ASTRID2, a new 580 MeV low-emittance light source in Århus

Size: px
Start display at page:

Download "ASTRID2, a new 580 MeV low-emittance light source in Århus"

Transcription

1 , a new 580 MeV low-emittance light source in Århus Brief introduction to ASTRID, ISA and Aarhus University Other accelerator activities during recent years Pre-history of Our new grant for Time plan Future? 1

2 ASTRID ASTRID was built as a heavy-ion storage ring and a Synchrotron Radiation source Operating with ions in 1990 Since then many ion experiments have been performed including ions like H 2+, Mg +, 13 CO ++, C 60 + H -, O -, Al 12-, C 70 - studying laser-cooling, electron-cooling, photo-detachment, electronrecombination and dissociation Inaugurated with electrons in 1993 For ~10 years 50%/50% operation with ions and electrons Last ion run in

3 ASTRID and injectors undulator 105 MHz cavity Electron cooler 580 MeV electrons 40 m 1.6 T 140 nm (~5% coupl) Lifetime h 100 MeV electron microtron 150 kev Ion 3 separator

4 4

5 ASTRID acceleratorlaboratory students 5 Gkr. 2/3 on CAMPUS 5

6 ASTRIDs below parking place 6

7 ASTRID as a virgin 7

8 Synchrotron-radiation beamlines at ASTRID 8

9 ASTRID RF cavity 105 MHz cavity (Q~1.37MΩ) 20 kw transmitter 9

10 ASTRID undulator 10

11 Lifetime in ASTRID Current [ma] Lifetime [hour]

12 ASTRID beamlines Beamline Spectral range Performance Research area SGM 1 30 to 600 ev Resolving power 5 to 14,000 Typical flux ph/sec Condensed matter and nanoscale physics SX to 700 ev Resolving power typically 1000 Typical flux photons/sec Condensed matter and nanoscale physics X-ray Microscope 1.5 to 3 nm ev Resolving power 2,000 Typical flux ph/sec X-ray Microscopy, Medical Research MIYAKE 15 to 180 ev Resolving power 2,000 Flux photons/sec Atomic and Molecular Physics SGM 2 12 to 40 ev Resolving power up to 24,000 Typical flux ph/sec Atomic and Molecular Physics SGM 3 8 to 150 ev Resolving power up to 23,000 Typical flux ph/sec Condensed matter and nanoscale physics UV to 12 ev Resolving power 1,000 to 5,000 Typical flux ph/sec Photobiology, UV Spectroscopy CD to 12 ev Typical resolving power 200 Flux > photons/sec Biology: circular and linear dichroism spectroscopy 12

13 USE of ASTRID ASTRID operates > 40 weeks per year, 6½ days x 23.5 hours ~150 users per year ~50 % from abroad partly financed from IA-SFS (transnational access) ~25% from Aarhus ~25 % from elsewhere in DK 13

14 Other accelerator activities during recent years ELISA ANKA microtron and booster CLS booster ASP booster FLASH bypass PT facilities In collaboration with DESY, DANFYSIK, Siemens, MAXLAB and others 14

15 ELISA as a virgin 15

16 160 deflectors 10 deflector quadrupoles 16

17 50 MeV microtron and 500 MeV Søren Pape booster Møller synchrotron for ANKA 17

18 3 GeV booster synchrotron Canadian Light Source, 18

19 3 GeV booster synchrotron for Australian Synchrotron Project 100 MeV - 3 GeV Ø m 1 Hz, 5 ma ε H = 33 nm 19

20 Particle Therapy facility (Marburg) MeV p MeV/u C 10 m 20

21 M1 EnS G ExS M5 M2 M3 M4 Seeding option for VUV Free Electron Laser DESY, Hamburg 21

22 Funding for has been sought for several years Research Infrastructure Fund Dec Mkr. (we applied for 42 Mkr) over 4 years Funds for ASTRID modifications, transfer beamline,, 2 ID s, some adaptions/improvements to ASTRID beamlines : low-emittance (<10nm) 580 MeV SR source Top-up from ASTRID undulator radiation up to ~100 ev MPW radiation up to 600 ev O edge) Research: condensed matter/surfaces/nanoscale atomic and molecular physics BIO 22

23 23

24 24

25 parameters Parameter Energy Circumference Current Lifetime Horizontal emittance Characteristic energy Characteristic wavelength MeV m ma Hours nm ev nm Straight sections (number # m and length) Infinite (top-up) < x3.? ASTRID

