Attribute Gage R&R An Overview


 Darlene Heath
 11 months ago
 Views:
Transcription
1 Attribute Gage R&R An Overview Presented to ASQ Section 1302 August 18, 2011 by Jon Ridgway
2 Overview What is an Attribute Gage R&R? Why is it worth the work? What are the caveats? How do I perform it? How do I understand the results?
3 My Attribute Gage R&R Experience First Data Credit Card mailings ( packages ) Airlite Plastics: Mold & Print Quality Print Quality, Cup & Lid Decoration
4 WHY conduct a Gage R&R???? Some processes require subjective decision making: Inspection Validation Subjectivity creates the potential for variation Measurement System variation impacts process capability: Type I Errors Type II Errors
5 So, Why Conduct a Gage R&R? To understand: How likely Appraiser will agree with himself / herself: WITHIN / Repeatability How likely all Appraisers will agree with each other: BETWEEN / Reproducibility Understanding R&R allows you to: Predict probability (%) of agreement / disagreement Implement training to improve that probability Reduce Type I and Type II Errors = $$$
6 MSA The Foundation of everything in Quality is measurement Measure for two primary reasons: To make a decision As the basis for process improvement Can we trust our measurement system to give us reliable data? CONFIDENCE
7 Ultimate purpose of the Attribute Agreement Analysis To determine if your measurement system can distinguish between a good & bad part Accuracy & Precision: Accuracy: Absence of bias, or agreeing with the standard. Precision: Ability of different Appraisers to reach the same conclusion several times.
8 Accurate, But Not Precise
9 Precise, But Not Accurate
10 Which is Easier to Remedy? Accurate, but not Precise Precise, but not Accurate
11 Gage R&R Review Measurement System Analysis (MSA) 1 st R: Repeatability 2 nd R: Reproducibility Data in General: Continuous / Variables Attribute / Discrete
12 Attribute vs. Continuous Attribute Data: Categorical, named only, arbitrary scales Also known as Discrete Data Continuous Data: Allows for infinitely finer subdivisions Also known as Variables Data
13 Nominal: Literally, name Represents categories Ordinal: Ordered or ranked data Not scaled Basic Data Types Interval: Measured / scaled data: Each position equidistant 0 can be relevant (temperature) Ratio: Numbers compared as multiples of one another
14 Hierarchy of Data Types Nominal Ordinal Interval Ratio Classified Data Quantified Data DISCRETE / ATTRIBUTE Nonparametric CONTINUOUS / VARIABLE Parametric
15 2 Main Attribute Gage R&R Types 1) Binary / Nominal GO / NO GO Data are Categorical and mutually exclusive Kappa statistic is relevant 2) Ordinal Rank, not categorical Data are not mutually exclusive Kendall s statistic more relevant than Kappa
16 Kappa Statistic Proportion of agreement between evaluators after chance agreement has been removed: Kappa = P observed P chance / P chance Expressed as a number: From 0 (expected by chance) Up to +1 (complete agreement)
17 Kendall s Statistics Two different Kendall s for different tests: Kendall s Coefficient of Concordance: Rankings without a known Standard Kendall s Correlation Coefficient: Rankings with a known Standard Expressed as 0 (weaker agreement) to +1 (stronger agreement)
18 Kappa: Kappa & Kendall s Summary Nominal / Binary Only Match or No Match Kendall s Coefficient of Concordance: Ordinal but not using a known Standard Kendall s Correlation Coefficient: Ordinal and using a known Standard
19 Attribute Gage R&R Considerations Study Purpose Destructiveness Precision vs. Time Binomial / Nominal vs. Ordinal
20 MSA Factors Impacting Variation Gage Appraiser Method Part Environment
21 Ideally: Controlling MSA Factors 1. Use the same Assessment Method 2. Require all Appraisers to assess the same dimension / feature / sample 3. Conduct the study under the normal assessment conditions
22 Controlling MSA Factors, Cont. 1) Appraisers: Select from group that normally appraises the part. 2) Number of parts should cover the entire range of variation. 3) More than one appraisal per Appraiser should be done. 4) The presentation of the samples within the Trial should be randomized.
