Ene CGT / Fall 2015 / Model Solution Homework 2 V2.0. Introduction M.M.

Size: px
Start display at page:

Download "Ene CGT / Fall 2015 / Model Solution Homework 2 V2.0. Introduction M.M."

Transcription

1 M.M. Ene CGT / Fall 2015 / Model Solution Homework 2 V2.0 Kindly note that the model solutions are intended to help and complement the learning process. The prepared solutions are not to be used as detailed descriptions of grading principles. Therefore, most answers are provided more comprehensively, additional examples are illustrated and far more details are explained than what is required and expected from a graded good homework solution. Introduction The Winkler system was the first developed commercial scale direct-gasifier back in the early 1920s. The developed patent by Fritz Winkler of Germany was first for an atmospheric bubbling fluidized bed where a portion of the fuel is combusted for gasification demand within the singular unit. For historical context, the earlier applications were for powering gas engines, (Basu, 2013) especially during World War II, where a motivation for self-sufficiency to counter depleted resources because of warfare led to the deployment of many coal and biomass fuel based gasifiers. (Meyers, 1984) Later on more than 70 reactors went into commercialization for synthetic fuels production under the traditional Winkler gasifier configuration which remained dominant till the early 1960s, with a total capacity of over 20 million Nm 3 /d. (Higman and Burgt, 2003) The wide deployment of the technology was attributed to its fuel flexibility, as it was first developed for the gasification of coal and then later on, with the introduction of design improvements, was adapted for biomass. (Leckner, 2015) The bubbling bed configuration utilizes bed material to assist in maintaining rapid and uniform heat transfer. The selection criteria for appropriate material is based on being an abundant non-combustible one, with some applications looking into even the catalytic effect (Basu, 2013) The fluidization phenomena is induced through the grate at the lower end of the reactor by the introduction of air, oxygen, or steam. As the name suggests, a BFB configuration operates with a fluidizing velocity high enough to allow the bed to boil, but not so high that the solids are swept out of bed and entrained in the product syngas. Typical fluidization velocities range between 1 to 5 m/s. (Higman and Burgt, 2003) The utility of the bubbling bed design lies in its ability to gasify a wide range of fuels, with only moderate tar production and the potential for reliable operation. However, reactor size requirements can be an issue with this technology, as reactor diameters must be sufficiently large enough to keep gas velocities below the point of entraining solids in the product gas. (Meyers, 1984) Also it was mentioned in (Higman and Burgt, 2003) that when operating

2 with the more uniform coal fuels (in compared to biomass), milling pretreatment was required to drop the particulate size to below 10 mm. Furthermore, as some solids carryover is unavoidable, the carbon losses detected in the ash could reach values as high as 20% on a feed basis depending on the type of fuel used. In order to mitigate carbon loss in more recently developed configurations, the char-bearing ash can be circulated either into a recovery boiler or back to reactor as fuel for internal combustion. (Basu, 2013) Where the traditional Winkler gasifier operates at atmospheric pressure, high-pressure configurations up to 30 bar were introduced as additional adjustments to realize carbon conversion improvements. (Higman and Burgt, 2003) The high-temperature Winkler (HTW) process operates at both elevated temperatures (>800 C) and elevated pressures (>10 bar). (Leckner, 2015) High temperature Winkler reactors require lockhoppers on the fuel feed and on the ash/char discharge to maintain elevated pressures. Further improvements in the HTW process were brought about by injecting the fluidizing medium both below the reactor grate and into the freeboard over the bed. (Meyers, 1984) The additional fluidizing gas added over-bed raises the temperature in that reactor zone to more selectively produce the desirable CO and H 2 products, rather than methane and heavier hydrocarbons. Finally, high-pressure operation results in a pressurized syngas that should require less downstream compression energy for subsequent unit operations. (Basu, 2013) Figure 1. Simplified gasifier schematics. Right: Traditional Winkler Gasifier, Left: High temperature Winkler-HTW gasifier. (both are bubbling beds despite the cyclone) (Leckner, 2015)

3 For the sake of comparison, Figure 1 adapted from (Leckner, 2015) shows the schematics of both Winkler gasifier configurations. With the spurred energy crisis because of the war in the Middle East at that time, the HTW gasifier was introduced commercially in 1974 for power applications and still is considered a success, however synthesis plants, for example one for Methanol in Germany was reportedly shut down later in 1997 due to economic reasons. As a result, more recent developments have been directed toward power production in higher efficiency Rankine cycles. One example is the 2*80 MW circulating fluidized bed gasifier in Lahti that employs sorted solid waste. (Power Plant / Home / Lahti Energia, URL) Problem 1 The developed mass and energy balance is based on the data provided in table 5.6 in reference (Higman and Burgt, 2003) for the Winkler gasifier. General assumptions are based on information collected in literature about the process and references are provided accordingly along the line of the solution. Part A: Mass balance formulation Step 1: Define the mass inlet into the gasifier The information provided in table 5.6 doesn t specify the type of biomass so two assumptions: ash content is neglected as it is assumed the ash that will enter the mass balance will exit in its existing nature (the only effect will be the accompanying char, which will be discussed later) and the water content is assumed to be 10 wt.% of the feed, as this a very conservative estimate given that it is the operating limit for Winkler gasifiers. (Check introduction part)

4 1- Biomass Table 1. Break down of Biomass input to gasifier. (Ultimate analysis and total biomass input =893 kg/1000nm3 of H2+CO are reported on dry ash free basis) Ultimate Analysis as reported at inlet Mass input - kg per 1000 Nm 3 of H 2 + CO C H S N O ash neglected moist total Air Notes: Moles input - kmol per 1000 Nm 3 of H 2 + CO - The chemical formula (based on reported Ultimate Analysis) is C H S 0.03 N 0.06 O Per 1000 Nm3 of H 2 + CO, and at normal conditions of Temperature = 20 ⁰C & Atmospheric pressure Mass air = Volume * Density = 1358 [Nm 3 ] * [kg/m 3 ] = kg, Mole Air = moles Mass N 2 = [kg] * [wt.%] = kg, Mass O 2 = [kg] * [wt.%] = kg Mole N 2 = moles Mole O 2 = moles Another perspective to evaluate the air flow rate is to look at its contribution in the gasifier operation, The stoichiometric oxygen needed = n C + (1/4 n H) (1/2 n O) = moles And thus the equivalence ratio of air supplied = /37.89 = 0.31 which falls within accepted supply ranges for the gasification process to take place. Step 2: Perform a stoichiometric balance for the gasifier Please refer to appendix pages 1-4 for the detailed formulation of the stoichiometric balance. The final reaction is

