period 4 th Six Weeks Notes 2015 Weather Name Period 4 th Six Weeks Notes 2015 Weather Radiation Convection Currents Winds Jet Streams Energy from the Sun reaches Earth as electromagnetic waves This energy fuels all life on Earth including the

More information

Use WITH Investigation 4, Part 2, Step 2

Use WITH Investigation 4, Part 2, Step 2 INVESTIGATION 4 : The Sundial Project Use WITH Investigation 4, Part 2, Step 2 EALR 4: Earth and Space Science Big Idea: Earth in Space (ES1) Projects: Tether Ball Pole Sundial Globe and a Light Indoors

More information

Earth in the Solar System

Earth in the Solar System Copyright 2011 Study Island - All rights reserved. Directions: Challenge yourself! Print out the quiz or get a pen/pencil and paper and record your answers to the questions below. Check your answers with

More information

Essential Question. Enduring Understanding

Essential Question. Enduring Understanding Earth In Space Unit Diagnostic Assessment: Students complete a questionnaire answering questions about their ideas concerning a day, year, the seasons and moon phases: My Ideas About A Day, Year, Seasons

More information

Reasons for Seasons. Question: TRUE OR FALSE. Question: TRUE OR FALSE? What causes the seasons? What causes the seasons?

Reasons for Seasons. Question: TRUE OR FALSE. Question: TRUE OR FALSE? What causes the seasons? What causes the seasons? Reasons for Seasons Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the Sun in winter. Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the

More information

Motions of Earth, Moon, and Sun

Motions of Earth, Moon, and Sun Motions of Earth, Moon, and Sun Apparent Motions of Celestial Objects An apparent motion is a motion that an object appears to make. Apparent motions can be real or illusions. When you see a person spinning

More information

Produced by Billy Hix and Terry Sue Fanning. As part of the TeachSpace Program. For more ideas and an image of the current phase of the moon, visit:

Produced by Billy Hix and Terry Sue Fanning. As part of the TeachSpace Program. For more ideas and an image of the current phase of the moon, visit: The Moon Phase Book Produced by Billy Hix and Terry Sue Fanning As part of the TeachSpace Program For more ideas and an image of the current phase of the moon, visit: www.teachspace.us Printing Date: 10/29/2010

More information

CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS

CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS INTRODUCTION CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS This is a scientific presentation to provide you with knowledge you can use to understand the sky above in relation to the earth. Before

More information

Solar Angles and Latitude

Solar Angles and Latitude Solar Angles and Latitude Objectives The student will understand that the sun is not directly overhead at noon in most latitudes. The student will research and discover the latitude ir classroom and calculate

More information

ASTRONOMY 161. Introduction to Solar System Astronomy

ASTRONOMY 161. Introduction to Solar System Astronomy ASTRONOMY 161 Introduction to Solar System Astronomy Seasons & Calendars Monday, January 8 Season & Calendars: Key Concepts (1) The cause of the seasons is the tilt of the Earth s rotation axis relative

More information

Shadows, Angles, and the Seasons

Shadows, Angles, and the Seasons Shadows, Angles, and the Seasons If it's cold in winter, why is Earth closer to the Sun? This activity shows the relationship between Earth-Sun positions and the seasons. From The WSU Fairmount Center

More information

8.5 Motions of Earth, the Moon, and Planets

8.5 Motions of Earth, the Moon, and Planets 8.5 Motions of, the, and Planets axis axis North Pole South Pole rotation Figure 1 s axis is an imaginary line that goes through the planet from pole-to-pole. orbital radius the average distance between

More information

Geometry and Geography

Geometry and Geography Geometry and Geography Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles March 12, 2011 1 Pedagogical Advice I have been leading mathematical circles using this topic for many years,

More information

Exploring Solar Energy Variations on Earth: Changes in the Length of Day and Solar Insolation Through the Year

