Physics 101. Chapter 5: Newton s Third Law

Save this PDF as:

Size: px
Start display at page:

Transcription

1 Physics 101 Today Chapter 5: Newton s Third Law

2 First, let s clarify notion of a force: Previously defined force as a push or pull. Better to think of force as an interaction between two objects. You can t push anything without it pushing back on you! Whenever one object exerts a force on a second object, the second object exerts an equal and opposite force on the first. Newton s 3 rd Law - often called action-reaction

3 Eg. Leaning against a wall. You push against the wall. The wall is also pushing on you, equally hard normal/support force. Now place a piece of paper between the wall and hand. Push on it it doesn t accelerate must be zero net force. The wall is pushing equally as hard (normal force) on the paper in the opposite direction to your hand, resulting in zero Fnet. This is more evident when hold a balloon against the wall it is squashed on both sides.

4 Eg. You pull on a cart. It accelerates. The cart pulls back on you (you feel the rope get tighter). Can call your pull the action and cart s pull the reaction. Or, the other way around. Newton s 3 rd law means that forces always come in action-reaction pairs. It doesn t matter which is called the action and which is called the reaction. Note: Action-reaction pairs never act on the same object

5 Examples of action-reaction force pairs In fact it is the road s push that makes the car go forward. Same when we walk push back on floor, floor pushes us forward. (These forces are frictional). Demo: blow up a balloon and release it. Same principle as rocket

6 Clicker Question What is the reaction force to a bat striking a ball? A) the ball s hit on the bat B) the muscular effort in the player s arm C) the friction force between the ground and the player s feet D) gravity E) None of these

7 Clicker Question What is the reaction force to a bat striking a ball? A) the ball s hit on the bat B) the muscular effort in the player s arm C) the friction force between the ground and the player s feet D) gravity E) None of these Note that we could call either the action and the other the reaction it doesn t matter which one is which.

8 Another Question What are the action-reaction pairs once the ball is in the air? First note there are two interactions: (i) one with the earth s gravity and (ii) the other with the air. (i) Action (or reaction): Earth pulls down on ball (weight) Reaction (or action): Ball pulls up on Earth. (ii) Action: Air pushes ball backwards (air resistance) Reaction: Ball pushes air forwards

9 Clicker Question We just said that for a ball in the air, an action-reaction pair is Earth s gravity acting on the ball, and the ball pulling the Earth up. Which force is bigger? A) The Earth s gravity acting on the ball B) The Ball pulling the Earth up C) They have the same strength

10 Clicker Question We just said that for a ball in the air, an action-reaction pair is Earth s gravity acting on the ball, and the ball pulling the Earth up. Which force is bigger? A) The Earth s gravity acting on the ball B) The Ball pulling the Earth up C) They have the same strength Action and reaction pairs are always equal and opposite in direction. Again, remember to distinguish the force from the effect of the force

11 Another Clicker Question Since action and reaction are equal and opposite, why don t they cancel to give zero effect? A) They do! B) They do if the masses of the objects are the same, otherwise they don t C) They act on different objects.

12 Another Clicker Question Since action and reaction are equal and opposite, why don t they cancel to give zero effect? A) They do! B) They do if the masses of the objects are the same, otherwise they don t C) They act on different objects. Answer C: They act on different objects. If you define the system to be both objects, then actionreaction forces within the system do cancel.

13 Another example: Let s consider the force pair between the apple and orange below: F F friction Apple exerts a force F on orange, so orange accelerates. Simultaneously, orange exerts equal force in the opposite dir. on the apple (but apple may not accelerate because of friction on his feet). F Consider now orange as the system. Apple s pull on orange, F, is an external force and accelerates the system(=orange). Consider the apple+orange as one system. Then the only external force is friction. Action and reaction are both within the system and cancel to zero. friction If friction =0, the acc. of system =0 (eg if they were on ice). Apple and orange would move closer to each other but system s center of mass wouldn t move. If friction non-zero, system accelerates to the right.