23 Nominal / Binary Study Two Appraisers 50 Parts 2 Trials
24
25
26 Output: Within
27 Output: Within vs. Standard
28 Assessment Agreement Date of study: Reported by: Name of product: Misc: Within Appraisers Appraiser vs Standard % C I Percent % C I Percent Percent 90 Percent Lee Fred 80 Lee Fred Appraiser Appraiser
29 Output: Between
30 Output: Between vs. Standard
31 Ordinal Case Study: Print Quality
32 What did we want to know? Do all Appraisers of Print Quality: Agree consistently with Themselves? Agree consistently with Each Other? Given our world, we have an ordinal system: Accept Accept but Adjust Reject
33 How was it Done? 10 samples, Good & Bad Random Order, Same for All 2 Trials per person All people in the study Environment
34 Ensure Gage R&R Consistency
35 Spanish Version
36 Vietnamese Version
37 Trial Order My Checklist
38
39 Results Sample QA11 QA12 QA21 QA22 QA41 QA42 Standard
40 False Alarms & Misses Assess Fail when Standard = Pass: False Alarm Type I Error Assess Pass when Standard = Fail: Miss Type II Error
41 Results False Alarms Sample QA11 QA12 QA21 QA22 QA41 QA42 Standard MISSES
42 Minitab 15 Four Results: 1. Within 2. Within vs. Standard 3. Between 4. Between vs. Standard
43 Check Here
44
45
46 Assessment Agreement Date of study: Reported by: Name of product: Misc: Within Appraisers Appraiser vs Standard % C I Percent % C I Percent Percent Percent QA1 QA2 Appraiser QA4 0 QA1 QA2 Appraiser QA4
47
48
49 Two Big Lessons You can t trust your data until it is proven to be trustworthy. A single, onetime Gage R&R study is not enough
50 Questions? Thank You!
MSA Example: Attribute or Categorical Data
MSA Example: Attribute or Categorical Data 1 Definitions Accuracy: Overall agreement of the measured value with the true value (which may be an expert value). Bias plus precision. Attribute Data: Discrete
More informationAttribute Agreement Analysis
MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. Attribute
More informationGauge R & R. Measurement System Analysis (MSA) Bruce A. Brigham Prolink Corporation May 16, Carl Zeiss 2005 Page 1
Gauge R & R Bruce A. Brigham Prolink Corporation May 16, 2005 Carl Zeiss 2005 Page 1 Gauge R & R Overview Definitions What GR&R Tells You Summary of Terms Measurement System Error How to Conduct a GR&R
More informationStatistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013
Statistics I for QBIC Text Book: Biostatistics, 10 th edition, by Daniel & Cross Contents and Objectives Chapters 1 7 Revised: August 2013 Chapter 1: Nature of Statistics (sections 1.11.6) Objectives
More informationMeasurement Systems Analysis MSA for Suppliers
Measurement Systems Analysis MSA for Suppliers Copyright 20032007 Raytheon Company. All rights reserved. R6σ is a Raytheon trademark registered in the United States and Europe. Raytheon Six Sigma is a
More informationResearch Methods & Experimental Design
Research Methods & Experimental Design 16.422 Human Supervisory Control April 2004 Research Methods Qualitative vs. quantitative Understanding the relationship between objectives (research question) and
More informationSample Size and Power in Clinical Trials
Sample Size and Power in Clinical Trials Version 1.0 May 011 1. Power of a Test. Factors affecting Power 3. Required Sample Size RELATED ISSUES 1. Effect Size. Test Statistics 3. Variation 4. Significance
More informationModule 9: Nonparametric Tests. The Applied Research Center
Module 9: Nonparametric Tests The Applied Research Center Module 9 Overview } Nonparametric Tests } Parametric vs. Nonparametric Tests } Restrictions of Nonparametric Tests } OneSample ChiSquare Test
More informationAnalysing Questionnaires using Minitab (for SPSS queries contact ) Graham.Currell@uwe.ac.uk
Analysing Questionnaires using Minitab (for SPSS queries contact ) Graham.Currell@uwe.ac.uk Structure As a starting point it is useful to consider a basic questionnaire as containing three main sections:
More informationNONPARAMETRIC STATISTICS 1. depend on assumptions about the underlying distribution of the data (or on the Central Limit Theorem)
NONPARAMETRIC STATISTICS 1 PREVIOUSLY parametric statistics in estimation and hypothesis testing... construction of confidence intervals computing of pvalues classical significance testing depend on assumptions
More informationTests of relationships between variables Chisquare Test Binomial Test Run Test for Randomness OneSample KolmogorovSmirnov Test.