Exploring Solar Energy Variations on Earth: Changes in the Length of Day and Solar Insolation Through the Year Exploring Solar Energy Variations on Earth: Changes in the Length of Day and Solar Insolation Through the Year Purpose To help students understand how solar radiation varies (duration and intensity) during

More information

Moon. & eclipses. Acting out celestial events. (oh my)

Moon. & eclipses. Acting out celestial events. (oh my) phasestides & eclipses Moon (oh my) Acting out celestial events Developed by: Betsy Mills, UCLA NSF GK-12 Fellow Title of Lesson: Moon Phases, Tides, & Eclipses (oh my)! Grade Level: 8 th grade Subject(s):

More information

ASTR 1030 Astronomy Lab 65 Celestial Motions CELESTIAL MOTIONS

ASTR 1030 Astronomy Lab 65 Celestial Motions CELESTIAL MOTIONS ASTR 1030 Astronomy Lab 65 Celestial Motions CELESTIAL MOTIONS SYNOPSIS: The objective of this lab is to become familiar with the apparent motions of the Sun, Moon, and stars in the Boulder sky. EQUIPMENT:

More information

Seasons on Earth LESSON

Seasons on Earth LESSON LESSON 4 Seasons on Earth On Earth, orange and red autumn leaves stand out against the blue sky. NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION (NOAA) PHOTO LIBRARY/NOAA CENTRAL LIBRARY INTRODUCTION Nearly

More information

Pre and post-visit activities - Navigating by the stars

Pre and post-visit activities - Navigating by the stars Pre and post-visit activities - Navigating by the stars Vocabulary List Adult Education at Scienceworks Pre-visit Activity 1: What is longitude and latitude? Activity 2: Using the Southern Cross to find

More information

The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10

The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10 Lecture 3: Constellations and the Distances to the Stars Astro 2010 Prof. Tom Megeath Questions for Today How do the stars move in the sky? What causes the phases of the moon? What causes the seasons?

More information

Lesson Plan. Skills: Describe, model Knowledge: position, size, motion, earth, moon, sun, day, night, solar eclipse, lunar eclipse, phases, moon

Lesson Plan. Skills: Describe, model Knowledge: position, size, motion, earth, moon, sun, day, night, solar eclipse, lunar eclipse, phases, moon Gallmeyer 1 Lesson Plan Lesson: Rotation of the Earth Length: 45 minutes Age or Grade Level Intended: 4 th Academic Standard(s): Science: Earth and Space: 6.2.1 Describe and model how the position, size

More information

Earth In Space Chapter 3

Earth In Space Chapter 3 Earth In Space Chapter 3 Shape of the Earth Ancient Greeks Earth casts a circular shadow on the moon during a lunar eclipse Shape of the Earth Ancient Greeks Ships were observed to disappear below the

More information

Lesson 1: Phases of the Moon

Lesson 1: Phases of the Moon Lesson 1: Phases of the Moon The moon takes 29.5 days to revolve around the earth. During this time, the moon you see in the sky appears to change shape. These apparent changes, which are called phases,

More information

Newton s Law of Gravity

Newton s Law of Gravity Gravitational Potential Energy On Earth, depends on: object s mass (m) strength of gravity (g) distance object could potentially fall Gravitational Potential Energy In space, an object or gas cloud has

More information

EARTH'S MOTIONS. 2. The Coriolis effect is a result of Earth's A tilted axis B orbital shape C revolution D rotation

EARTH'S MOTIONS. 2. The Coriolis effect is a result of Earth's A tilted axis B orbital shape C revolution D rotation EARTH'S MOTIONS 1. Which hot spot location on Earth's surface usually receives the greatest intensity of insolation on June 21? A Iceland B Hawaii C Easter Island D Yellowstone 2. The Coriolis effect is

More information

5- Minute Refresher: Daily Observable Patterns in the Sky

5- Minute Refresher: Daily Observable Patterns in the Sky 5- Minute Refresher: Daily Observable Patterns in the Sky Key Ideas Daily Observable Patterns in the Sky include the occurrence of day and night, the appearance of the moon, the location of shadows and

More information

Chapter 3 Earth - Sun Relations

Chapter 3 Earth - Sun Relations 3.1 Introduction We saw in the last chapter that the short wave radiation from the sun passes through the atmosphere and heats the earth, which in turn radiates energy in the infrared portion of the electromagnetic

More information

Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti INSTRUCTIONS: Please, use the `bubble sheet and a pencil # 2 to answer the exam questions, by marking

More information

Where on Earth are the daily solar altitudes higher and lower than Endicott?