14 Questions (1) A pen at rest. It is made up of millions of molecules, all pulling on each other - cohesive inter-atomic forces present in any solid. Why doesn t the pen accelerate spontaneously due to these forces? Because each of these is part of an action-reaction pair within the pen. They always add to zero within the system. The pen will remain at rest unless an external force acts on it. (2) The earth s gravity pulls on the moon. What is the reaction force to this? Ans: The moon s pull on the earth. Note: It is simpler to think of this as one interaction the Earth and moon simultaneously pull on each other (action-reaction), each with the same amount of gravitational force. (3) Consider for simplicity, the earth and moon as the only bodies in the universe. a) What is the net force on the earth? The moon s gravitational pull b) What is the net force on the earth+moon system? 0. Action and reaction cancel within the system

15 More on action-reaction If all forces come in pairs, then how come the earth doesn t accelerate towards apples falling from trees? Actually it does! But it is not noticeable or measurable because the earth s mass is so large (c.f. earlier clicker question): The earth exerts F onapple = m apple g. This interaction gives apple a apple =F onapple /m apple = 9.8 m/s 2.

16 The apple exerts just as much force on the earth, (Forces acting in opposite direction with equal magnitude) M earth a earth =F onearth = m apple g But to get a earth this gets divided by M earth, the mass of the earth: a earth = m apple g / M earth

17 And more on action-reaction Recoil from a fired rifle: the force exerted on the bullet is just as large as the reaction force on the rifle, so the rifle kicks (recoils). But the acceleration of the rifle is much less than that of the bullet, because its mass (inertia) is much greater. a bullet = F/m bullet Since m rifle >> m bullet, but same F, a rifle <<a bullet a rifle =F/m rifle Same principle behind a rocket (or earlier balloon demo) it continually recoils from the ejected gas.

18 Clicker Question A 1900 newspaper editorial stated it is impossible to launch a rocket above the Earth s atmosphere. Do you agree? A) Yes, rockets need an atmosphere to push against. B) No, it propels forward under reaction force to the action of rocket expelling the exhaust gases. C) Yes, there needs to be a certain atmospheric pressure since a balance between pushing against the atmosphere and air-drag is required.

19 Clicker Question A 1900 newspaper editorial stated it is impossible to launch a rocket above the Earth s atmosphere. Do you agree? A) Yes, rockets need an atmosphere to push against. B) No, it propels forward under reaction force to the action of rocket expelling the exhaust gases. C) Yes, there needs to be a certain atmospheric pressure since a balance between pushing against the atmosphere and air-drag is required. Answer: B Just like the balloon demo, or rifle recoil. The reaction to exhaust gases does not depend on a medium for the gases. In fact, in a vacuum there is no air drag and rocket operates even better.

20 GIVE MORE EXAMPLES OF THIRD S NEWTON LAW

21 Summary of Newton s Three Laws (1 st Law) An object tends to remain at rest, or, if moving, to continue moving at constant speed in a straight line. Objects tend to resist changes in motion (inertia) mass measures this. (2 nd Law) When there is a net force on an object, it will accelerate: a = Fnet/m, a is in the same direction as Fnet. Falling in air, Fnet = mg R, acceleration is less than g. R is greater for objects with more frontal area, and for larger speeds. Terminal speed is reached when R = mg, so is later for heavier objects, which therefore accelerate more and hit ground faster. (3 rd Law) Whenever any object A exerts force on object B, B exerts equal and opposite force on A. It is a single interaction, forces come in pairs. Action and reaction always act on different objects.

