# Physics 11 Chapter 4 HW Solutions

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Physics 11 Chapter 4 HW Solutions Chapter 4 Conceptual Question: 5, 8, 10, 18 Problems: 3, 3, 35, 48, 50, 54, 61, 65, 66, 68 Q4.5. Reason: No. If you know all of the forces than you know the direction of the acceleration, not the direction of the motion (velocity). For example, a car moving forward could have on it a net force forward if speeding up or backward if slowing down or no net force at all if moving at constant speed. Assess: Consider carefully what Newton s second law says, and what it doesn t say. The net force must always be in the direction of the acceleration. This is also the direction of the change in velocity, although not necessarily in the direction of the velocity itself. Q4.8. Reason: (a) During the first collision a person in the car continues in their state of motion until a force acts to change their motion. This will happen when the seatbelt engages or when the person hits something on the inside of the car. Likewise, internal organs will continue in their state of motion until some force acts on them to change their motion. They continue moving due to Newton s first law. (b) If there is no restraint on the body after the first collision, the body will be moving at 60 mph just before the second collision, and the organs will be traveling at this speed until just before the third collision. Assess: Forces are required to change an object s state of motion. Q4.10. Reason: Since there is no source of gravity, you will not be able to feel the weight of the objects. However, Newton s second law is true even in an environment without gravity. Assuming you can exert a reproducible force in throwing both objects. You could throw each and note the acceleration each obtains. Assess: Mass is independent of the force of gravity and exists even in environments with no sources of gravity. Q4.18. Reason: The two forces in question are both exerted on the same object, the filing cabinet. An action/reaction pair is exerted on two different objects. As Alyssa pushes to the right on the filing cabinet, the filing cabinet pushes on Alyssa an equal amount to the left. These two forces constitute and action/reaction pair note that one force acts on Alyssa and the other force acts on the filing cabinet. The two forces of the action/reaction pair act on different objects. As the frictional force of the floor pushes on the filing cabinet to the left, the filing cabinet pushes on the floor an equal amount to the right. These two forces also constitute and action/reaction pair. Assess: It is important to remember that the forces of an action/reaction pair act on different objects. P4.3. Prepare: As background, look at question Q4.8 and problem P4.1. Also think about the design and orientation of the seat and how the child rides in the seat. Finally recall Newton s second law. Solve: As the child rides in the seat, his/her head and back rest against the padded back of the seat. If the car is brought to a rapid stop (as in a head-on collision) the child will continue to move forward at the before-crash speed until he/she hits something. The object hit is the back of the seat (supporting the entire back and head) which is padded and as a result the force increases to the maximum value over a time interval. Granted this time interval may be small but that is considerable better than instantaneous. Also since the head is supported, there will be no whip-lash. Assess: The fact the force acting on the child is spread over a small time interval is a critical factor. In later chapters you will learn to call this concept impulse. P4.3. Prepare: We can use our knowledge of kinematics and our conceptual understanding of acceleration to determine the acceleration of the car and then Newton s second law to determine the force acting on the car.

2 Solve: First let s determine the acceleration of the car. m m a=δv/ Δ t = ( vf vi) / Δ t = 1 0 /.0 s = 0.50 m/s s s Next, let s determine the force acting on the car. F = ma= (1500 kg)(0.50 m/s ) = N Assess: It should be noted that even though we are in chapter 4 and dealing primarily with forces, it is critical that we stay up on the content of previous chapters. P4.35. Prepare: We follow the steps outlined in Tactics Boxes 4. and 4.3. Solve: The system is the picture. The objects in contact with the picture are the wall and your hand. The wall exerts a normal force (opposite the pushing force of the hand) and a static friction force, which is directed upward and prevents the picture from falling down. The important long-range force is the gravitational force of the earth on the picture (i.e., the weight). Assess: The net force is zero, as it should be for an object which is motionless (isn t accelerating). P4.48. Prepare: Redraw the motion diagram as shown. Solve: (a) (c) There is an object on an inclined surface with a tension force down the surface. There is a small frictional force up the surface implying that the object is sliding down the slope. The force vector and the acceleration vector are in the same direction. (d) A description could be, A sled is being pulled down a slope with a rope that is parallel to the slope. Assess: Knowing that kinetic friction opposes the motion of an object, we are able to establish that the sled is travelling down the slope. It is essential that we look at all the forces and the nature of these forces to accurately determine what will happen to the object. P4.50. Prepare: Refer to Tactics Box 4. and Tactics Box 4.3 for identification of forces and for drawing free-body diagrams. We will draw a correct free-body diagram and compare. Solve: Your car is the system. See the following diagram.