5 C H S 0.03 N 0.06 O H 2O [O N 2] 7.51 C CO CO CH H H 2O N H 2S The final mol.% of dry gas is compared to the data given for the Winkler gasifier in Table 5.6 in (Higman and Burgt, 2003). The discrepancies between both data set fall within an acceptable range and are attributed to either calculated estimation errors or different feed configurations for the actual gasifier. The calculation errors might have been a result of using the molar yield for CH 4 on dry basis for calculation on a wet basis, but as mentioned in the appendix; given that CH4 has the smallest mol.% to the other carbon balance compounds, setting CH 4 as a starting point for estimation minimizes the influence of the error on the other compounds. The different feed configuration errors stem from either the over estimation of Char (assumed to be solid carbon) losses with ash (20 wt.%) or the higher level moisture content used for feed (10 wt.%). It is clear from the data in the reference that the Winkler gasifier is from the HTW generation operating at 30 bar and higher temperatures while those assumptions would be more common for the traditional Winkler gasifier. Table 2. Comparison between reactor dry gas yield in reference and the estimated yield from the stoichiometric balance. mol.% on dry ash free basis Reference Calculated CO % 7.1 % CO % % H % % CH % 2.56 % Ar 0.50 % Neglected N % % H 2S 0.30 % 0.04 % Total % %

6 Step 3: Define the mass outlet from the gasifier Table 3. Mass and molar balance for the gasifier outlet Product gas Reported Norm. Volume at1000 Mass Out Mass MW Moles Out mol%-dry mol%-dry Nm 3 CO+H 2 kg wt.% kg/kmol kmol CO % CO 31.0 % H % CH % Ar 0.5 % N % H 2S 0.3% Total 100.3% In order to perform the balance for the gasifier outlet, a back end calculation approach needs to be performed. The molar weight of the dry product gas is shown in Table 3 (obtained from table 5.6 in (Higman and Burgt, 2003)). The sum of H 2 + CO was set to 1000 Nm 3, and based on the molar weights the volume for the balance of the gas products were calculated. Based on density values obtained from (NIST Data Gateway), the mass flow of each component was calculated and converted using the molecular weight to molar flow in the last column of Table 3. Mass and molar balance for the gasifier outlet Step 4: Define the mass balance of the gasifier When comparing the calculated values for inlet (Table 1) and outlet (Table 3) values for the gasifier, on dry basis, some discrepancies are found, For Carbon Balance: Inlet = kmol, while Outlet = n CO + n CO2 + n CH4 = kmol Carbon losses = 1 (33.26/37.54) = 11.4 %, and are expected to be carbon loss with ash or carbon compounds soluble in the removed condense water. It is worth to note that it is significantly lower than the 20 % reported in literature for traditional gasifiers. (Basu, 2013)

7 For Nitrogen balance: Inlet = nitrogen in air (calculated in step1) + nitrogen in biomass (Table 1) = kmol, While outlet = 34 kmol. This accounts for 25 % loss. For Oxygen balance: Inlet = oxygen in air (calculated in step1) + oxygen in biomass (Table 1) = kmol While Outlet = n CO + 2* n CO2 = kmol, which accounts for losses of 23% or kmol. For hydrogen balance: Inlet = kmol, while Outlet = 2* n H2 + 4* n CH4 + 2* n H2S = kmol, which accounts for losses of 18% or 9.4 kmol. A summary of elemental balance is shown in Table 4. Table 4. Elemental molar balance for Winkler gasifier input and output from reference (Higman and Burgt, 2003). Element In [kmol] Out [kmol] Balance C % H % O % N % Figure 1 below shows the mass balance on dry basis, (values are divided by 893 to give specific kg). For Product gas, m = (Table 3)/893 = kg per kg of dry feed. For carbon, m = (C in-c out)* MW C /893 = kg per kg of dry feed. For nitrogen balanced, 23.5% was losses in table 4. m = (N in-n out)* MW N2/893 = kg per kg of dry feed. For condensed water, assumed as missing balance from hydrogen found in dry biomass, m = ((H in-h out)/2)* MW H2O /893 = kg per kg of dry feed For oxygen, assumed as the remaining oxygen balance (after accounting for the needed moles to oxidize the hydrogen into condensed water), m = ((O in-o out)- ((H in-h out)/2))* MW O2 /893 = kg per kg of dry feed

8 Sum of outlets = kg/kg of dry feed, which has an error of 1.04% from the amount of feed on dry basis. This finding as well as the unaccounted balance for N 2 & O 2 could be mainly attributed to approximation errors during calculation or unaccounted for solubility of a portion of syngases with the removed condense water content. Another reason that should be considered is reporting errors by (Higman and Burgt, 2003) during their attempt to simplify the presentation of the gasifier. Biomass input 1 kg on dry basis Dry Air input is kg per kg of dry biomass Gasifier balance kg of product gas per kg of dry kg of carbon loss with ash presumably kg of condensed water based on hydrogen balance kg N 2 & kg O 2 not accounted for Figure 1. Schematic for the mass balance per dry basis of biomass feed for the gasifier system based on information provided in table 5.6 in reference (Higman and Burgt, 2003) Part B: Energy balance formulation The general balance equation for the gasifier based on the formulated mass balance is Q_input = Q_output Gasifier Q_biomass + Q_air = Q_productgas + Q_boundryloss Gasifier Where Q represents the heating values for each inlet and outlet and calculated as following. Note: all Q values are calculated at NTP conditions of 20 ⁰C and atmospheric pressure, all reactive heat loads are assumed to take place within the system boundaries of the gasifier. Step 1: Define the energy input into the gasifiers For the energy input on the right hand side of the equation, Q_air is assumed to equal Zero at NTP conditions. For the biomass, the higher heating value is estimated with the model developed by Gaur and Reed in 1995, (Boundy, 2011) HHV dry basis = (0.35*X C *X H + 0.1*X S 0.02*X N 0.1*X O 0.02*X ash) = MJ/kg