22 Vectors Vector = quantity with magnitude and direction, eg velocity, force, acceleration. Can represent by an arrow (length indicates magnitude) Scalar - has magnitude only, eg speed, mass, volume.. Often we want to add vectors: eg if want to find net force, when several forces acting, or, to find resulting velocity when a plane is headed in a certain direction, but there is a wind blowing in another

23 If the two vectors are in the same direction can just add. + = If in opposite directions, subtract + =

24 More generally, use parallellogram rule to add to get the resultant: construct such that two adjacent sides are the two vectors the diagonal shows the resultant. Simplest case: when the two vectors to be added are at right angles: The parallelogram is a rectangle in this case. When the two vectors are at right-angles and have the same magnitude, then the parallelogram is a square: Pythagorean triples can also simplify addition: eg. Top view of 30 N and 40 N horizontal forces pulling on a box, gives a resultant force of 50 N in direction shown: Vector components: resolve any vector into two components at right-angles to each other. We won t study this in this course, but do read about it in your book if you are interested!

25 Example The girl is hanging, at rest, from a clothes line. Which side of the line is more likely to break? First, identify forces: Three forces are acting on her downward weight, tension in left line, and tension in right line. The question is asking, which tension is greater. Because she s at rest, the net force must be 0. The upward tensions must sum to her weight. Make parallelogram with sides along the rope tensions, whose diagonal is the desired upward resultant: So, larger tension in the right line (more vertical), so it is more likely to break.

26 I d like to take attendance now. Please enter the last 4 digits of your SSN into your clicker, and click send..

27 Clicker Question She holds the book stationary against the wall as shown. Friction on the book by the wall acts 1. upward. 2. downward. 3. can t say. Hint: first, draw a sketch showing the forces acting on the book. These should sum to the net force on the book - what should this net force be?

28 Answer: 3. can t say If she barely pushes the book so that the vertical component of her push is less than the book s weight, then friction acts upward to keep the book stationary. If she pushes so that the vertical component of her push equals the book s weight, then there s zero wall friction on the book. If she pushes harder so that the vertical component of her push exceeds the book s weight, then friction acts downward. So unless we know how the vertical component of her push compares with the weight of the book, we can t specify the direction of friction between the book and the wall.

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Chapter 5: NEWTON S THIRD LAW OF MOTION This lecture will help you understand: Forces and Interactions Newton s Third Law of Motion Summary of Newton s Laws Vectors Forces

Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of motion unless acted upon by net external forces.

Newton s Third Law Newton s First Law (Law of Inertia) F = 0 An object will remain at rest or in a constant state of motion unless acted upon by net external forces. Newton s First Law If F = 0 => No Change

Newton s 3 rd Law Study Guide Chapter 7

1. The Big Idea is for every force there is an equal and opposite force 2. If you lean over and push on a wall, why don t you fall over? The wall pushes back on you 3. When you paddle a kayak, your paddle

Chapter 7: Newton s Third Law of Motion Action and Reaction 1

Chapter 7: Newton s Third Law of Motion Action and Reaction 1 Forces and Interactions Force: a push or a pull A force is always part of a mutual action that involves another force. o mutual action: Interaction

7 Newton s Third Law of Motion Action and Reaction. For every force, there is an equal and opposite force.

For every force, there is an equal and opposite force. 7.1 Forces and Interactions A force is always part of a mutual action that involves another force. 7.1 Forces and Interactions In the simplest sense,

Newton s 3 rd Law Study Guide Chapter 7

1. The Big Idea is 2. If you lean over and push on a wall, why don t you fall over? 3. When you paddle a kayak, your paddle pushes on the water. What makes the kayak move forward? Section 7.1 Forces and

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Chapter 4: NEWTON S LAWS OF MOTION Newton s Laws of Motion I was only a scalar until you came along and gave me direction. Barbara Wolfe This lecture will help you understand:

Section Review Answers Chapter 12 Section 1 1. Answers may vary. Students should say in their own words that an object at rest remains at rest and an object in motion maintains its velocity unless it experiences

STUDY GUIDE UNIT 10-Newton s Third Law

Name ANSWERS STUDY GUIDE UNIT 10-Newton s Third Law Date Agenda HW Tues, Jan 5 Wed., Jan 6 Review Video Read Section 6.1-6.3 Fill in Reading Notes (p. 2) Worksheet - Action-Reaction Pairs (p. 3) Go over

Chapter 4 Newton s Laws: Explaining Motion

Chapter 4 Newton s s Laws: Explaining Motion Newton s Laws of Motion The concepts of force, mass, and weight play critical roles. A Brief History! Where do our ideas and theories about motion come from?!