3 There are contact forces where the car touches the road. One of them is the normal force of the road on the car. The other is the force of static friction between the car s tires and the road since the car is moving. Compare to Figure 4.3 and the discussion of propulsion in the text. In addition to this there must be a force in the opposite direction to the car s motion, since the car is moving at constant speed. If only the frictional force acted in the horizontal direction, the car would be accelerating! The diagram omits one of the forces. A possible force that acts in this direction is the force of air drag on the car, which is indicated on the diagram. The only long-range force acting is the weight of the car. The diagram also identifies the weight of the car and the normal force on the car as an action/reaction pair. This isn t possible, since both these forces act on the same object, while action/reaction pairs always act on different objects. The normal force on an object and its weight are never action/reaction pairs. Assess: In order for an object to be moving at constant velocity, the net force on it must be zero. Action/reaction pairs always act on two different objects. P4.54. Prepare: The normal force is perpendicular to the ground. The thrust force is parallel to the ground and in the direction of acceleration. The drag force is opposite to the direction of motion. There are four forces acting on the jet plane due to its interactions with the four agents the earth, the air, the ground, and the hot gases exhausted to the environment. One force on the rocket is the long-range weight force by the earth. The second force is the drag force by the air. Third is the normal force on the rocket by the ground. The fourth is the thrust force exerted on the jet plane by the hot gas that is being let out to the environment. Since the jet plane is speeding down the runway, its acceleration is pointing to the right. Therefore, the net force on the jet plane must also point to the right. Now, draw a picture of the situation, identify the system, in this case the jet plane, and draw a motion diagram. Draw a closed curve around the system, and name and label all relevant contact forces and long-range forces. Solve: A force-identification diagram, a motion diagram, and a free-body diagram are shown. Assess: You now have three important tools in your Physics Toolbox, motion diagrams, force diagrams, and free-body diagrams. Careful use of these tools will give you an excellent conceptual understanding of a situation. P4.61. Prepare: The gymnast experiences the long range force of weight. There is also a contact force from the trampoline, which is the normal force of the trampoline on the gymnast. The gymnast is moving downward and the trampoline is decreasing her speed, so the acceleration is upward and there is a net force upward. Thus the normal force must be larger than the weight. The actual behavior of the normal force will be complicated as it involves the stretching of the trampoline and therefore tensions. Now, draw a picture of the situation, identify the system, in this case the gymnast, and draw a motion diagram. Draw a closed curve around the system, and name and label all relevant contact forces and long-range forces. Solve: A force-identification diagram, a motion diagram, and a free-body diagram are shown. Assess: There are only two forces on the gymnast. The weight force is directed downward and the normal force is directed upward. Since the gymnast is slowing down right after after making contact with the trampoline, upward normal force must be larger than the downward weight force.