26 with monochromators 26

27 SEXT BD +Q+S QF 27

28 lattice Betatron amplitude functions [m] versus distance [m] 6 2 combined-function magnets (dipole, quadrupole, sextupole) QF quadrupoles 6 1 sextupoles Dispersion functions [m] versus distance [m] x-y correctors Horizontal Vertical 28

29 Transfer beamline 29

30 ASTRIDs with undulators and transfer beamline 30

31 Some parameters General parameters Energy Dipole field Circumference Current Number of ID s Lattice parameters Straight S dispersion Horizontal tune Vertical tune Horizontal chromaticity Vertical chromaticity Coupling factor SR parameters Energy loss per turn SR power Natural emittance Characteristic energy Damping times RF parameters Damped energy spread RF frequency Harmonic number RF voltage E [GeV] B [T] L [m] I [ma] [m] Q x Q y dq x /d(δp/p) dq y /d(δp/p) U 0 kev/turn] P 0 [kw] ε H [nm] ε c [ev] τ h, τ v, τ s [ms] σ E /E [0/00] h [kv] % ,28.6, ASTRID % ,18.7,

32 3 bumper pulsed-septum injection 32

33 Magnet parameters Name of magnet BD Qf3 Qf2 Sf Type of magnet Defocusing combined-function magnet Quadrupole Quadrupole Sextupole HxV steerer Number of magnets Magnet length [m] Aperture [mm] 44x28 Ø44 Ø44 Ø44 45x45 Good field region [mm] 36x22 Ø36 Ø36 Ø36 35x35 Dipole field [T] Radius of curvature [m] Quadrupole field [T/m) nom nom Sextupole field [T/m 2 ] Nom

34 Closed-orbit correction 12 H/V BPM s and 12 H/V correctors for closed-orbit correction (24/12?) position and angular bumps in SS Quadrupole shunts 34

35 insertion devices Insertion device Present ASTRID undulator New undulator Multipole Wiggler Period length (mm) / 116 Number of periods / 6 Peak magnetic field (T) Gap (mm) / 12 Inner vacuum gap (mm) / 8 K (max) / 21.7 Max. deflection angle (mrad) 28.8 / 19 Max. deflection angle (º) 1.6/1.1 Width after 2 m (mm) ±58 / ±38 Length (mm) / 700 Total power radiated (W) /

36 Influence of ID s Astrid2 vertical betafunction with varios insertion devices (a2 015) Position of insertion device No undulator "Big" Wiggler "Small" Wiggler New undulator Old undulator, 22mm gap Old undulator, 18mm gap

37 Tune shifts from the various insertion devices Insertion device K L_period [m] L [m] N Tune Shift (V) "big" MPW "small" MPW new undulator Old undulator, 22 mm gap Old undulator, 18 mm gap

38 Dynamic aperture Astrid 2 dynamic aperture, 10k turns (5.23, 2.23) y [m] V 7 mm H 14 mm 1,40E-02 1,20E-02 1,00E-02 8,00E-03 6,00E-03 V 20 mmmrad H 50 mmmrad 4,00E-03 2,00E-03 0,00E+00-2,50E-02-2,00E-02-1,50E-02-1,00E-02-5,00E-03 0,00E+00 5,00E-03 1,00E-02 1,50E-02 2,00E-02 2,50E-02 x [m] 38

39 ASTRID fast extraction 1 mrad kick Septum after ¼ turn Septum after ½ turn Septum after 1¼ turn 39

40 ASTRID ¼ turn extraction [m] KICKER position [m] KICKER Beam envelope BUMP (0/30mm) KICK (3.5mr) BUMP+KICK SEPTUM KICKER KICKER SEPTUM 40

41 ASTRID ½ turn extraction [m] KICKER position [m] KICKER Beam envelope BUMP (15/30mm) KICK (2.5mr) BUMP+KICK SEPTUM KICKER KICKER SEPTUM 41

42 ASTRID 1 ¼ turn extraction [m] KICKER position [m] KICKER Beam envelope BUMP (20/10mm) KICK (2.5mr) BUMP+KICK SEPTUM KICKER KICKER SEPTUM 42

43 Transfer beamline 43

44 ASTRID transfer line ASTRID septum Septum 44

45 Other technical aspects Ex-situ bake-out of Arcs 105 MHz RF LLRF analog/digital 5 kw RF power Vertical betatron excitation (as at ASTRID) for large lifetime Gradual transition from ASTRID to minimize dark period 45