Conceptual Physics 11 th Edition. Forces and Interactions. Newton s Third Law of Motion. This lecture will help you understand:

This lecture will help you understand: Conceptual Physics 11 th Edition Chapter 5: NEWTON S THIRD LAW OF MOTION Forces and Interactions Summary of Newton s Laws Vectors Forces and Interactions Interaction

Ch.4 Forces. Conceptual questions #1, 2, 12 Problem 1, 2, 5, 6, 7, 10, 12, 15, 16, 19, 20, 21, 23, 24, 26, 27, 30, 38, 39, 41, 42, 47, 50, 56, 66

Ch.4 Forces Conceptual questions #1, 2, 12 Problem 1, 2, 5, 6, 7, 10, 12, 15, 16, 19, 20, 21, 23, 24, 26, 27, 30, 38, 39, 41, 42, 47, 50, 56, 66 Forces Forces - vector quantity that changes the velocity

For every action, there is an and.

SPH4C1 Lesson 03 Newton s Laws NEWTON S THIRD LAW LEARNING GOALS Students will: Be able to state Newton s 3 rd Law and apply it in qualitative and quantitative terms to explain the effect of forces acting

COURSE CONTENT. Introduction. Definition of a Force Effect of Forces Measurement of forces. Newton s Laws of Motion

CHAPTER 13 - FORCES COURSE CONTENT Introduction Newton s Laws of Motion Definition of a Force Effect of Forces Measurement of forces Examples of Forces A force is just a push or pull. Examples: an object

Chapter 4 - Forces and Newton s Laws of Motion w./ QuickCheck Questions

Chapter 4 - Forces and Newton s Laws of Motion w./ QuickCheck Questions 2015 Pearson Education, Inc. Anastasia Ierides Department of Physics and Astronomy University of New Mexico September 8, 2015 Review

Ch 4 Test Review. Why do we say a speeding object doesn t have force? (Assume this object is speeding through space) (Explain)

Ch 4 Test Review Why do we say a speeding object doesn t have force? (Assume this object is speeding through space) (Explain) If the forces that act on a cannonball and the recoiling cannon from which

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity

Recap. A force is the product of an object s mass and acceleration. Forces are the reason why objects change their velocity. Newton s second law:

Recap A force is the product of an object s mass and acceleration. Forces are the reason why objects change their velocity. Newton s second law: Unit: 1 N = 1 kg m/s 2 Forces are vector quantities, since

Forces. Lecturer: Professor Stephen T. Thornton

Forces Lecturer: Professor Stephen T. Thornton Reading Quiz: Which of Newton s laws refers to an action and a reaction acceleration? A) First law. B) Second law. C) Third law. D) This is a trick question.

Newton's laws of motion

Newton's laws of motion Forces Forces as vectors Resolving vectors Explaining motion - Aristotle vs Newton Newton s first law Newton s second law Weight Calculating acceleration Newton s third law Moving

CHAPTER 2: NEWTON S 1 ST LAW OF MOTION-INERTIA 08/24/16

CHAPTER 2: NEWTON S 1 ST LAW OF MOTION-INERTIA 08/24/16 HISTORY OF IDEAS ABOUT MOTION Aristotle (384-322 BC) o Natural Motion An object will strive to get to its proper place determined by its nature or

Newton s Wagon Newton s Laws

Newton s Wagon Newton s Laws What happens when you kick a soccer ball? The kick is the external force that Newton was talking about in his first law of motion. What happens to the ball after you kick it?