Where on Earth are the daily solar altitudes higher and lower than Endicott? Where on Earth are the daily solar altitudes higher and lower than Endicott? In your notebooks, write RELATIONSHIPS between variables we tested CAUSE FIRST EFFECT SECOND EVIDENCE As you increase the time

More information

Celestial Sphere. Celestial Coordinates. Lecture 3: Motions of the Sun and Moon. ecliptic (path of Sun) ecliptic (path of Sun)

Celestial Sphere. Celestial Coordinates. Lecture 3: Motions of the Sun and Moon. ecliptic (path of Sun) ecliptic (path of Sun) Lecture 3: Motions of the and Moon ecliptic (path of ) ecliptic (path of ) The 23.5 degree tilt of Earth s spin axis relative to its orbital axis around the causes the seasons Celestial Sphere Celestial

More information

The Four Seasons. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Moon s Phases

The Four Seasons. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Moon s Phases The Four Seasons A Warm Up Exercise What fraction of the Moon s surface is illuminated by the Sun (except during a lunar eclipse)? a) Between zero and one-half b) The whole surface c) Always half d) Depends

More information

Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity

Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity Seasonal & Daily Temperatures Seasons & Sun's Distance The role of Earth's tilt, revolution, & rotation in causing spatial, seasonal, & daily temperature variations Please read Chapter 3 in Ahrens Figure

More information

The Globe Latitudes and Longitudes

The Globe Latitudes and Longitudes INDIAN SCHOOL MUSCAT MIDDLE SECTION DEPARTMENT OF SOCIAL SCIENCE The Globe Latitudes and Longitudes NAME: CLASS VI SEC: ROLL NO: DATE:.04.2015 I NAME THE FOLLOWING: 1. A small spherical model of the Earth:

More information

Activities: The Moon is lit and unlit too

Activities: The Moon is lit and unlit too Activities: The Moon is lit and unlit too Key objectives: This activity aims to help student to: Identify the different phases of the Moon Know that the Moon does not produce its own light, but reflects

More information

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault CELESTIAL MOTIONS Stars appear to move counterclockwise on the surface of a huge sphere the Starry Vault, in their daily motions about Earth Polaris remains stationary. In Charlottesville we see Polaris

More information

What causes Tides? If tidal forces were based only on mass, the Sun should have a tidegenerating

What causes Tides? If tidal forces were based only on mass, the Sun should have a tidegenerating What are Tides? Tides are very long-period waves that move through the oceans as a result of the gravitational attraction of the Moon and the Sun for the water in the oceans of the Earth. Tides start in

More information

2- The Top and bottom of the leaf is covered by thin layer of cells called epidermis that allow sunlight to easily pass into the middle of the leaf.

2- The Top and bottom of the leaf is covered by thin layer of cells called epidermis that allow sunlight to easily pass into the middle of the leaf. Final exam summary sheet Topic 5, lesson 2 How leaf is adapted to carry on photosynthesis? 1- Waxy layer called the cuticle cover the leaf slow the water loss. 2- The Top and bottom of the leaf is covered

More information

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered

More information

Moon Phases and Tides in the Planning the D-Day Invasion Part I: The Phases of the Moon

Moon Phases and Tides in the Planning the D-Day Invasion Part I: The Phases of the Moon The Science and Technology of WWII Moon Phases and Tides in the Planning the D-Day Invasion Part I: The Phases of the Moon Objectives: 1. Students will determine what causes the moon to go through a cycle

More information

TIDES. 1. Tides are the regular rise and fall of sea level that occurs either once a day (every 24.8 hours) or twice a day (every 12.4 hours).