4 P4.65. Prepare: To solve this problem, we will need to think carefully about the forces acting on the object of interest (the passenger in the car). It will also be important to determine what is meant by a very slippery bench. Solve: (a) The passenger is sitting on a very slippery bench in a car that is traveling to the right. Both the passenger and the seat are moving with a constant speed. There is a force on the passenger due to her weight, which is directed down. There is a contact force (the normal force) between the passenger and the seat, which is directed up. Since the passenger is not accelerating up or down, the net vertical force on her is zero, which means the two vertical forces are equal in magnitude. The statement of the problem gives no indication of any other contact forces. Specifically, we are told that the seat is very slippery. We can take this to mean there is no frictional force. So our force diagram includes only the normal force up, the weight down, but no horizontal force. (b) The above considerations lead to the free-body diagram shown in the previous figure. (c) The car (and therefore the very slippery seat) begins to slow down. Since the seat cannot exert a force of friction (either static or kinetic) on the passenger, the passenger cannot slow down as fast as the seat which is attached to the car. As a result the passenger continues to move forward with the initial speed of the car. Since the forces acting on the passenger remain the same, the free-body diagram is unchanged but the pictorial representation of the passenger is changed. These are shown in the following diagram. (d) The car slows down because of some new contact force on the car (maybe the brakes lock the wheels and the road exerts a force on the tires). But there is no new contact force on you the passenger. The force diagram for the passenger remains unchanged, there are no horizontal forces on you. You do not slow down, but rather continue at an unchanged velocity until something in the picture changes for you (for example, you slide off the seat or hit the windshield). (e) The net force on you has remained zero because the net vertical force is zero and there are no horizontal forces. According to Newton s first law, if the net force on you is zero, then you continue to move in a straight line with a constant velocity. That is what happens to you when the car slows down. You continue to move forward with a constant velocity. The statement that you are thrown forward is misleading and incorrect. To be thrown there would need to be a net force on you and there is none. It might be correct to say that the car has been thrown backward leaving you to continue onward (until you part company with the seat). Assess: Careful thinking and precise language, aided by a good diagram and understanding of Newton s first and second laws, are needed to articulate the solution of this problem. P4.66. Prepare: Assume the ball undergoes constant acceleration during the pitch so we can use the kinematic equations in Table.4. ( v ) = ( v ) + a Δ x x f x i x Use coordinates where +x is in the direction the ball is thrown. We are given Δx = 1.0 m, (v x ) f = 46 m/s, and m = kg. Assume (v x ) i = 0.0 m/s. We ll first solve for a x and then use Newton s second law to find the average force. Solve: (a)

5 (b) Solve the equation for a x. (c) Say a typical pitcher weighs 170 lbs. ( vx) f ( vx) i (46m/s) (0.0m/s) ax = = = 1060 m/s Δx (1.0m) F x = ma = = x (0.145 kg)(1060 m/s ) 150 N 4.45 N 170 lb 760 N 1lb Now divide the force from part (b) by this weight to see the fraction N 760N 5 So the force the pitcher exerted on the ball is about 1/5 his weight. Assess: The answer to each part seems reasonable. The units also work out. P4.68. Prepare: We will identify all forces on the beach ball and draw a free-body diagram to consider the magnitude of the net force on the ball. Solve: The beach ball is our system. See the diagram below. The only contact force is the force of air drag on the ball. The only long-range force is the weight of the ball. Drag always points in the direction opposite to the motion. From the free-body diagram, the net force will always be greater when the beach ball is moving upward compared to downward. There the weight of the ball and the drag force always reinforce each other. Assess: Note that in the downward portion there is a possibility of the net force equaling zero. The ball will not accelerate downward and fall with constant velocity if this happens, in contrast to the case where there is no drag.