9 Where X represents the weight percentage of each elemental constituent of biomass from Table 1, and the HHV value is in MJ/kg. The lower heating value of feedstock, LHV could then be calculated from the formula; LHV dry basis = HHV dry basis - (8.93*m H2/m feed)h fg = MJ/kg Where (m H2O/m feed) is the moisture content of the feedstock from the proximate analysis and h fg is the standard latent heat of vaporization of water at NTP, which is MJ/kg. (Basu, 2013) So the amount of heat input on dry ash free basis, Q_biomass = 893 * = MJ Step 2: Define the energy outputs from the gasifiers For the energy output on the left hand side of the equation, Q_productgas is calculated based on the calculated outlet moles for each component provided in Table 3 and the molar heating values are obtained from the National Institute for Science & Technology online database (NIST Data Gateway, URL). Q_productgas = (n CO * Q CO) + (n H2 * Q H2) + (n CH4 * Q CH4) + (n H2S * Q H2S) = MJ Step 3: Calculate the cold gas efficiency, CGE of the gasifier on dry ash free basis CGE = Q_productgas / Q_biomass = % Problem 2 The students are expected to discuss and cover the historical background as well as the more recent technical development for the Winkler gasifier system in specific and that of fluidized bed technology in general. Students should be able from their review to present conclusions for the techno-economic drivers that led to the development of the HTW technology as well as offer a prediction for future applications.

10 Referenes: Basu, P., Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. Academic Press. Boundy, B., Biomass Energy Data Book, 4th ed. Higman, C., Burgt, M. van der, Gasification. Gulf Professional Publishing. Leckner, B., Development of Fluidized Bed Conversion of Solid Fuels History and Future, in: 22nd Fluidized Bed Conversion Proceedings. Turku, Finland. Meyers, R.A., Handbook of synfuels technology. McGraw-Hill. NIST Data Gateway [WWW Document], URL (accessed ). Power Plant / Home / Lahti Energia [WWW Document], URL (accessed ).

Module 5: Combustion Technology. Lecture 33: Combustion air calculation

Module 5: Combustion Technology. Lecture 33: Combustion air calculation 1 P age Module 5: Combustion Technology Lecture 33: Combustion air calculation 2 P age Keywords: Heat of combustion, stoichiometric air, excess air, natural gas combustion Combustion air calculation The

More information

Impact of coal quality and gasifier technology on IGCC performance

Impact of coal quality and gasifier technology on IGCC performance Impact of coal quality and gasifier technology on IGCC performance Ola Maurstad 1 *, Howard Herzog**, Olav Bolland*, János Beér** *The Norwegian University of Science and Technology (NTNU), N-7491 Trondheim,

More information

From solid fuels to substitute natural gas (SNG) using TREMP

From solid fuels to substitute natural gas (SNG) using TREMP From solid fuels to substitute natural gas (SNG) using TREMP Topsøe Recycle Energy-efficient Methanation Process Introduction Natural gas is a clean, environmentally friendly energy source and is expected

More information

Gasification, Producer Gas and Syngas

Gasification, Producer Gas and Syngas Agriculture and Natural Resources Gasification, Producer Gas and Syngas FSA1051 Samy Sadaka Assistant Professor - Extension Engineer Arkansas Is Our Campus What Is Gasification? Gasification involves turning

More information

VALIDATION, MODELING, AND SCALE-UP OF CHEMICAL LOOPING COMBUSTION WITH OXYGEN UNCOUPLING

VALIDATION, MODELING, AND SCALE-UP OF CHEMICAL LOOPING COMBUSTION WITH OXYGEN UNCOUPLING VALIDATION, MODELING, AND SCALE-UP OF CHEMICAL LOOPING COMBUSTION WITH OXYGEN UNCOUPLING A research program funded by the University of Wyoming School of Energy Resources Executive Summary Principal Investigator:

More information

COMBUSTION. In order to operate a heat engine we need a hot source together with a cold sink

COMBUSTION. In order to operate a heat engine we need a hot source together with a cold sink COMBUSTION In order to operate a heat engine we need a hot source together with a cold sink Occasionally these occur together in nature eg:- geothermal sites or solar powered engines, but usually the heat

More information

Boiler efficiency measurement. Department of Energy Engineering

Boiler efficiency measurement. Department of Energy Engineering Boiler efficiency measurement Department of Energy Engineering Contents Heat balance on boilers Efficiency determination Loss categories Fluegas condensation principals Seasonal efficiency Emission evaluation

More information

Development of Coal Gasification System for Producing Chemical Synthesis Source Gas

Development of Coal Gasification System for Producing Chemical Synthesis Source Gas 27 Development of Coal Gasification System for Producing Chemical Synthesis Source Gas TAKAO HASHIMOTO *1 KOICHI SAKAMOTO *1 KATSUHIRO OTA *2 TAKASHI IWAHASHI *3 YUUICHIROU KITAGAWA *4 KATSUHIKO YOKOHAMA

More information

Assignment 8: Comparison of gasification, pyrolysis and combustion

Assignment 8: Comparison of gasification, pyrolysis and combustion AALTO UNIVERSITY SCHOOL OF CHEMICAL TECHNOLOGY KE-40.4120 Introduction to biorefineries and biofuels Assignment 8: Comparison of gasification, pyrolysis and combustion Aino Siirala 309141 Assignment submitted

More information

Process Integration of Chemical Looping Combustion with Oxygen Uncoupling in a Coal-Fired Power Plant

Process Integration of Chemical Looping Combustion with Oxygen Uncoupling in a Coal-Fired Power Plant Process Integration of Chemical Looping Combustion with Oxygen Uncoupling in a Coal-Fired Power Plant Petteri Peltola 1, Maurizio Spinelli 2, Aldo Bischi 2, Michele Villani 2, Matteo C. Romano 2, Jouni

More information

Biomass gasification development of attractive business cases

Biomass gasification development of attractive business cases Biomass gasification development of attractive business cases Gasification: a versatile technology converting biomass to produce synfuels, heat and power The BRISK Open Workshop / TOTEM 40 Jaap Kiel Delft,

More information

C H A P T E R 3 FUELS AND COMBUSTION

C H A P T E R 3 FUELS AND COMBUSTION 85 C H A P T E R 3 FUELS AND COMBUSTION 3.1 Introduction to Combustion Combustion Basics The last chapter set forth the basics of the Rankine cycle and the principles of operation of steam cycles of modern