N. Uttam Singh, Aniruddha Roy & A. K. Tripathi ICAR Research Complex for NEH Region, Umiam, Meghalaya uttamba@gmail.com, aniruddhaubkv@gmail.com, aktripathi2020@yahoo.co.in Non Parametric Tests: Hands
More informationInferential Statistics
Inferential Statistics Sampling and the normal distribution Zscores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are
More informationDescriptive Statistics
Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize
More informationAMS 5 HYPOTHESIS TESTING
AMS 5 HYPOTHESIS TESTING Hypothesis Testing Was it due to chance, or something else? Decide between two hypotheses that are mutually exclusive on the basis of evidence from observations. Test of Significance
More informationLean Six Sigma Black BeltEngineRoom
Lean Six Sigma Black BeltEngineRoom Course Content and Outline Total Estimated Hours: 140.65 *Course includes choice of software: EngineRoom (included for free), Minitab (must purchase separately) or
More informationX X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1)
CORRELATION AND REGRESSION / 47 CHAPTER EIGHT CORRELATION AND REGRESSION Correlation and regression are statistical methods that are commonly used in the medical literature to compare two or more variables.
More informationStatistics in Medicine Research Lecture Series CSMC Fall 2014
Catherine Bresee, MS Senior Biostatistician Biostatistics & Bioinformatics Research Institute Statistics in Medicine Research Lecture Series CSMC Fall 2014 Overview Review concept of statistical power
More information1. Why the hell do we need statistics?
1. Why the hell do we need statistics? There are three kind of lies: lies, damned lies, and statistics, British Prime Minister Benjamin Disraeli (as credited by Mark Twain): It is easy to lie with statistics,
More information1/22/2016. What are paired data? Tests of Differences: two related samples. What are paired data? Paired Example. Paired Data.
Tests of Differences: two related samples What are paired data? Frequently data from ecological work take the form of paired (matched, related) samples Before and after samples at a specific site (or individual)
More informationSome Critical Information about SOME Statistical Tests and Measures of Correlation/Association
Some Critical Information about SOME Statistical Tests and Measures of Correlation/Association This information is adapted from and draws heavily on: Sheskin, David J. 2000. Handbook of Parametric and
More informationTest Reliability Indicates More than Just Consistency
Assessment Brief 015.03 Test Indicates More than Just Consistency by Dr. Timothy Vansickle April 015 Introduction is the extent to which an experiment, test, or measuring procedure yields the same results
More informationTHIS PAGE WAS LEFT BLANK INTENTIONALLY
SAMPLE EXAMINATION The purpose of the following sample examination is to present an example of what is provided on exam day by ASQ, complete with the same instructions that are given on exam day. The test
More informationCHAPTER 3 COMMONLY USED STATISTICAL TERMS
CHAPTER 3 COMMONLY USED STATISTICAL TERMS There are many statistics used in social science research and evaluation. The two main areas of statistics are descriptive and inferential. The third class of
More informationAssessing Measurement System Variation
Assessing Measurement System Variation Example 1: Fuel Injector Nozzle Diameters Problem A manufacturer of fuel injector nozzles installs a new digital measuring system. Investigators want to determine
More informationBinomial Capability and Poisson Capability
MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. Binomial
More informationApplications of Intermediate/Advanced Statistics in Institutional Research
Applications of Intermediate/Advanced Statistics in Institutional Research Edited by Mary Ann Coughlin THE ASSOCIATION FOR INSTITUTIONAL RESEARCH Number Sixteen Resources in Institional Research 2005 Association
More informationCorrelation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables 2
Lesson 4 Part 1 Relationships between two numerical variables 1 Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables
More informationStudy Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
More informationElementary Statistics
Elementary Statistics Chapter 1 Dr. Ghamsary Page 1 Elementary Statistics M. Ghamsary, Ph.D. Chap 01 1 Elementary Statistics Chapter 1 Dr. Ghamsary Page 2 Statistics: Statistics is the science of collecting,
More informationMeasuring reliability and agreement
Measuring reliability and agreement Madhukar Pai, MD, PhD Assistant Professor of Epidemiology, McGill University Montreal, Canada Professor Extraordinary, Stellenbosch University, S Africa Email: madhukar.pai@mcgill.ca
More informationNonTraditional MSA with Continuous Data
NonTraditional MSA with Continuous Data by Keith M. Bower, M.S. Reprinted with permission from the American Society for Quality As part of their Six Sigma projects, practitioners often must assess the
More informationSection 3 Part 1. Relationships between two numerical variables
Section 3 Part 1 Relationships between two numerical variables 1 Relationship between two variables The summary statistics covered in the previous lessons are appropriate for describing a single variable.