### FORCES AND NEWTON S LAWS OF MOTION

FORCES AND NEWTON S LAWS OF MOTION 4 Q4.1. Reason: Even if an object is not moving forces can be acting on it. However, the net force must be zero. As an example consider a book on a flat table. The forces

### Lecture Presentation Chapter 4 Forces and Newton s Laws of Motion

Lecture Presentation Chapter 4 Forces and Newton s Laws of Motion Suggested Videos for Chapter 4 Prelecture Videos Newton s Laws Forces Video Tutor Solutions Force and Newton s Laws of Motion Class Videos

### FORCES AND NEWTON S LAWS OF MOTION 4

FORCES AND NEWTON S LAWS OF MOTION 4 Q4.1. Reason: If friction and air resistance are negligible (as stated) then the net force on the puck is zero (the normal force and gravitational force are equal in

### Chapter 4 - Forces and Newton s Laws of Motion w./ QuickCheck Questions

Chapter 4 - Forces and Newton s Laws of Motion w./ QuickCheck Questions 2015 Pearson Education, Inc. Anastasia Ierides Department of Physics and Astronomy University of New Mexico September 8, 2015 Review

### 2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was

### Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.

Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

### Newton s Laws of Motion

Physics Newton s Laws of Motion Newton s Laws of Motion 4.1 Objectives Explain Newton s first law of motion. Explain Newton s second law of motion. Explain Newton s third law of motion. Solve problems

### Physics 101 Prof. Ekey. Chapter 5 Force and motion (Newton, vectors and causing commotion)

Physics 101 Prof. Ekey Chapter 5 Force and motion (Newton, vectors and causing commotion) Goal of chapter 5 is to establish a connection between force and motion This should feel like chapter 1 Questions

### Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

### Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The following four forces act on a 4.00 kg object: 1) F 1 = 300 N east F 2 = 700 N north

### Lecture 9. Friction in a viscous medium Drag Force Quantified

Lecture 9 Goals Describe Friction in Air (Ch. 6) Differentiate between Newton s 1 st, 2 nd and 3 rd Laws Use Newton s 3 rd Law in problem solving Assignment: HW4, (Chap. 6 & 7, due 10/5) 1 st Exam Thurs.,

### Newton s Laws Pre-Test

Newton s Laws Pre-Test 1.) Consider the following two statements and then select the option below that is correct. (i) It is possible for an object move in the absence of forces acting on the object. (ii)

### BROCK UNIVERSITY. PHYS 1P21/1P91 Solutions to Mid-term test 26 October 2013 Instructor: S. D Agostino

BROCK UNIVERSITY PHYS 1P21/1P91 Solutions to Mid-term test 26 October 2013 Instructor: S. D Agostino 1. [10 marks] Clearly indicate whether each statement is TRUE or FALSE. Then provide a clear, brief,

### Serway_ISM_V1 1 Chapter 4

Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As

### Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

### Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

### STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws

Name: Teacher: Pd. Date: STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws TEK 8.6C: Investigate and describe applications of Newton's law of inertia, law of force and acceleration, and law of action-reaction

### Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

### AP Physics Newton's Laws Practice Test

AP Physics Newton's Laws Practice Test Answers: A,D,C,D,C,E,D,B,A,B,C,C,A,A 15. (b) both are 2.8 m/s 2 (c) 22.4 N (d) 1 s, 2.8 m/s 16. (a) 12.5 N, 3.54 m/s 2 (b) 5.3 kg 1. Two blocks are pushed along a

### Newton s Laws of Motion. Chapter 4

Newton s Laws of Motion Chapter 4 Changes in Motion Section 4.1 Force is simply a push or pull It is an interaction between two or more objects Force is a vector so it has magnitude and direction In the

### Newton s Third Law. object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1

Newton s Third Law! If two objects interact, the force exerted by object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1!! Note on notation: is

### Chapter 4 Newton s Laws: Explaining Motion

Chapter 4 Newton s s Laws: Explaining Motion Newton s Laws of Motion The concepts of force, mass, and weight play critical roles. A Brief History! Where do our ideas and theories about motion come from?!

### THE NATURE OF FORCES Forces can be divided into two categories: contact forces and non-contact forces.

SESSION 2: NEWTON S LAWS Key Concepts In this session we Examine different types of forces Review and apply Newton's Laws of motion Use Newton's Law of Universal Gravitation to solve problems X-planation

### PHYSICS MIDTERM REVIEW

1. The acceleration due to gravity on the surface of planet X is 19.6 m/s 2. If an object on the surface of this planet weighs 980. newtons, the mass of the object is 50.0 kg 490. N 100. kg 908 N 2. If

### Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of motion unless acted upon by net external forces.