More information

Hydrogen from Natural Gas via Steam Methane Reforming (SMR)

Hydrogen from Natural Gas via Steam Methane Reforming (SMR) Hydrogen from Natural Gas via Steam Methane Reforming (SMR) John Jechura jjechura@mines.edu Updated: January 4, 2015 Energy efficiency of hydrogen from natural gas Definition of energy efficiency From

More information

B0401 Abstract 029 Oral Presentation Session B04 Innovative Applications and Designs - Tuesday, July 1, 2008 16:00 h

B0401 Abstract 029 Oral Presentation Session B04 Innovative Applications and Designs - Tuesday, July 1, 2008 16:00 h Reference System for a Power Plant Based on Biomass Gasification and SOFC Richard Toonssen, Nico Woudstra, Adrian H.M. Verkooijen Delft University of Technology Energy Technology, Process & Energy department

More information

Siemens Fuel Gasification Technology at a Glance

Siemens Fuel Gasification Technology at a Glance Siemens Fuel Gasification Technology at a Glance Halsbrücker Str. 34 09599 Freiberg Germany Copyright Siemens AG 2008. All rights reserved. SFGT Facilities in Freiberg, Germany 5MW Office 3MW Freiberg

More information

Performance of the Boiler and To Improving the Boiler Efficiency Using Cfd Modeling

Performance of the Boiler and To Improving the Boiler Efficiency Using Cfd Modeling IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 8, Issue 6 (Sep. - Oct. 2013), PP 25-29 Performance of the Boiler and To Improving the Boiler Efficiency

More information

(205) 670-5088 (205) 670-5863

(205) 670-5088 (205) 670-5863 Ruth Ann Yongue Roxann Laird Senior Engineer Assistant Project Director rayongue@southernco.com rfleonar@southernco.com (205) 670-5088 (205) 670-5863 Southern Company Services Power Systems Development

More information

Coal-To-Gas & Coal-To-Liquids

Coal-To-Gas & Coal-To-Liquids Located in the Energy Center at Discovery Park, Purdue University Coal-To-Gas & Coal-To-Liquids CCTR Basic Facts File #3 Brian H. Bowen, Marty W. Irwin The Energy Center at Discovery Park Purdue University

More information

Viresco Energy s Advanced Gasification Technology

Viresco Energy s Advanced Gasification Technology Viresco Energy s Advanced Gasification Technology Arun Raju, Director of Research Viresco Energy, LLC arun.raju@virescoenergy.com Presentation Outline 2 Introduction to Viresco Energy Gasification Technology

More information

SKI Coal Gasification Technology. Feb. 23, 2012

SKI Coal Gasification Technology. Feb. 23, 2012 SKI Coal Gasification Technology Feb. 23, 2012 1 Contents Overview of SK Organization Coal SKI Coal Gasification Technology 2 SK Group [ Sales ] Unit: USD Billion SK Telecom SK C&C SK Broadband SK Telesys

More information

Fischer-Tropsch Diesel from Solid Biomass

Fischer-Tropsch Diesel from Solid Biomass Fischer-Tropsch Diesel from Solid Biomass The ECN Concept(s) for Large-Scale Syngas Production ThermoNET meeting, Helsingør, 17-20 October 2003 Harold Boerrigter, Bram van der Drift Energy research Centre

More information

1. Standard conditions are 29.92 in. Hg (760 mm Hg, 14.696 psia) and 68 F (20 C).

1. Standard conditions are 29.92 in. Hg (760 mm Hg, 14.696 psia) and 68 F (20 C). INTRODUCTION Emission Monitoring Inc. DETERMINING F-FACTORS FROM GAS CHROMATOGRAPHIC ANALYSES Roger T. Shigehara Emission Monitoring Incorporated Howard F. Schiff TRC Environmental Corporation EPA Method

More information

BIOMASS RESEARCH at ECN. Bram van der Drift

BIOMASS RESEARCH at ECN. Bram van der Drift BIOMASS RESEARCH at ECN Bram van der Drift ECN-BIOMASS ~50 persons, ~8 M /y, organized in three groups: power and heat biomass upgrading (torrefaction) waste to energy co-firing CHP (combustion, gasification)

More information

Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla

Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications Steam Boiler Technology ebook Espoo 2002 Boiler Calculations Sebastian

More information

Online monitoring of flue gas emissions in power plants having multiple fuels

Online monitoring of flue gas emissions in power plants having multiple fuels Preprints of the 19th World Congress The International Federation of Automatic Control Cape Town, South Africa. August 24-29, 214 Online monitoring of flue gas emissions in power plants having multiple

More information

NITROGEN OXIDES FORMATION in combustion processes COMBUSTION AND FUELS

NITROGEN OXIDES FORMATION in combustion processes COMBUSTION AND FUELS NITROGEN OXIDES FORMATION in combustion processes NITROGEN OXIDES FORMED DURING COMBUSTION N 2 O - nitrous oxide NO - nitric oxide NO 2 - nitrogen dioxide N = 14, O 2 =16, NO = 30, NO 2 = 46 CONTRIBUTION

More information

CONTENTS. ZVU Engineering a.s., Member of ZVU Group, WASTE HEAT BOILERS Page 2

CONTENTS. ZVU Engineering a.s., Member of ZVU Group, WASTE HEAT BOILERS Page 2 WASTE HEAT BOILERS CONTENTS 1 INTRODUCTION... 3 2 CONCEPTION OF WASTE HEAT BOILERS... 4 2.1 Complex Solution...4 2.2 Kind of Heat Exchange...5 2.3 Heat Recovery Units and Their Usage...5 2.4 Materials

More information

Sewage sludge treatment with oxygen enrichement and oxyfuel combustion in CFBC - new pilot plant results

Sewage sludge treatment with oxygen enrichement and oxyfuel combustion in CFBC - new pilot plant results Sewage sludge treatment with oxygen enrichement and oxyfuel combustion in CFBC - new pilot plant results 64 TH IEA FLUIDIZED BED CONVERSION MEETING Naples 3 rd of June, 2012 Authors: David Wöß, Gregor

More information

Chapter 2 Chemical and Physical Properties of Sulphur Dioxide and Sulphur Trioxide

Chapter 2 Chemical and Physical Properties of Sulphur Dioxide and Sulphur Trioxide Chapter 2 Chemical and Physical Properties of Sulphur Dioxide and Sulphur Trioxide 2.1 Introduction In order to appreciate the impact of the properties of liquid sulphur dioxide and liquid sulphur trioxide

More information

Reporting: one report / group. The results of the carryover load calculations will also be reported to Metsä Fibre, Rauma.