NEWTON S LAWS OF MOTION

Name Period Date NEWTON S LAWS OF MOTION If I am anything, which I highly doubt, I have made myself so by hard work. Isaac Newton Goals: 1. Students will use conceptual and mathematical models to predict

1206EL - Concepts in Physics. Friday, September 18th

1206EL - Concepts in Physics Friday, September 18th Notes There is a WebCT course for students on September 21st More information on library webpage Newton s second law Newton's first law of motion predicts

Newton s Laws of Motion

Newton s Laws of Motion The Earth revolves around the sun in an elliptical orbit. The moon orbits the Earth in the same way. But what keeps the Earth and the moon in orbit? Why don t they just fly off

Section 3 Newton s Laws of Motion

Section 3 Newton s Laws of Motion Key Concept Newton s laws of motion describe the relationship between forces and the motion of an object. What You Will Learn Newton s first law of motion states that

Explaining Motion:Forces

Explaining Motion:Forces Chapter Overview (Fall 2002) A. Newton s Laws of Motion B. Free Body Diagrams C. Analyzing the Forces and Resulting Motion D. Fundamental Forces E. Macroscopic Forces F. Application

Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

Physics I Honors: Chapter 4 Practice Exam

Physics I Honors: Chapter 4 Practice Exam Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following statements does not describe

Newton s Third Law of Motion: Symmetry in Forces

Newton s Third Law of Motion: Symmetry in Forces By: OpenStax College Online: This module is copyrig hted by Rice University. It is licensed under the Creative Commons

Warm up. Forces. Sir Issac Newton. Questions to think about

Warm up Have you ever tried to pull something that just wouldn t budge? Describe a situation in which you pulled or tried to pull something. What made the job easier? Forces Sir Issac Newton Newton said

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

Newton s Third Law. Newton s Third Law of Motion. Action-Reaction Pairs

Section 4 Newton s Third Law Reading Preview Key Concepts What is Newton s third law of motion? How can you determine the momentum of an object? What is the law of conservation of momentum? Key Terms momentum

Newton s Third Law of Motion

Newton s Third Law of Motion Summary of Newton s Laws So Far Newton s 1 st Law of Motion explains the Law of Inertia This law predicts the behavior of objects when all forces acting on them are balanced

Describe the relationship between gravitational force and distance as shown in the diagram.

Name Period Chapter 2 The Laws of Motion Review Describe the relationship between gravitational force and distance as shown in the diagram. Assess the information about gravity, mass, and weight. Read

Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.

Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws

Name: Teacher: Pd. Date: STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws TEK 8.6C: Investigate and describe applications of Newton's law of inertia, law of force and acceleration, and law of action-reaction

Newton s Laws of Motion. Chapter 4

Newton s Laws of Motion Chapter 4 Changes in Motion Section 4.1 Force is simply a push or pull It is an interaction between two or more objects Force is a vector so it has magnitude and direction In the

2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed?

Physics: Review for Final Exam 1 st Semester Name Hour P2.1A Calculate the average speed of an object using the change of position and elapsed time 1. (P2.1 A) What is your average speed if you run 140

Newton s Laws of Motion

Physics Newton s Laws of Motion Newton s Laws of Motion 4.1 Objectives Explain Newton s first law of motion. Explain Newton s second law of motion. Explain Newton s third law of motion. Solve problems

Physics 101 Prof. Ekey. Chapter 5 Force and motion (Newton, vectors and causing commotion)

Physics 101 Prof. Ekey Chapter 5 Force and motion (Newton, vectors and causing commotion) Goal of chapter 5 is to establish a connection between force and motion This should feel like chapter 1 Questions

Newton s Laws of Motion

Kari Eloranta 2015 Jyväskylän Lyseon lukio November 30, 2015 Kari Eloranta 2015 2.2.4 Newton s First Law of Motion Definition of Newton s First Law of Motion (Law of Inertia) An object at rest remains