TIDES. 1. Tides are the regular rise and fall of sea level that occurs either once a day (every 24.8 hours) or twice a day (every 12.4 hours). TIDES What causes tides? How are tides predicted? 1. Tides are the regular rise and fall of sea level that occurs either once a day (every 24.8 hours) or twice a day (every 12.4 hours). Tides are waves

More information

1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d.

1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d. Chapter 1 1-1. How long does it take the Earth to orbit the Sun? a.) one sidereal day b.) one month c.) one year X d.) one hour 1-2. What is the name given to the path of the Sun as seen from Earth? a.)

More information

The Earth, Sun & Moon. The Universe. The Earth, Sun & Moon. The Universe

The Earth, Sun & Moon. The Universe. The Earth, Sun & Moon. The Universe Football Review- Earth, Moon, Sun 1. During a total solar eclipse, when almost all of the Sun's light traveling to the Earth is blocked by the Moon, what is the order of the Earth, Sun, and Moon? A. Moon,

More information

Activity 3: Observing the Moon

Activity 3: Observing the Moon Activity 3: Observing the Moon Print Name: Signature: 1.) KEY. 2.). 3.). 4.). Activity: Since the dawn of time, our closest neighbor the moon has fascinated humans. In this activity we will explore the

More information

Renewable Energy. Solar Power. Courseware Sample 86352-F0

Renewable Energy. Solar Power. Courseware Sample 86352-F0 Renewable Energy Solar Power Courseware Sample 86352-F0 A RENEWABLE ENERGY SOLAR POWER Courseware Sample by the staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this

More information

Unit One Organizer: The Stars and Our Solar System (Approximate Time: 7 Weeks)

Unit One Organizer: The Stars and Our Solar System (Approximate Time: 7 Weeks) The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

More information

Stellarium a valuable resource for teaching astronomy in the classroom and beyond

Stellarium a valuable resource for teaching astronomy in the classroom and beyond Stellarium 1 Stellarium a valuable resource for teaching astronomy in the classroom and beyond Stephen Hughes Department of Physical and Chemical Sciences, Queensland University of Technology, Gardens

More information

Full credit for this chapter to Prof. Leonard Bachman of the University of Houston

Full credit for this chapter to Prof. Leonard Bachman of the University of Houston Chapter 6: SOLAR GEOMETRY Full credit for this chapter to Prof. Leonard Bachman of the University of Houston SOLAR GEOMETRY AS A DETERMINING FACTOR OF HEAT GAIN, SHADING AND THE POTENTIAL OF DAYLIGHT PENETRATION...

More information

Science Benchmark: 06 : 01 Standard 01: THE MYSTICAL MOON axis of rotation,

Science Benchmark: 06 : 01 Standard 01: THE MYSTICAL MOON axis of rotation, Science Benchmark: 06 : 01 The appearance of the lighted portion of the moon changes in a predictable cycle as a result of the relative positions of Earth, the moon, and the sun. Standard 01: Students

More information

Motions of Earth LEARNING GOALS

Motions of Earth LEARNING GOALS 2 Patterns in the Sky Motions of Earth The stars first found a special place in legend and mythology as the realm of gods and goddesses, holding sway over the lives of humankind. From these legends and

More information

Earth s Revolution and Rotation Grade Eight

Earth s Revolution and Rotation Grade Eight Ohio Standards Connection: Earth and Space Sciences Benchmark A Describe how the positions and motions of the objects in the universe cause predictable and cyclic events. Indicator 1 Describe how objects

More information

SIXTH GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

SIXTH GRADE 1 WEEK LESSON PLANS AND ACTIVITIES SIXTH GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF SIXTH GRADE UNIVERSE WEEK 1. PRE: Exploring how the Universe may have evolved. LAB: Comparing the night sky with zodiac signs.