More informationIntroduction to method validation
Introduction to method validation Introduction to method validation What is method validation? Method validation provides documented objective evidence that a method measures what it is intended to measure,
More informationFigure 1. Six Step Method for Inspection Improvement
Breakthrough Improvement for your Inspection Process By Louis Johnson, Minitab Technical Training Specialist and Roy Geiger, Hitchiner Manufacturing, Milford, NH Introduction At final inspection, each
More informationVerification Indices. Appendix A. A.1 Basic Verification Indices. Root Mean Square Error
Appendix A Verification Indices In this appendix, a number of verification indices used in this document are presented for reference. The indices are also used in the international verification through
More informationQuantitative Methods for Finance
Quantitative Methods for Finance Module 1: The Time Value of Money 1 Learning how to interpret interest rates as required rates of return, discount rates, or opportunity costs. 2 Learning how to explain
More informationUnivariate and Bivariate Tests
Univariate and BUS 230: Business and Economics Research and Communication Univariate and Goals Hypotheses Tests Goals 1/ 20 Specific goals: Be able to distinguish different types of data and prescribe
More informationStatistical & Analytical Curriculum
Statistical & Analytical Curriculum 2014 1 Courses Days Engineering Statistics and Data Analysis 3 Design of Experiments 2 Mixture DOE 1 Robust Optimization and Tolerance Design 2 Measurement Systems Analysis
More informationChapter G08 Nonparametric Statistics
G08 Nonparametric Statistics Chapter G08 Nonparametric Statistics Contents 1 Scope of the Chapter 2 2 Background to the Problems 2 2.1 Parametric and Nonparametric Hypothesis Testing......................
More informationHypothesis testing. c 2014, Jeffrey S. Simonoff 1
Hypothesis testing So far, we ve talked about inference from the point of estimation. We ve tried to answer questions like What is a good estimate for a typical value? or How much variability is there
More informationIntroduction to Statistics and Quantitative Research Methods
Introduction to Statistics and Quantitative Research Methods Purpose of Presentation To aid in the understanding of basic statistics, including terminology, common terms, and common statistical methods.
More informationStatistics Review PSY379
Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses
More informationEBM Cheat Sheet Measurements Card
EBM Cheat Sheet Measurements Card Basic terms: Prevalence = Number of existing cases of disease at a point in time / Total population. Notes: Numerator includes old and new cases Prevalence is crosssectional
More informationStatistical basics for Biology: p s, alphas, and measurement scales.
334 Volume 25: Mini Workshops Statistical basics for Biology: p s, alphas, and measurement scales. Catherine Teare Ketter School of Marine Programs University of Georgia Athens Georgia 306023636 (706)
More informationWe are often interested in the relationship between two variables. Do people with more years of fulltime education earn higher salaries?
Statistics: Correlation Richard Buxton. 2008. 1 Introduction We are often interested in the relationship between two variables. Do people with more years of fulltime education earn higher salaries? Do
More informationStatistical Significance and Bivariate Tests
Statistical Significance and Bivariate Tests BUS 735: Business Decision Making and Research 1 1.1 Goals Goals Specific goals: Refamiliarize ourselves with basic statistics ideas: sampling distributions,
More informationCorrelational Research. Correlational Research. Stephen E. Brock, Ph.D., NCSP EDS 250. Descriptive Research 1. Correlational Research: Scatter Plots
Correlational Research Stephen E. Brock, Ph.D., NCSP California State University, Sacramento 1 Correlational Research A quantitative methodology used to determine whether, and to what degree, a relationship
More information1.1 What is statistics? Data Collection. Important Definitions. What is data? Descriptive Statistics. Inferential Statistics
1.1 What is statistics? Data Collection Chapter 1 A science (bet you thought it was a math) of Collecting of data (Chap. 1) Organizing data (Chap. 2) Summarizing data (Chap. 2, 3) Analyzing data (Chap.