Notes: Mechanics. The Nature of Force, Motion & Energy

Notes: Mechanics The Nature of Force, Motion & Energy I. Force A push or pull. a) A force is needed to change an object s state of motion. b) Net force- The sum (addition) of all the forces acting on an

Newton s Laws Pre-Test

Newton s Laws Pre-Test 1.) Consider the following two statements and then select the option below that is correct. (i) It is possible for an object move in the absence of forces acting on the object. (ii)

Review Chapters 2, 3, 4, 5

Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freely-falling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string

Chapter 5 Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions

Isaac Newton was a British scientist whose accomplishments included

80 Newton s Laws of Motion R EA D I N G Isaac Newton was a British scientist whose accomplishments included important discoveries about light, motion, and gravity. You may have heard the legend about how

Physics Classroom Website Webquest Lisa Peck

Physics Classroom Website Webquest Lisa Peck http://www.physicsclassroom.com/class/newtlaws/newtltoc.html Lesson 1: Newton s 1st Law 1. There are many applications of Newton's first law of motion. Several

F13--HPhys--Q5 Practice

Name: Class: Date: ID: A F13--HPhys--Q5 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A vector is a quantity that has a. time and direction.

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION Background: Aristotle believed that the natural state of motion for objects on the earth was one of rest. In other words, objects needed a force to be kept in motion. Galileo studied

PHYSICS 149: Lecture 4

PHYSICS 149: Lecture 4 Chapter 2 2.3 Inertia and Equilibrium: Newton s First Law of Motion 2.4 Vector Addition Using Components 2.5 Newton s Third Law 1 Net Force The net force is the vector sum of all

Mass, energy, power and time are scalar quantities which do not have direction.

Dynamics Worksheet Answers (a) Answers: A vector quantity has direction while a scalar quantity does not have direction. Answers: (D) Velocity, weight and friction are vector quantities. Note: weight and

Name Period Chapter 10 Study Guide

Name _ Period Chapter 10 Study Guide Modified True/False Indicate whether the statement is true or false. 1. Unbalanced forces do not change an object s motion. 2. Friction depends on the types of surfaces

Name Date Class. The Nature of Force and Motion (pages ) 2. When one object pushes or pulls another object, the first object is

CHAPTER 4 MOTION AND FORCES SECTION 4 1 The Nature of Force and Motion (pages 116-121) This section explains how balanced and unbalanced forces are related to the motion of an object. It also explains

5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will

M OTION. Chapter2 OUTLINE GOALS

Chapter2 M OTION OUTLINE Describing Motion 2.1 Speed 2.2 Vectors 2.3 Acceleration 2.4 Distance, Time, and Acceleration Acceleration of Gravity 2.5 Free Fall 2.6 Air Resistence Force and Motion 2.7 First

Conceptual Physics Review (Chapters 4, 5, & 6)

Conceptual Physics Review (Chapters 4, 5, & 6) Solutions Sample Questions and Calculations. If you were in a spaceship and launched a cannonball into frictionless space, how much force would have to be

E Physics: A. Newton s Three Laws of Motion Activity: Newton s Third Law of Motion

Science as Inquiry: As a result of their activities in grades 5 8, all students should develop Understanding about scientific inquiry. Abilities necessary to do scientific inquiry: identify questions,

Here is a list of concepts that you will need to include in your observations and explanations:

NEWTON S LAWS Sir Isaac Newton (1642-1727) is probably one of the most remarkable men in the history of science. He graduated from Cambridge University in England at the age of 23. Records indicate that

Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

Physics 11 Chapter 4 HW Solutions

Physics 11 Chapter 4 HW Solutions Chapter 4 Conceptual Question: 5, 8, 10, 18 Problems: 3, 3, 35, 48, 50, 54, 61, 65, 66, 68 Q4.5. Reason: No. If you know all of the forces than you know the direction

THE NATURE OF FORCES Forces can be divided into two categories: contact forces and non-contact forces.