Newton s Third Law Newton s First Law (Law of Inertia) F = 0 An object will remain at rest or in a constant state of motion unless acted upon by net external forces. Newton s First Law If F = 0 => No Change

### Describe the relationship between gravitational force and distance as shown in the diagram.

Name Period Chapter 2 The Laws of Motion Review Describe the relationship between gravitational force and distance as shown in the diagram. Assess the information about gravity, mass, and weight. Read

### For every action, there is an and.

SPH4C1 Lesson 03 Newton s Laws NEWTON S THIRD LAW LEARNING GOALS Students will: Be able to state Newton s 3 rd Law and apply it in qualitative and quantitative terms to explain the effect of forces acting

### Recap. A force is the product of an object s mass and acceleration. Forces are the reason why objects change their velocity. Newton s second law:

Recap A force is the product of an object s mass and acceleration. Forces are the reason why objects change their velocity. Newton s second law: Unit: 1 N = 1 kg m/s 2 Forces are vector quantities, since

### VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

### TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003

Phys - Vectors 11-13-2003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude

### Newton s Third Law of Motion: Symmetry in Forces

Newton s Third Law of Motion: Symmetry in Forces By: OpenStax College Online: This module is copyrig hted by Rice University. It is licensed under the Creative Commons

### 1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All of the movies A B C. PHYS 11: Chap. 2, Pg 2

1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All of the movies A B C PHYS 11: Chap. 2, Pg 2 1 1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All three A B PHYS 11: Chap. 2, Pg 3 C 1) more than

Section Review Answers Chapter 12 Section 1 1. Answers may vary. Students should say in their own words that an object at rest remains at rest and an object in motion maintains its velocity unless it experiences

### physics 111N forces & Newton s laws of motion

physics 111N forces & Newton s laws of motion forces (examples) a push is a force a pull is a force gravity exerts a force between all massive objects (without contact) (the force of attraction from the

### Version 001 Quest 3 Forces tubman (20131) 1

Version 001 Quest 3 Forces tubman (20131) 1 This print-out should have 19 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. l B Conceptual

### Worksheet #1 Free Body or Force diagrams

Worksheet #1 Free Body or Force diagrams Drawing Free-Body Diagrams Free-body diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.

### LAB 6: GRAVITATIONAL AND PASSIVE FORCES

55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

### What is a force? Identifying forces. What is the connection between force and motion? How are forces related when two objects interact?

Chapter 4: Forces What is a force? Identifying forces. What is the connection between force and motion? How are forces related when two objects interact? Application different forces (field forces, contact

### Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity

### 2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed?

Physics: Review for Final Exam 1 st Semester Name Hour P2.1A Calculate the average speed of an object using the change of position and elapsed time 1. (P2.1 A) What is your average speed if you run 140

### KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course I. C O N T E N T S T A N D A R D S Central Concept: Newton s laws of motion and gravitation describe and predict the motion

### COURSE CONTENT. Introduction. Definition of a Force Effect of Forces Measurement of forces. Newton s Laws of Motion

CHAPTER 13 - FORCES COURSE CONTENT Introduction Newton s Laws of Motion Definition of a Force Effect of Forces Measurement of forces Examples of Forces A force is just a push or pull. Examples: an object

### LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

### 2. (b). The newton is a unit of weight, and the quantity (or mass) of gold that weighs 1 newton is m 1 N

QUICK QUIZZS 1. Newton s second law says that the acceleration of an object is directly proportional to the resultant (or net) force acting on. Recognizing this, consider the given statements one at a

### Newton s Laws of Motion

Chapter 4 Newton s Laws of Motion PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 4 To understand the meaning