More informationNonparametric Statistics
Nonparametric Statistics J. Lozano University of Goettingen Department of Genetic Epidemiology Interdisciplinary PhD Program in Applied Statistics & Empirical Methods Graduate Seminar in Applied Statistics
More informationWhy Is EngineRoom the Right Choice? 1. Cuts the Cost of Calculation
What is EngineRoom?  A Web based data analysis application with an intuitive, draganddrop graphical interface.  A suite of powerful, simpletouse Lean and Six Sigma data analysis tools that you can
More informationII. DISTRIBUTIONS distribution normal distribution. standard scores
Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,
More informationUNIVERSITY OF NAIROBI
UNIVERSITY OF NAIROBI MASTERS IN PROJECT PLANNING AND MANAGEMENT NAME: SARU CAROLYNN ELIZABETH REGISTRATION NO: L50/61646/2013 COURSE CODE: LDP 603 COURSE TITLE: RESEARCH METHODS LECTURER: GAKUU CHRISTOPHER
More informationContent DESCRIPTIVE STATISTICS. Data & Statistic. Statistics. Example: DATA VS. STATISTIC VS. STATISTICS
Content DESCRIPTIVE STATISTICS Dr Najib Majdi bin Yaacob MD, MPH, DrPH (Epidemiology) USM Unit of Biostatistics & Research Methodology School of Medical Sciences Universiti Sains Malaysia. Introduction
More informationScientific Method & Statistical Reasoning
Scientific Method & Statistical Reasoning Paul Gribble http://www.gribblelab.org/stats/ Winter, 2016 MD Chapters 1 & 2 The idea of pure science Philosophical stances on science Historical review Gets you
More informationLesson 4 Part 1. Relationships between. two numerical variables. Correlation Coefficient. Relationship between two
Lesson Part Relationships between two numerical variables Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear between two numerical variables Relationship
More informationThe Six Sigma Handbook
The Six Sigma Handbook A Complete Guide for Green Belts, Black Belts, and Managers at All Levels Thomas Pyzdek Paul A. Keller Third Edition Me Graw Hill New York Chicago San Francisco Lisbon London Madrid
More informationVariables and Data A variable contains data about anything we measure. For example; age or gender of the participants or their score on a test.
The Analysis of Research Data The design of any project will determine what sort of statistical tests you should perform on your data and how successful the data analysis will be. For example if you decide
More informationBasic research methods. Basic research methods. Question: BRM.2. Question: BRM.1
BRM.1 The proportion of individuals with a particular disease who die from that condition is called... BRM.2 This study design examines factors that may contribute to a condition by comparing subjects
More informationQuestionnaire Design. Outline. Introduction
Questionnaire Design Jean S. Kutner, MD, MSPH University of Colorado Health Sciences Center Outline Introduction Defining and clarifying survey variables Planning analysis Data collection methods Formulating
More informationE205 Final: Version B
Name: Class: Date: E205 Final: Version B Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The owner of a local nightclub has recently surveyed a random
More informationMeasurement and Metrics Fundamentals. SE 350 Software Process & Product Quality
Measurement and Metrics Fundamentals Lecture Objectives Provide some basic concepts of metrics Quality attribute metrics and measurements Reliability, validity, error Correlation and causation Discuss
More informationUnit 1 Practice Problems: Real Estate
Unit 1 Practice Problems: Real Estate PRACTICE PROBLEM 1: Perform a categorical analysis on the construction of the homes. Describe your findings. PRACTICE PROBLEM 2: Create a frequency distribution &
More informationMeasurement in ediscovery
Measurement in ediscovery A Technical White Paper Herbert Roitblat, Ph.D. CTO, Chief Scientist Measurement in ediscovery From an informationscience perspective, ediscovery is about separating the responsive
More informationSCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES
SCHOOL OF HEALTH AND HUMAN SCIENCES Using SPSS Topics addressed today: 1. Differences between groups 2. Graphing Use the s4data.sav file for the first part of this session. DON T FORGET TO RECODE YOUR
More informationEvaluation & Validation: Credibility: Evaluating what has been learned
Evaluation & Validation: Credibility: Evaluating what has been learned How predictive is a learned model? How can we evaluate a model Test the model Statistical tests Considerations in evaluating a Model
More informationChapter 4. Probability and Probability Distributions
Chapter 4. robability and robability Distributions Importance of Knowing robability To know whether a sample is not identical to the population from which it was selected, it is necessary to assess the
More informationSix Sigma Acronyms. 21 Do Not Reprint without permission of