SESSION 2: NEWTON S LAWS Key Concepts In this session we Examine different types of forces Review and apply Newton's Laws of motion Use Newton's Law of Universal Gravitation to solve problems X-planation

Understanding the motion of the Universe. Motion, Force, and Gravity

Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed

General Physics (PHY 2130)

General Physics (PHY 2130) Lecture 8 Forces Newton s Laws of Motion http://www.physics.wayne.edu/~apetrov/phy2130/ Classical Mechanics Describes the relationship between the motion of objects in our everyday

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

Units DEMO spring scales masses

Dynamics the study of the causes and changes of motion Force Force Categories ContactField 4 fundamental Force Types 1 Gravity 2 Weak Nuclear Force 3 Electromagnetic 4 Strong Nuclear Force Units DEMO spring

Unification of the laws of the Earth and the Universe Why do planets appear to wander slowly across the sky?

October 19, 2015 Unification of the laws of the Earth and the Universe Why do planets appear to wander slowly across the sky? Key Words Newton s Laws of motion, and Newton s law of universal gravitation:

Unit 1: Vectors. a m/s b. 8.5 m/s c. 7.2 m/s d. 4.7 m/s

Multiple Choice Portion 1. A boat which can travel at a speed of 7.9 m/s in still water heads directly across a stream in the direction shown in the diagram above. The water is flowing at 3.2 m/s. What

4 Gravity: A Force of Attraction

CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?

Lecture Outline Chapter 5. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 5 Physics, 4 th Edition James S. Walker Chapter 5 Newton s Laws of Motion Dynamics Force and Mass Units of Chapter 5 Newton s 1 st, 2 nd and 3 rd Laws of Motion The Vector Nature

At the skate park on the ramp

At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws and the Mousetrap Racecar Simple version of Newton s three laws of motion 1 st Law: objects at rest stay at rest, objects in motion stay in motion 2 nd Law: force

Quiz 10 Motion. Name: Group:

Quiz 10 Motion Name: Group: 1. Two balls are released at the same time on the two tracks shown below. Which ball wins? a. The ball on the low road b. The ball on the high road c. They tie 2. What will

Described by Isaac Newton

Described by Isaac Newton States observed relationships between motion and forces 3 statements cover aspects of motion for single objects and for objects interacting with another object An object at rest

Newton's Law of Inertia (Newton s first Law of Motion) Every object continues in a state of rest, or of motion in a straight line at constant speed,

Newton's Law of Inertia (Newton s first Law of Motion) Every object continues in a state of rest, or of motion in a straight line at constant speed, unless it is compelled to change that state by forces

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

What is a force? Identifying forces. What is the connection between force and motion? How are forces related when two objects interact?

Chapter 4: Forces What is a force? Identifying forces. What is the connection between force and motion? How are forces related when two objects interact? Application different forces (field forces, contact

Note: Thrust from the rocket s engines acts downward producing an upward reaction on the rocket

Water Rocket Physics Principles Forces and Motion Newton s First Law An object at rest remains at rest, and an object in motion remains in motion at constant speed and in a straight line unless acted on

5 Newton s Third Law of Motion

5 Newton s Third Law of Motion The heavy weight champion can hit the massive bag with considerable force. But with the same punch he can only exert a tiny force on the tissue paper in midair. Why is this?

This week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension. PHYS 2: Chap.

This week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension PHYS 2: Chap. 19, Pg 2 1 New Topic Phys 1021 Ch 7, p 3 A 2.0 kg wood box slides down a vertical

04-1. Newton s First Law Newton s first law states: Sections Covered in the Text: Chapters 4 and 8 F = ( F 1 ) 2 + ( F 2 ) 2.