### v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

### 1. Newton s Laws of Motion and their Applications Tutorial 1

1. Newton s Laws of Motion and their Applications Tutorial 1 1.1 On a planet far, far away, an astronaut picks up a rock. The rock has a mass of 5.00 kg, and on this particular planet its weight is 40.0

### Section 3 Newton s Laws of Motion

Section 3 Newton s Laws of Motion Key Concept Newton s laws of motion describe the relationship between forces and the motion of an object. What You Will Learn Newton s first law of motion states that

### PH2213 : Examples from Chapter 4 : Newton s Laws of Motion. Key Concepts

PH2213 : Examples from Chapter 4 : Newton s Laws of Motion Key Concepts Newton s First and Second Laws (basically Σ F = m a ) allow us to relate the forces acting on an object (left-hand side) to the motion

### Newton's laws of motion

Newton's laws of motion Forces Forces as vectors Resolving vectors Explaining motion - Aristotle vs Newton Newton s first law Newton s second law Weight Calculating acceleration Newton s third law Moving

### Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

### Physics 1000 Final Examination. December A) 87 m B) 46 m C) 94 m D) 50 m

Answer all questions. The multiple choice questions are worth 4 marks and problems 10 marks each. 1. You walk 55 m to the north, then turn 60 to your right and walk another 45 m. How far are you from where

### Ch.4 Forces. Conceptual questions #1, 2, 12 Problem 1, 2, 5, 6, 7, 10, 12, 15, 16, 19, 20, 21, 23, 24, 26, 27, 30, 38, 39, 41, 42, 47, 50, 56, 66

Ch.4 Forces Conceptual questions #1, 2, 12 Problem 1, 2, 5, 6, 7, 10, 12, 15, 16, 19, 20, 21, 23, 24, 26, 27, 30, 38, 39, 41, 42, 47, 50, 56, 66 Forces Forces - vector quantity that changes the velocity

### How does the net force change between scenario 1 and 2?

How does the net force change between scenario 1 and 2? A) The magnitude decreases, the direction stays the same B) The magnitude stays the same, the direction changes C) The magnitude decreases AND the

### Newton's First Law. Newton s Laws. Page 1 of 6

Newton's First Law Newton s Laws In previous units, the variety of ways by which motion can be described (words, graphs, diagrams, numbers, etc.) was discussed. In this unit (Newton's Laws of Motion),

### Physics I Honors: Chapter 4 Practice Exam

Physics I Honors: Chapter 4 Practice Exam Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following statements does not describe

### Isaac Newton was a British scientist whose accomplishments included

80 Newton s Laws of Motion R EA D I N G Isaac Newton was a British scientist whose accomplishments included important discoveries about light, motion, and gravity. You may have heard the legend about how

### Chapter 5 Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions

### Physics 101 Exam 1 NAME 2/7

Physics 101 Exam 1 NAME 2/7 1 In the situation below, a person pulls a string attached to block A, which is in turn attached to another, heavier block B via a second string (a) Which block has the larger

### 1 of 7 10/2/2009 1:13 PM

1 of 7 10/2/2009 1:13 PM Chapter 6 Homework Due: 9:00am on Monday, September 28, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

### Ground Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. Dr Tay Seng Chuan

PC1221 Fundamentals of Physics I Lectures 9 and 10 he Laws of Motion Dr ay Seng Chuan 1 Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while lecture

### LAWS OF FORCE AND MOTION

reflect Does anything happen without a cause? Many people would say yes, because that often seems to be our experience. A cup near the edge of a table suddenly crashes to the fl oor. An apple falls from

### 1206EL - Concepts in Physics. Friday, September 18th

1206EL - Concepts in Physics Friday, September 18th Notes There is a WebCT course for students on September 21st More information on library webpage Newton s second law Newton's first law of motion predicts

### Chapter Test. Teacher Notes and Answers Forces and the Laws of Motion. Assessment

Assessment Chapter Test A Teacher Notes and Answers Forces and the Laws of Motion CHAPTER TEST A (GENERAL) 1. c 2. d 3. d 4. c 5. c 6. c 7. c 8. b 9. d 10. d 11. c 12. a 13. d 14. d 15. b 16. d 17. c 18.