Six Sigma Acronyms $k Thousands of dollars $M Millions of dollars % R & R Gauge % Repeatability and Reproducibility ANOVA Analysis of Variance AOP Annual Operating Plan BB Black Belt C & E Cause and Effects
More informationSimple Predictive Analytics Curtis Seare
Using Excel to Solve Business Problems: Simple Predictive Analytics Curtis Seare Copyright: Vault Analytics July 2010 Contents Section I: Background Information Why use Predictive Analytics? How to use
More informationAnswer keys for Assignment 10: Measurement of study variables
Answer keys for Assignment 10: Measurement of study variables (The correct answer is underlined in bold text) 1. In a study, participants are asked to indicate the type of pet they have at home (ex: dog,
More informationBasic Statistical Concepts, Research Design, & Notation
, Research Design, & Notation Variables, Scores, & Data A variable is a characteristic or condition that can change or take on different values. Most research begins with a general question about the relationship
More informationGage Studies for Continuous Data
1 Gage Studies for Continuous Data Objectives Determine the adequacy of measurement systems. Calculate statistics to assess the linearity and bias of a measurement system. 11 Contents Contents Examples
More informationDesign and Analysis of Ecological Data Conceptual Foundations: Ec o lo g ic al Data
Design and Analysis of Ecological Data Conceptual Foundations: Ec o lo g ic al Data 1. Purpose of data collection...................................................... 2 2. Samples and populations.......................................................
More informationMeasurement. Measurement. Measurement
Cal State Northridge Ψ320 Andrew Ainsworth PhD In much scientific work we are interested in either describing the distributions of and/or relationships among abstract constructs: e.g., Political conservatism
More informationStatistical Analysis I
CTSI BERD Research Methods Seminar Series Statistical Analysis I Lan Kong, PhD Associate Professor Department of Public Health Sciences December 22, 2014 Biostatistics, Epidemiology, Research Design(BERD)
More informationSection 3 Part 2. Describing Relationships Between Two Nominal Characteristics. PubH 6414 Section 3 Part 2 1
Section 3 Part 2 Describing Relationships Between Two Nominal Characteristics PubH 6414 Section 3 Part 2 1 Measuring relationship between two variables The Relative Risk and the Odds Ratio are measures
More information11. Analysis of Casecontrol Studies Logistic Regression
Research methods II 113 11. Analysis of Casecontrol Studies Logistic Regression This chapter builds upon and further develops the concepts and strategies described in Ch.6 of Mother and Child Health:
More informationStatistics for Sports Medicine
Statistics for Sports Medicine Suzanne Hecht, MD University of Minnesota (suzanne.hecht@gmail.com) Fellow s Research Conference July 2012: Philadelphia GOALS Try not to bore you to death!! Try to teach
More informationLean Six Sigma Black Belt Body of Knowledge
General Lean Six Sigma Defined UN Describe Nature and purpose of Lean Six Sigma Integration of Lean and Six Sigma UN Compare and contrast focus and approaches (Process Velocity and Quality) Y=f(X) Input
More informationModule 3: Multiple Regression Concepts
Contents Module 3: Multiple Regression Concepts Fiona Steele 1 Centre for Multilevel Modelling...4 What is Multiple Regression?... 4 Motivation... 4 Conditioning... 4 Data for multiple regression analysis...
More informationThe Logic of Statistical Inference Testing Hypotheses
The Logic of Statistical Inference Testing Hypotheses Confirming your research hypothesis (relationship between 2 variables) is dependent on ruling out Rival hypotheses Research design problems (e.g.
More informationin a Production Process
White Paper WP2 Statistical Sampling in a Production Process A Practical Guide to Statistical Sampling A White Paper by David C. Wilson, MSEE December 23, 2004 WP2: DCW_Statistical Sampling in a Production
More informationTABLE OF CONTENTS. About Chi Squares... 1. What is a CHI SQUARE?... 1. Chi Squares... 1. Hypothesis Testing with Chi Squares... 2
About Chi Squares TABLE OF CONTENTS About Chi Squares... 1 What is a CHI SQUARE?... 1 Chi Squares... 1 Goodness of fit test (Oneway χ 2 )... 1 Test of Independence (Twoway χ 2 )... 2 Hypothesis Testing
More informationDr. Peter Tröger Hasso Plattner Institute, University of Potsdam. Software Profiling Seminar, Statistics 101
Dr. Peter Tröger Hasso Plattner Institute, University of Potsdam Software Profiling Seminar, 2013 Statistics 101 Descriptive Statistics Population Object Object Object Sample numerical description Object
More informationThere are three kinds of people in the world those who are good at math and those who are not. PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 Positive Views The record of a month
More informationChapter 16 Multiple Choice Questions (The answers are provided after the last question.)