More information

Homework Assignment #7: The Moon

Homework Assignment #7: The Moon Name Homework Assignment #7: The Moon 2008 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Chapter 21 Origins of Modern Astronomy Motions of the

More information

Chapter 2: Solar Radiation and Seasons

Chapter 2: Solar Radiation and Seasons Chapter 2: Solar Radiation and Seasons Spectrum of Radiation Intensity and Peak Wavelength of Radiation Solar (shortwave) Radiation Terrestrial (longwave) Radiations How to Change Air Temperature? Add

More information

Phases of the Moon. The next phase, at about day 10, we can see roughly three quarters of the moon. This is called the waxing gibbous phase.

Phases of the Moon. The next phase, at about day 10, we can see roughly three quarters of the moon. This is called the waxing gibbous phase. Phases of the Moon Though we can see the moon s size change throughout the month, it is really always the same size. Yet we see these different sizes or moon phases at regular intervals every month. How

More information

Which month has larger and smaller day time?

Which month has larger and smaller day time? ACTIVITY-1 Which month has larger and smaller day time? Problem: Which month has larger and smaller day time? Aim: Finding out which month has larger and smaller duration of day in the Year 2006. Format

More information

Night Sky III Planetary Motion Lunar Phases

Night Sky III Planetary Motion Lunar Phases Night Sky III Planetary Motion Lunar Phases Astronomy 1 Elementary Astronomy LA Mission College Spring F2015 Quotes & Cartoon of the Day Everything has a natural explanation. The moon is not a god, but

More information

Activity 10 - Universal Time

Activity 10 - Universal Time Activity 10 - Universal Time Teacher s Guide Scientists use the Universal Time reference to talk about data that is taken around the globe. Universal Time is the time kept in the time zone centered on

More information

The ecliptic - Earth s orbital plane

The ecliptic - Earth s orbital plane The ecliptic - Earth s orbital plane The line of nodes descending node The Moon s orbital plane Moon s orbit inclination 5.45º ascending node celestial declination Zero longitude in the ecliptic The orbit

More information

For further information, and additional background on the American Meteorological Society s Education Program, please contact:

For further information, and additional background on the American Meteorological Society s Education Program, please contact: Project ATMOSPHERE This guide is one of a series produced by Project ATMOSPHERE, an initiative of the American Meteorological Society. Project ATMOSPHERE has created and trained a network of resource agents

More information

Misconceptions in Astronomy in WA High School students (in preparation)

Misconceptions in Astronomy in WA High School students (in preparation) Misconceptions in Astronomy in WA High School students (in preparation) Michael Todd Department of Imaging and Applied Physics, Curtin University of Technology The purpose of this study was to examine

More information

Seasonal Temperature Variations

Seasonal Temperature Variations Seasonal and Daily Temperatures Fig. 3-CO, p. 54 Seasonal Temperature Variations What causes the seasons What governs the seasons is the amount of solar radiation reaching the ground What two primary factors

More information

Maybe you know about the Energy House.

Maybe you know about the Energy House. Plans and experiments for the Energy House can be found at Design Coalition s website at www.designcoalition.org Maybe you know about the Energy House. Here are some more ideas for leaning about the sun

More information

Constellation Assignment

Constellation Assignment Name Score Constellation Assignment Before beginning this assignment, you have to have read What Are Constellations, Where Did Constellations Come From, and the Navigation website. Have your teacher initial

More information

Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth

Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth Lecture 3: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Luminosity (L)

More information

The Sun-Earth-Moon System. Unit 5 covers the following framework standards: ES 9, 11 and PS 1. Content was adapted the following:

The Sun-Earth-Moon System. Unit 5 covers the following framework standards: ES 9, 11 and PS 1. Content was adapted the following: Unit 5 The Sun-Earth-Moon System Chapter 10 ~ The Significance of Earth s Position o Section 1 ~ Earth in Space o Section 2 ~ Phases, Eclipses, and Tides o Section 3 ~ Earth s Moon Unit 5 covers the following