Reporting: one report / group. The results of the carryover load calculations will also be reported to Metsä Fibre, Rauma. Carryover load Your task is to use the obtained experimental result from the probe measurement in combination with the information given in this handout to calculate the carryover load (g/nm 3 dry flue

More information

Hybrid Power Generations Systems, LLC

Hybrid Power Generations Systems, LLC Coal Integrated Gasification Fuel Cell System Study Pre-Baseline Topical Report April 2003 to July 2003 Gregory Wotzak, Chellappa Balan, Faress Rahman, Nguyen Minh August 2003 Performed under DOE/NETL

More information

Simulation of Coal Gasification Process using ASPEN PLUS

Simulation of Coal Gasification Process using ASPEN PLUS INSTITUTE OF TECHNOLOGY, NIRMA UNIVERSITY, AHMEDABAD 382 481, 08-10 DECEMBER, 2011 1 Simulation of Coal Gasification Process using ASPEN PLUS Rajul Nayak, Raju K Mewada Abstract-- Gasification is an important

More information

Overview of Integrated Coal Gasification Combined-cycle Technology Using Low-rank Coal

Overview of Integrated Coal Gasification Combined-cycle Technology Using Low-rank Coal 19 Overview of Integrated Coal Gasification Combined-cycle Technology Using Low-rank Coal TAKAO HASHIMOTO *1 KOICHI SAKAMOTO *2 YOSHIKI YAMAGUCHI *3 KOJI OURA *4 KENICHI ARIMA *5 TAKESHI SUZUKI *6 Mitsubishi

More information

Energy Savings in Methanol Synthesis : Use of Heat Integration Techniques and Simulation Tools.

Energy Savings in Methanol Synthesis : Use of Heat Integration Techniques and Simulation Tools. Page 1 Energy Savings in Methanol Synthesis : Use of Heat Integration Techniques and Simulation Tools. François Maréchal a, Georges Heyen a, Boris Kalitventzeff a,b a L.A.S.S.C., Université de Liège, Sart-Tilman

More information

Biomass Syngas Production Technology by Gasification for Liquid Fuel and Other Chemicals

Biomass Syngas Production Technology by Gasification for Liquid Fuel and Other Chemicals 37 Biomass Syngas Production Technology by Gasification for Liquid Fuel and Other Chemicals MASASHI HISHIDA *1 KATSUHIKO SHINODA *2 TOSHIYA AKIBA *3 TAKESHI AMARI *4 TAKASHI YAMAMOTO *5 KEIGO MATSUMOTO

More information

By K.K.Parthiban / Boiler specialist / Venus Energy Audit System

By K.K.Parthiban / Boiler specialist / Venus Energy Audit System FINE TUNING EXPERIENCE OF A CFBC BOILER By K.K.Parthiban / Boiler specialist / Venus Energy Audit System Introduction The Industrial boilers have been seeing a growth in capacity in the recent years. Current

More information

CO2 enhanced coal gasification and BlueCoal new Clean Coal Technologies proposals from Poland

CO2 enhanced coal gasification and BlueCoal new Clean Coal Technologies proposals from Poland European Union Side Event Paris, Le Bourget, 9th December 2015 CO2 enhanced coal gasification and BlueCoal new Clean Coal Technologies proposals from Poland Aleksander Sobolewski INSTITUTE FOR CHEMICAL

More information

Continuous flow direct water heating for potable hot water

Continuous flow direct water heating for potable hot water Continuous flow direct water heating for potable hot water An independently produced White Paper for Rinnai UK 2013 www.rinnaiuk.com In the 35 years since direct hot water systems entered the UK commercial

More information

AMMONIA AND UREA PRODUCTION

AMMONIA AND UREA PRODUCTION AMMONIA AND UREA PRODUCTION Urea (NH 2 CONH 2 ) is of great importance to the agriculture industry as a nitrogen-rich fertiliser. In Kapuni, Petrochem manufacture ammonia and then convert the majority

More information

The heat plant Future biorefinery. Panndagarna 2015 Västerås, 14-15 April

The heat plant Future biorefinery. Panndagarna 2015 Västerås, 14-15 April The heat plant Future biorefinery Panndagarna 2015 Västerås, 14-15 April Valmet Technologies Comprehensive Offering for Energy Customers Biomass to Energy, Waste to Energy and Multifuel solutions Fuel

More information

Process Technology. Advanced bioethanol production and renewable energy generation from ligno-cellulosic materials, biomass waste and residues

Process Technology. Advanced bioethanol production and renewable energy generation from ligno-cellulosic materials, biomass waste and residues Process Technology Advanced bioethanol production and renewable energy generation from ligno-cellulosic materials, biomass waste and residues The INEOS Bio process technology produces carbon-neutral bioethanol

More information

Power Generation through Surface Coal Gasification

Power Generation through Surface Coal Gasification Paper ID : 20100412 Power Generation through Surface Coal Gasification Sri Tapas Maiti, Sri S. Mustafi IEOT, ONGC, MUMBAI, INDIA Email : maiti.tapas@gmail.com Abstract Introduction India s oil reserve

More information

Part One: Mass and Moles of Substance. Molecular Mass = sum of the Atomic Masses in a molecule

Part One: Mass and Moles of Substance. Molecular Mass = sum of the Atomic Masses in a molecule CHAPTER THREE: CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONS Part One: Mass and Moles of Substance A. Molecular Mass and Formula Mass. (Section 3.1) 1. Just as we can talk about mass of one atom of

More information

F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7.

F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7. Moles 1 MOLES The mole the standard unit of amount of a substance (mol) the number of particles in a mole is known as Avogadro s constant (N A ) Avogadro s constant has a value of 6.02 x 10 23 mol -1.