Force and Motion Sections Covered in the Text: Chapters 4 and 8 Thus far we have studied some attributes of motion. But the cause of the motion, namely force, we have essentially ignored. It is true that

2 Newton s First Law of Motion Inertia

2 Newton s First Law of Motion Inertia Conceptual Physics Instructor Manual, 11 th Edition SOLUTIONS TO CHAPTER 2 RANKING 1. C, B, A 2. C, A, B, D 3. a. B, A, C, D b. B, A, C, D 4. a. A=B=C (no force)

Summary Notes. to avoid confusion it is better to write this formula in words. time

National 4/5 Physics Dynamics and Space Summary Notes The coloured boxes contain National 5 material. Section 1 Mechanics Average Speed Average speed is the distance travelled per unit time. distance (m)

Chapter Test. Teacher Notes and Answers Forces and the Laws of Motion. Assessment

Assessment Chapter Test A Teacher Notes and Answers Forces and the Laws of Motion CHAPTER TEST A (GENERAL) 1. c 2. d 3. d 4. c 5. c 6. c 7. c 8. b 9. d 10. d 11. c 12. a 13. d 14. d 15. b 16. d 17. c 18.

Chapter 7 Momentum and Impulse

Chapter 7 Momentum and Impulse Collisions! How can we describe the change in velocities of colliding football players, or balls colliding with bats?! How does a strong force applied for a very short time

Big Science Idea. Forces. Name. When you ride a bike, your foot pushes against the pedal. The push makes the wheels of the bike move.

Forces Worksheet 1 Name Forces When you ride a bike, your foot pushes against the pedal. The push makes the wheels of the bike move. When you drop something, it is pulled to the ground by gravity. A PUSH

External vs. Internal Force

NEWTON'S THIRD LAW External vs. Internal Force External Force: Exerted on the system by something outside the system Internal Force: Exerted by one part of the system on another part Newton's Second Law:

Forces. Isaac Newton was the first to discover that the laws that govern motions on the Earth also applied to celestial bodies.

Forces Now we will discuss the part of mechanics known as dynamics. We will introduce Newton s three laws of motion which are at the heart of classical mechanics. We must note that Newton s laws describe

5.1 Vector and Scalar Quantities. A vector quantity includes both magnitude and direction, but a scalar quantity includes only magnitude.

Projectile motion can be described by the horizontal ontal and vertical components of motion. In the previous chapter we studied simple straight-line motion linear motion. Now we extend these ideas to

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction

Newton s Laws of Motion I. Law of Inertia II. F=ma III. Action-Reaction While most people know what Newton's laws say, many people do not know what they mean (or simply do not believe what they mean).

Review Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion

Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

PH2213 : Examples from Chapter 4 : Newton s Laws of Motion. Key Concepts

PH2213 : Examples from Chapter 4 : Newton s Laws of Motion Key Concepts Newton s First and Second Laws (basically Σ F = m a ) allow us to relate the forces acting on an object (left-hand side) to the motion

UNIT 2D. Laws of Motion

Name: Regents Physics Date: Mr. Morgante UNIT 2D Laws of Motion Laws of Motion Science of Describing Motion is Kinematics. Dynamics- the study of forces that act on bodies in motion. First Law of Motion

Force. A force is a push or a pull. Pushing on a stalled car is an example. The force of friction between your feet and the ground is yet another.

Force A force is a push or a pull. Pushing on a stalled car is an example. The force of friction between your feet and the ground is yet another. Force Weight is the force of the earth's gravity exerted

More of Newton s Laws

More of Newton s Laws Announcements: Tutorial Assignments due tomorrow. Pages 19-21, 23, 24 (not 22,25) Note Long Answer HW due this week. CAPA due on Friday. Have added together the clicker scores so

Newton s Laws of Motion

Section 3.2 Newton s Laws of Motion Objectives Analyze relationships between forces and motion Calculate the effects of forces on objects Identify force pairs between objects New Vocabulary Newton s first