More information

Rising and Setting of the Moon

Rising and Setting of the Moon Rising and Setting of the Moon Activity UCIObs 6 Grade Level: 3 5 Source: Copyright (2009) by Tammy Smecker-Hane. Contact tsmecker@uci.edu with questions. Standards: This activity addresses these California

More information

Sunlight and its Properties. EE 495/695 Y. Baghzouz

Sunlight and its Properties. EE 495/695 Y. Baghzouz Sunlight and its Properties EE 495/695 Y. Baghzouz The sun is a hot sphere of gas whose internal temperatures reach over 20 million deg. K. Nuclear fusion reaction at the sun's core converts hydrogen to

More information

The Orbit TelleriumThe Orbit TelleriumThe Orbit Tellerium

The Orbit TelleriumThe Orbit TelleriumThe Orbit Tellerium The Orbit TelleriumThe Orbit TelleriumThe Orbit Tellerium 16 Appendix 4 Moon Chart: For each day draw the shape of the Moon, record the time and mark the position of the Moon in the sky in relation to

More information

The changing phases of the Moon originally inspired the concept of the month

The changing phases of the Moon originally inspired the concept of the month The changing phases of the Moon originally inspired the concept of the month Motions of the Moon The Moon is in orbit around the Earth, outside the atmosphere. The Moon `shines via reflected light (12%)

More information

The Mantas of Yap The Rhythm of the Tides Lesson Plan

The Mantas of Yap The Rhythm of the Tides Lesson Plan The Mantas of Yap The Rhythm of the Tides Lesson Plan In this episode, Jonathan travels to Yap, an island in the Pacific nation of Micronesia, to dive with giant Manta Rays. Manta Rays come to this area

More information

6. The greatest atmospheric pressure occurs in the 1) troposphere 3) mesosphere 2) stratosphere 4) thermosphere

6. The greatest atmospheric pressure occurs in the 1) troposphere 3) mesosphere 2) stratosphere 4) thermosphere 1. The best evidence of the Earth's nearly spherical shape is obtained through telescopic observations of other planets photographs of the Earth from an orbiting satellite observations of the Sun's altitude

More information

Ok, so if the Earth weren't tilted, we'd have a picture like the one shown below: 12 hours of daylight at all latitudes more insolation in the

Ok, so if the Earth weren't tilted, we'd have a picture like the one shown below: 12 hours of daylight at all latitudes more insolation in the Ok, so if the Earth weren't tilted, we'd have a picture like the one shown below: 12 hours of daylight at all latitudes more insolation in the tropics, less at higher latitudes Ok, so if the Earth weren't

More information

PHSC 3033: Meteorology Seasons

PHSC 3033: Meteorology Seasons PHSC 3033: Meteorology Seasons Changing Aspect Angle Direct Sunlight is more intense and concentrated. Solar Incidence Angle is Latitude and Time/Date Dependent Daily and Seasonal Variation Zenith There

More information

Explain the Big Bang Theory and give two pieces of evidence which support it.

Explain the Big Bang Theory and give two pieces of evidence which support it. Name: Key OBJECTIVES Correctly define: asteroid, celestial object, comet, constellation, Doppler effect, eccentricity, eclipse, ellipse, focus, Foucault Pendulum, galaxy, geocentric model, heliocentric

More information

Astrock, t he A stronomical Clock

Astrock, t he A stronomical Clock Astrock, t he A stronomical Clock The astronomical clock is unlike any other clock. At first glance you ll find it has similar functions of a standard clock, however the astronomical clock can offer much

More information

Coordinate Systems. Orbits and Rotation

Coordinate Systems. Orbits and Rotation Coordinate Systems Orbits and Rotation Earth orbit. The earth s orbit around the sun is nearly circular but not quite. It s actually an ellipse whose average distance from the sun is one AU (150 million

More information