More information

Tutkimuksen merkitys menestyvässä liiketoiminnassa- Innovaatiosta tuotteeksi

Tutkimuksen merkitys menestyvässä liiketoiminnassa- Innovaatiosta tuotteeksi Tutkimuksen merkitys menestyvässä liiketoiminnassa- Innovaatiosta tuotteeksi Matti Rautanen Manager, External Networks, Power-wide R&D Tutkimuksella tulevaisuuteen- seminaari Kaukolämpöpäivät, Kuopio 29.8.2013

More information

STOICHIOMETRY OF COMBUSTION

STOICHIOMETRY OF COMBUSTION STOICHIOMETRY OF COMBUSTION FUNDAMENTALS: moles and kilomoles Atomic unit mass: 1/12 126 C ~ 1.66 10-27 kg Atoms and molecules mass is defined in atomic unit mass: which is defined in relation to the 1/12

More information

How To Gasify Wood And Agriculture Biomass

How To Gasify Wood And Agriculture Biomass Gasification: An Old Technology for a New Use Sponsored by: Joel Tallaksen, Biomass Coordinator West Central Research & Outreach Center, University of Minnesota Fueling the Future: The Role of Woody and

More information

Exergy: the quality of energy N. Woudstra

Exergy: the quality of energy N. Woudstra Exergy: the quality of energy N. Woudstra Introduction Characteristic for our society is a massive consumption of goods and energy. Continuation of this way of life in the long term is only possible if

More information

Options for tar reforming in biomass gasification. Klas J. Andersson, Poul Erik Højlund Nielsen - IFC 2012

Options for tar reforming in biomass gasification. Klas J. Andersson, Poul Erik Højlund Nielsen - IFC 2012 Options for tar reforming in biomass gasification Klas J. Andersson, Poul Erik Højlund Nielsen - IFC 2012 Gasification Biomass Natural gas Coal Waste CO CO 2 H 2 Syngas Hydrogen Methanol DME Gasoline SNG

More information

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Why? Chemists are concerned with mass relationships in chemical reactions, usually run on a macroscopic scale (grams, kilograms, etc.). To deal with

More information

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels 1 P age Module 5: Combustion Technology Lecture 34: Calculation of calorific value of fuels 2 P age Keywords : Gross calorific value, Net calorific value, enthalpy change, bomb calorimeter 5.3 Calculation

More information

AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1

AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1 Moles 1 MOLES The mole the standard unit of amount of a substance the number of particles in a mole is known as Avogadro s constant (L) Avogadro s constant has a value of 6.023 x 10 23 mol -1. Example

More information

PERFORMANCE OF A PILOT SCALE, STEAM BLOWN, PRESSURIZED FLUIDIZED BED BIOMASS GASIFIER

PERFORMANCE OF A PILOT SCALE, STEAM BLOWN, PRESSURIZED FLUIDIZED BED BIOMASS GASIFIER PERFORMANCE OF A PILOT SCALE, STEAM BLOWN, PRESSURIZED FLUIDIZED BED BIOMASS GASIFIER by Daniel Joseph Sweeney A dissertation submitted to the faculty of The University of Utah In partial fulfillment of

More information

Torrefaction: technology overview and development status

Torrefaction: technology overview and development status Torrefaction: technology overview and development status R.W.R. Zwart March 2012 ECN-L--12-077 Torrefaction: technology overview and development status Robin Zwart BioPower Generation Rotterdam, the Netherlands

More information

COMPARISON OF PROCESS FLOWS: FLUID BED COMBUSTOR AND GLASSPACK

COMPARISON OF PROCESS FLOWS: FLUID BED COMBUSTOR AND GLASSPACK COMPARISON OF PROCESS FLOWS: FLUID BED COMBUSTOR AND GLASSPACK PURPOSE The purpose of this document is to present the assumptions and calculations used to prepare Minergy Drawing 100-0204-PP00 (attached).

More information

Stoichiometry. Lecture Examples Answer Key

Stoichiometry. Lecture Examples Answer Key Stoichiometry Lecture Examples Answer Key Ex. 1 Balance the following chemical equations: 3 NaBr + 1 H 3 PO 4 3 HBr + 1 Na 3 PO 4 2 C 3 H 5 N 3 O 9 6 CO 2 + 3 N 2 + 5 H 2 O + 9 O 2 2 Ca(OH) 2 + 2 SO 2

More information

Atomic Masses. Chapter 3. Stoichiometry. Chemical Stoichiometry. Mass and Moles of a Substance. Average Atomic Mass

Atomic Masses. Chapter 3. Stoichiometry. Chemical Stoichiometry. Mass and Moles of a Substance. Average Atomic Mass Atomic Masses Chapter 3 Stoichiometry 1 atomic mass unit (amu) = 1/12 of the mass of a 12 C atom so one 12 C atom has a mass of 12 amu (exact number). From mass spectrometry: 13 C/ 12 C = 1.0836129 amu

More information

Balancing chemical reaction equations (stoichiometry)

Balancing chemical reaction equations (stoichiometry) Balancing chemical reaction equations (stoichiometry) This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit

More information

Concepts in Syngas Manufacture

Concepts in Syngas Manufacture CATALYTIC SCIENCE SERIES VOL. 10 Series Editor: Graham J. Hutchings Concepts in Syngas Manufacture Jens Rostrup-Nielsen Lars J. Christiansen Haldor Topsoe A/S, Denmark Imperial College Press Contents Preface

More information

Simulation of a base case for future IGCC concepts with CO 2 capture

Simulation of a base case for future IGCC concepts with CO 2 capture Simulation of a base case for future IGCC concepts with CO 2 capture Christian Kunze, Hartmut Spliethoff Institute for Energy Systems TU München for 4 th Clean Coal Technology Conference 2009 18 20 May,

More information

CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g)

CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g) CHEM 15 HOUR EXAM III 28-OCT-99 NAME (please print) 1. a. given: Ni (s) + 4 CO (g) = Ni(CO) 4 (g) H Rxn = -163 k/mole determine H f for Ni(CO) 4 (g) b. given: Cr (s) + 6 CO (g) = Cr(CO) 6 (g) H Rxn = -26

More information

Carbona Gasification Technologies Biomass Gasification Plant in Skive

Carbona Gasification Technologies Biomass Gasification Plant in Skive Carbona Gasification Technologies Biomass Gasification Plant in Skive Gasification 2010 Swedish Gas Centre (SGC) 28-29 October, Scandic Crown, Gothenburg, Sweden Carbona Inc. Kari Salo kari.salo@andritz.com

More information

Sixth Annual Conference on Carbon Capture & Sequestration

Sixth Annual Conference on Carbon Capture & Sequestration Sixth Annual Conference on Carbon Capture & Sequestration Expediting Deployment of Industrial Scale Systems Geologic Storage - EOR An Opportunity for Enhanced Oil Recovery in Texas Using CO 2 from IGCC

More information

Chemical formulae are used as shorthand to indicate how many atoms of one element combine with another element to form a compound.