### General Physics (PHY 2130)

General Physics (PHY 2130) Lecture 8 Forces Newton s Laws of Motion http://www.physics.wayne.edu/~apetrov/phy2130/ Classical Mechanics Describes the relationship between the motion of objects in our everyday

### Newton s Laws of Motion

Chapter 4 Newton s Laws of Motion PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 7_8_2016 Goals for Chapter 4

### Summary Notes. to avoid confusion it is better to write this formula in words. time

National 4/5 Physics Dynamics and Space Summary Notes The coloured boxes contain National 5 material. Section 1 Mechanics Average Speed Average speed is the distance travelled per unit time. distance (m)

### STUDY GUIDE UNIT 10-Newton s Third Law

Name ANSWERS STUDY GUIDE UNIT 10-Newton s Third Law Date Agenda HW Tues, Jan 5 Wed., Jan 6 Review Video Read Section 6.1-6.3 Fill in Reading Notes (p. 2) Worksheet - Action-Reaction Pairs (p. 3) Go over

### Isaac Newton (1642 to 1727) Force. Newton s Three Law s of Motion. The First Law. The First Law. The First Law

Isaac Newton (1642 to 1727) Force Chapter 4 Born 1642 (Galileo dies) Invented calculus Three laws of motion Principia Mathematica. Newton s Three Law s of Motion 1. All objects remain at rest or in uniform,

### Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

### Newton s Wagon Newton s Laws

Newton s Wagon Newton s Laws What happens when you kick a soccer ball? The kick is the external force that Newton was talking about in his first law of motion. What happens to the ball after you kick it?

### B Answer: neither of these. Mass A is accelerating, so the net force on A must be non-zero Likewise for mass B.

CTA-1. An Atwood's machine is a pulley with two masses connected by a string as shown. The mass of object A, m A, is twice the mass of object B, m B. The tension T in the string on the left, above mass

### Chapter 5 Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion Sir Isaac Newton (1642 1727) Developed a picture of the universe as a subtle, elaborate clockwork slowly unwinding according to well-defined rules. The book Philosophiae

### Forces. Isaac Newton was the first to discover that the laws that govern motions on the Earth also applied to celestial bodies.

Forces Now we will discuss the part of mechanics known as dynamics. We will introduce Newton s three laws of motion which are at the heart of classical mechanics. We must note that Newton s laws describe

### Explaining Motion:Forces

Explaining Motion:Forces Chapter Overview (Fall 2002) A. Newton s Laws of Motion B. Free Body Diagrams C. Analyzing the Forces and Resulting Motion D. Fundamental Forces E. Macroscopic Forces F. Application

### NEWTON S LAWS OF MOTION

Name Period Date NEWTON S LAWS OF MOTION If I am anything, which I highly doubt, I have made myself so by hard work. Isaac Newton Goals: 1. Students will use conceptual and mathematical models to predict

### Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction

Newton s Laws of Motion I. Law of Inertia II. F=ma III. Action-Reaction While most people know what Newton's laws say, many people do not know what they mean (or simply do not believe what they mean).

### Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Chapter 5: NEWTON S THIRD LAW OF MOTION This lecture will help you understand: Forces and Interactions Newton s Third Law of Motion Summary of Newton s Laws Vectors Forces

### Forces. When an object is pushed or pulled, we say that a force is exerted on it.

Forces When an object is pushed or pulled, we say that a force is exerted on it. Forces can Cause an object to start moving Change the speed of a moving object Cause a moving object to stop moving Change

### Ch 4 Test Review. Why do we say a speeding object doesn t have force? (Assume this object is speeding through space) (Explain)

Ch 4 Test Review Why do we say a speeding object doesn t have force? (Assume this object is speeding through space) (Explain) If the forces that act on a cannonball and the recoiling cannon from which

### Newton s Laws of Motion

Newton s Laws of Motion FIZ101E Kazım Yavuz Ekşi My contact details: Name: Kazım Yavuz Ekşi Email: eksi@itu.edu.tr Notice: Only emails from your ITU account are responded. Office hour: Wednesday 10.00-12.00

### Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION

1 P a g e Inertia Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION The property of an object by virtue of which it cannot change its state of rest or of uniform motion along a straight line its own, is

### Newton s Laws of Motion

Section 3.2 Newton s Laws of Motion Objectives Analyze relationships between forces and motion Calculate the effects of forces on objects Identify force pairs between objects New Vocabulary Newton s first

### Best Angle for QUICK LAB. Analyze and Conclude. 22 MHR Unit 1 Forces and Motion: Dynamics

5. Pushing a grocery cart with a force of 95 N, applied at an angle of 35 down from the horizontal, makes the cart travel at a constant speed of 1.2 m/s. What is the frictional force acting on the cart?

### PS-5.1 Explain the relationship among distance, time, direction, and the velocity of an object.

PS-5.1 Explain the relationship among distance, time, direction, and the velocity of an object. It is essential for students to Understand Distance and Displacement: Distance is a measure of how far an

### Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

### F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

### CHAPTER 3 NEWTON S LAWS OF MOTION

CHAPTER 3 NEWTON S LAWS OF MOTION NEWTON S LAWS OF MOTION 45 3.1 FORCE Forces are calssified as contact forces or gravitational forces. The forces that result from the physical contact between the objects

### Name: Date: 7. A child is riding a bike and skids to a stop. What happens to their kinetic energy? Page 1

Name: Date: 1. Driving down the road, you hit an insect. How does the force your car exerts on the insect compare to the force the insect exerts on the car? A) The insect exerts no force on the car B)

### More of Newton s Laws

More of Newton s Laws Announcements: Tutorial Assignments due tomorrow. Pages 19-21, 23, 24 (not 22,25) Note Long Answer HW due this week. CAPA due on Friday. Have added together the clicker scores so

### MOTION AND FORCE: DYNAMICS

MOTION AND FORCE: DYNAMICS We ve been dealing with the fact that objects move. Velocity, acceleration, projectile motion, etc. WHY do they move? Forces act upon them, that s why! The connection between

### At the skate park on the ramp

At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

### Physics Classroom Website Webquest Lisa Peck

Physics Classroom Website Webquest Lisa Peck http://www.physicsclassroom.com/class/newtlaws/newtltoc.html Lesson 1: Newton s 1st Law 1. There are many applications of Newton's first law of motion. Several

### UNIT 2D. Laws of Motion

Name: Regents Physics Date: Mr. Morgante UNIT 2D Laws of Motion Laws of Motion Science of Describing Motion is Kinematics. Dynamics- the study of forces that act on bodies in motion. First Law of Motion

### HW#4b Page 1 of 6. I ll use m = 100 kg, for parts b-c: accelerates upwards, downwards at 5 m/s 2 A) Scale reading is the same as person s weight (mg).

HW#4b Page 1 of 6 Problem 1. A 100 kg person stands on a scale. a.) What would be the scale readout? b.) If the person stands on the scale in an elevator accelerating upwards at 5 m/s, what is the scale

### ACTIVITY 1: Gravitational Force and Acceleration

CHAPTER 3 ACTIVITY 1: Gravitational Force and Acceleration LEARNING TARGET: You will determine the relationship between mass, acceleration, and gravitational force. PURPOSE: So far in the course, you ve

### Ch 6 Forces. Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79

Ch 6 Forces Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79 Friction When is friction present in ordinary life? - car brakes - driving around a turn - walking - rubbing your hands together