Chapter 16 Multiple Choice Questions (The answers are provided after the last question.) 1. Which of the following symbols represents a population parameter? a. SD b. σ c. r d. 0 2. If you drew all possible
More informationStatistical Inference: Hypothesis Testing
Statistical Inference: Hypothesis Testing Scott Evans, Ph.D. 1 The Big Picture Populations and Samples Sample / Statistics x, s, s 2 Population Parameters μ, σ, σ 2 Scott Evans, Ph.D. 2 Statistical Inference
More informationDATA COLLECTION AND ANALYSIS
DATA COLLECTION AND ANALYSIS Quality Education for Minorities (QEM) Network HBCUUP Fundamentals of Education Research Workshop Gerunda B. Hughes, Ph.D. August 23, 2013 Objectives of the Discussion 2 Discuss
More informationAccurately and Efficiently Measuring Individual Account Credit Risk On Existing Portfolios
Accurately and Efficiently Measuring Individual Account Credit Risk On Existing Portfolios By: Michael Banasiak & By: Daniel Tantum, Ph.D. What Are Statistical Based Behavior Scoring Models And How Are
More informationBIOSTATISTICS QUIZ ANSWERS
BIOSTATISTICS QUIZ ANSWERS 1. When you read scientific literature, do you know whether the statistical tests that were used were appropriate and why they were used? a. Always b. Mostly c. Rarely d. Never
More informationDescriptive Statistics and Measurement Scales
Descriptive Statistics 1 Descriptive Statistics and Measurement Scales Descriptive statistics are used to describe the basic features of the data in a study. They provide simple summaries about the sample
More informationSIMULATION STUDIES IN STATISTICS WHAT IS A SIMULATION STUDY, AND WHY DO ONE? What is a (Monte Carlo) simulation study, and why do one?
SIMULATION STUDIES IN STATISTICS WHAT IS A SIMULATION STUDY, AND WHY DO ONE? What is a (Monte Carlo) simulation study, and why do one? Simulations for properties of estimators Simulations for properties
More informationQUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NONPARAMETRIC TESTS
QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NONPARAMETRIC TESTS This booklet contains lecture notes for the nonparametric work in the QM course. This booklet may be online at http://users.ox.ac.uk/~grafen/qmnotes/index.html.
More informationApplying Statistics Recommended by Regulatory Documents
Applying Statistics Recommended by Regulatory Documents Steven Walfish President, Statistical Outsourcing Services steven@statisticaloutsourcingservices.com 301325 32531293129 About the Speaker Mr. Steven
More informationAn Introduction to the Critical Appraisal Section (including example questions)
An Introduction to the Critical Appraisal Section (including example questions) Introduction This section is common to the specialties of Dental Public Health, Oral Medicine, Oral Surgery, Orthodontics,
More informationPoint Biserial Correlation Tests
Chapter 807 Point Biserial Correlation Tests Introduction The point biserial correlation coefficient (ρ in this chapter) is the productmoment correlation calculated between a continuous random variable
More informationBenchmarking InterRater Reliability Coefficients
CHAPTER Benchmarking InterRater Reliability Coefficients 6 OBJECTIVE In this chapter, we will learn how the extent of agreement among raters should be interpreted once it has been quantified with one
More informationDESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.
DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,
More informationChris Slaughter, DrPH. GI Research Conference June 19, 2008
Chris Slaughter, DrPH Assistant Professor, Department of Biostatistics Vanderbilt University School of Medicine GI Research Conference June 19, 2008 Outline 1 2 3 Factors that Impact Power 4 5 6 Conclusions
More informationAnalysis of Environmental Data Conceptual Foundations: En viro n m e n tal Data
Analysis of Environmental Data Conceptual Foundations: En viro n m e n tal Data 1. Purpose of data collection...................................................... 2 2. Samples and populations.......................................................
More informationTutorial 5: Hypothesis Testing
Tutorial 5: Hypothesis Testing Rob Nicholls nicholls@mrclmb.cam.ac.uk MRC LMB Statistics Course 2014 Contents 1 Introduction................................ 1 2 Testing distributional assumptions....................
More information