Chemical formulae are used as shorthand to indicate how many atoms of one element combine with another element to form a compound. 29 Chemical Formulae Chemical formulae are used as shorthand to indicate how many atoms of one element combine with another element to form a compound. C 2 H 6, 2 atoms of carbon combine with 6 atoms of

More information

Basics of Steam Generation

Basics of Steam Generation Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications Steam Boiler Technology ebook Espoo 2002 Basics of Steam Generation Sebastian

More information

MOLAR MASS AND MOLECULAR WEIGHT Themolar mass of a molecule is the sum of the atomic weights of all atoms in the molecule. Molar Mass.

MOLAR MASS AND MOLECULAR WEIGHT Themolar mass of a molecule is the sum of the atomic weights of all atoms in the molecule. Molar Mass. Counting Atoms Mg burns in air (O 2 ) to produce white magnesium oxide, MgO. How can we figure out how much oxide is produced from a given mass of Mg? PROBLEM: If If 0.200 g of Mg is is burned, how much

More information

Calculate Available Heat for Natural Gas Fuel For Industrial Heating Equipment and Boilers

Calculate Available Heat for Natural Gas Fuel For Industrial Heating Equipment and Boilers For Industrial Heating Equipment and Boilers Prepared for California Energy Commission (CEC) Prepared By: Southern California Gas Company (A Sempra Energy Utility) E3M Inc. May 2012 i Disclaimer The CEC

More information

1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley.

1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley. Sample Questions REVISED FIRST CLASS PARTS A1, A2, AND A3 (NOTE: these questions are intended as representations of the style of questions that may appear on examinations. They are not intended as study

More information

Gasification as means of Waste-to-Energy - Main Parameters and application -

Gasification as means of Waste-to-Energy - Main Parameters and application - Gasification as means of Waste-to-Energy - Main Parameters and application - 9 th ISWA Beacon Conference in Malm, Sweden 18 th NOV. 2015 Block 4: Gasification NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD

More information

Euler-Euler and Euler-Lagrange Modeling of Wood Gasification in Fluidized Beds

Euler-Euler and Euler-Lagrange Modeling of Wood Gasification in Fluidized Beds Euler-Euler and Euler-Lagrange Modeling of Wood Gasification in Fluidized Beds Michael Oevermann Stephan Gerber Frank Behrendt Berlin Institute of Technology Faculty III: School of Process Sciences and

More information

Chemistry B11 Chapter 4 Chemical reactions

Chemistry B11 Chapter 4 Chemical reactions Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl

More information

Syngas Purification Units

Syngas Purification Units Syngas Purification Units From Gasification to Chemicals www.airliquide.com Global experience Since the integration of Lurgi, a pioneer in gasification technologies, Air Liquide has widely expanded its

More information

Challenges and Possibilities Thermal gasification

Challenges and Possibilities Thermal gasification Challenges and Possibilities Thermal gasification Anna-Karin Jannasch, Energiforsk, February and March 2015 Luleå, Stockholm, Sundsvall, Linköping, Kalmar, Göteborg, Halmstad Examples of visions and goals

More information

Gasförmige und flüssige synthetische Energieträger aus Biomasse Stand der Entwicklungen an der TU Wien. Hermann HOFBAUER, TU Wien

Gasförmige und flüssige synthetische Energieträger aus Biomasse Stand der Entwicklungen an der TU Wien. Hermann HOFBAUER, TU Wien Gasförmige und flüssige synthetische Energieträger aus Biomasse Stand der Entwicklungen an der TU Wien Hermann HOFBAUER, TU Wien Fundamental Idea biogas plant gasification product synthesis gasification

More information

6 Material and Energy Balances for Engineers and Environmentalists

6 Material and Energy Balances for Engineers and Environmentalists CHAPTER ONE THE GENERAL BALA ALANCE EQUA UATION ACC = In Out t + Gen Con 6 Material and Energy Balances for Engineers and Environmentalists THE GENERAL BALANCE All material and energy (M&E) balance calculations

More information

Chapter 3. Chemical Reactions and Reaction Stoichiometry. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT

Chapter 3. Chemical Reactions and Reaction Stoichiometry. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT Lecture Presentation Chapter 3 Chemical Reactions and Reaction James F. Kirby Quinnipiac University Hamden, CT The study of the mass relationships in chemistry Based on the Law of Conservation of Mass

More information

LOW-RANK COAL GASIFICATION STUDIES USING THE PSDF TRANSPORT GASIFIER

LOW-RANK COAL GASIFICATION STUDIES USING THE PSDF TRANSPORT GASIFIER LOW-RANK COAL GASIFICATION STUDIES USING THE PSDF TRANSPORT GASIFIER J. atthew Nelson* (jmnelson@southernco.com: 205-670-5065) Brandon. Davis, X. Guan, Roxann F. Leonard, P. Vimalchand Southern Company,

More information

Financing New Coal-Fired Power Plants

Financing New Coal-Fired Power Plants Financing New Coal-Fired Power Plants Guidance Note 2011 Coal is likely to be part of the energy mix for the foreseeable future. Therefore, to limit dangerous climate change, coal-fired power generation

More information

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers Key Questions & Exercises Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers 1. The atomic weight of carbon is 12.0107 u, so a mole of carbon has a mass of 12.0107 g. Why doesn t a mole of

More information

Chapter 3: Stoichiometry

Chapter 3: Stoichiometry Chapter 3: Stoichiometry Key Skills: Balance chemical equations Predict the products of simple combination, decomposition, and combustion reactions. Calculate formula weights Convert grams to moles and

More information

THE HUMIDITY/MOISTURE HANDBOOK

THE HUMIDITY/MOISTURE HANDBOOK THE HUMIDITY/MOISTURE HANDBOOK Table of Contents Introduction... 3 Relative Humidity... 3 Partial Pressure... 4 Saturation Pressure (Ps)... 5 Other Absolute Moisture Scales... 8 % Moisture by Volume (%M

More information

FURNACEPHOSPHORUS AND PHOSPHORICACID PROCESS ECONOMICS PROGRAM. Report No. 52. July 1969. A private report by. the

FURNACEPHOSPHORUS AND PHOSPHORICACID PROCESS ECONOMICS PROGRAM. Report No. 52. July 1969. A private report by. the Report No. 52 FURNACEPHOSPHORUS AND PHOSPHORICACID by GEORGE E. HADDELAND July 1969 A private report by. the PROCESS ECONOMICS PROGRAM STANFORD RESEARCH INSTITUTE MENLO PARK, CALIFORNIA CONTENTS 1 INTRODUCTION........................

More information

Power to Gas - state of the art and perspectives

Power to Gas - state of the art and perspectives DVGW Research Center at Engler-Bunte-Institut of Karlsruhe Institute of Technology (KIT) Power to Gas - state of the art and perspectives Frank Graf MARCOGAZ General Assembly: Workshop new developments

More information

Morris Argyle Assistant Professor Department of Chemical and Petroleum Engineering. School of Energy Resources Symposium Casper, WY February 28, 2007

Morris Argyle Assistant Professor Department of Chemical and Petroleum Engineering. School of Energy Resources Symposium Casper, WY February 28, 2007 Coal Gasification: What Does It Mean for Wyoming? Research and Development Initiatives of the University of Wyoming Morris Argyle Assistant Professor Department of Chemical and Petroleum Engineering School

More information

Chapter Three: STOICHIOMETRY

Chapter Three: STOICHIOMETRY p70 Chapter Three: STOICHIOMETRY Contents p76 Stoichiometry - The study of quantities of materials consumed and produced in chemical reactions. p70 3-1 Counting by Weighing 3-2 Atomic Masses p78 Mass Mass

More information

The 800 kwth allothermal biomass gasifier MILENA

The 800 kwth allothermal biomass gasifier MILENA The 800 kwth allothermal biomass gasifier MILENA C.M. van der Meijden H.J. Veringa A. van der Drift B.J. Vreugdenhil Presented at the 16th European Biomass Conference, 2-6 June 2008, Valencia, Spain ECN-M--08-054

More information

Lecture 35: Atmosphere in Furnaces

Lecture 35: Atmosphere in Furnaces Lecture 35: Atmosphere in Furnaces Contents: Selection of atmosphere: Gases and their behavior: Prepared atmospheres Protective atmospheres applications Atmosphere volume requirements Atmosphere sensors

More information

MODERN TECHNOLOGIES FOR ENERGY AND MATERIAL RECOVERY FROM WASTE. Tomáš Rohal, Business Development CEEI 10-Oct-2013

MODERN TECHNOLOGIES FOR ENERGY AND MATERIAL RECOVERY FROM WASTE. Tomáš Rohal, Business Development CEEI 10-Oct-2013 MODERN TECHNOLOGIES FOR ENERGY AND MATERIAL RECOVERY FROM WASTE Tomáš Rohal, Business Development CEEI 10-Oct-2013 1 Who We Are Central Europe Engineering & Investment (CEEI) offers the state-of-the-art

More information

Executive Summary. Catalyst Testing Results

Executive Summary. Catalyst Testing Results Executive Summary This project was divided into two parts. One part evaluated possible catalysts for producing higher-alcohols (C 2 to C 5+ ) as fuel additives. The other part provided guidance by looking

More information

Putting a chill on global warming

Putting a chill on global warming Carbon capture and storage Putting a chill on global warming SABINE SULZER SULZER PUMPS MARKUS DUSS SULZER CHEMTECH Whenever fuel is burned, carbon dioxide (CO ) is emitted into the atmosphere. The subsequent

More information

PLASMA GASIFICATION: LESSONS LEARNED AT ECOVALLEY WTE FACILITY

PLASMA GASIFICATION: LESSONS LEARNED AT ECOVALLEY WTE FACILITY Proceedings of the 18th Annual North American Waste-to-Energy Conference NAWTEC18 May 11-13, 2010, Orlando, Florida, USA NAWTEC18-3515 PLASMA GASIFICATION: LESSONS LEARNED AT ECOVALLEY WTE FACILITY Ken

More information

Chapter 3. Mass Relationships in Chemical Reactions

Chapter 3. Mass Relationships in Chemical Reactions Chapter 3 Mass Relationships in Chemical Reactions This chapter uses the concepts of conservation of mass to assist the student in gaining an understanding of chemical changes. Upon completion of Chapter

More information

PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS

PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS ASME ORC 2015 3rd International Seminar on ORC Power Systems 12-14 October 2015, Brussels, Belgium PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS Vittorio

More information

CHAPTER 3: MATTER. Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64

CHAPTER 3: MATTER. Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64 CHAPTER 3: MATTER Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64 3.1 MATTER Matter: Anything that has mass and occupies volume We study

More information

Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems

Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems DFC Technology Used as Electrochemical Membrane for CO 2 Purification and Capture during Power Generation FCE s Direct

More information

Fuels from Renewable Sources. John Bøgild Hansen - Haldor Topsøe

Fuels from Renewable Sources. John Bøgild Hansen - Haldor Topsøe Fuels from Renewable Sources John Bøgild Hansen - Haldor Topsøe Thermochemical pathways Biomass Other HC feed Gasification Tar Reforming CO 2 removal FT SNG Hydro Cracking Tigas Natural Gas Diesel DOE

More information

SUBJECT/TASK (title) CONTRIBUTOR(S) Morten Fossum, Ranveig V. Beyer CLIENT(S) IEA Bioenergy TR NO. DATE CLIENT S REF. PROJECT NO.

SUBJECT/TASK (title) CONTRIBUTOR(S) Morten Fossum, Ranveig V. Beyer CLIENT(S) IEA Bioenergy TR NO. DATE CLIENT S REF. PROJECT NO. SUBJECT/TASK (title) TECHNICAL REPORT Co-combustion: Biomass Fuel Gas and Natural Gas SINTEF Energy Research Address: 7034 Trondheim NORWAY Reception: Sem Sælands vei 11 Telephone: +47 73 59 72 00 Telefax:

More information

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3.- 1 Basics: equations of continuum mechanics - balance equations for mass and momentum - balance equations for the energy and the chemical

More information