46 Time line September 2009: order most accelerator components Beginning 2011 first injection in 2012 First beamline on 2013 All beamlines transferred to 46

47 Future We will be busy over the next 4 years Additional funding for two new beamlines (ID, mono, end-stations) are being prepared We appreciate the always good relations to MAXLAB!! 47

48 Thank you for your attention! Questions and comments? 48

Damping Wigglers in PETRA III

Damping Wigglers in PETRA III Damping Wigglers in PETRA III WIGGLE2005, Frascati 21-22.2.2005 Winni Decking, DESY-MPY Introduction Damping Wiggler Parameters Nonlinear Dynamics with DW Operational Aspects Summary DESY and its Accelerators

More information

Status of the SOLEIL project Commissioning from Linac to beamlines

Status of the SOLEIL project Commissioning from Linac to beamlines Status of the SOLEIL project Commissioning from Linac to beamlines On behalf of the commissioning team 2 D01-1-CX1/DT/DTC/absorption Y Axis Title 0-200 0 200 400 600 800 1000 1200 1400 X Axis Title 1 Site

More information

Figure 1: Lattice drawing for the APS storage ring.

Figure 1: Lattice drawing for the APS storage ring. PERFORMANCE OF THE ADVANCED PHOTON SOURCE Glenn Decker Advanced Photon Source, Argonne National Laboratory 9700 South Cass Avenue, Argonne, Illinois 60439 USA Abstract The Advanced Photon Source (APS)

More information

Frequency Map Experiments at the Advanced Light Source. David Robin Advanced Light Source

Frequency Map Experiments at the Advanced Light Source. David Robin Advanced Light Source Frequency Map Experiments at the Advanced Light Source David Robin Advanced Light Source work done in collaboration with Christoph Steier (ALS), Ying Wu (Duke), Weishi Wan (ALS), Winfried Decking (DESY),

More information

A Quick primer on synchrotron radiation: How would an MBA source change my x-ray beam. Jonathan Lang Advanced Photon Source

A Quick primer on synchrotron radiation: How would an MBA source change my x-ray beam. Jonathan Lang Advanced Photon Source A Quick primer on synchrotron radiation: How would an MBA source change my x-ray beam Jonathan Lang Advanced Photon Source APS Upgrade - MBA Lattice ε ο = 3100 pm ε ο = 80 pm What is emi7ance? I don t

More information

The half cell of the storage ring SESAME looks like: Magnetic length =

The half cell of the storage ring SESAME looks like: Magnetic length = 6. Magnets 6.1 Introduction SESAME will be perhaps erected in steps. The number of steps depends upon the available money. The cheapest way is to use the quadrupole and sextupoles from BESSY I. In this

More information

BEPC UPGRADES AND TAU-CHARM FACTORY DESIGN

BEPC UPGRADES AND TAU-CHARM FACTORY DESIGN BEPC UPGRADES AND TAU-CHARM FACTORY DESIGN Abstract BEPC Group, presented by Yingzhi Wu Institute of High Energy Physics, Beijing 100039, P.R. China The luminosity upgrades of the BEPC are briefly reviewed.

More information

Results: Low current (2 10 12 ) Worst case: 800 MHz, 12 50 GeV, 4 turns Energy oscillation amplitude 154 MeV, where

Results: Low current (2 10 12 ) Worst case: 800 MHz, 12 50 GeV, 4 turns Energy oscillation amplitude 154 MeV, where Status Focus has shifted to a neutrino factory Two comprehensive designs of acceleration (liancs, arcs) Jefferson Lab, for Fermilab Study CERN (Keil et al.) Jefferson Lab study Low (2 10 12 ) charge per

More information

ESRF Upgrade Phase II: le nuove opportunitá per le linee da magnete curvante

ESRF Upgrade Phase II: le nuove opportunitá per le linee da magnete curvante LUCI DI SINCROTRONE CNR, ROMA 22 APRILE 2014 ESRF Upgrade Phase II: le nuove opportunitá per le linee da magnete curvante Sakura Pascarelli sakura@esrf.fr Page 2 INCREASE IN BRILLIANCE H emittance V emittance

More information

Status Overview The Australian Synchrotron. Steven Banks Control Systems Group

Status Overview The Australian Synchrotron. Steven Banks Control Systems Group Status Overview The Australian Synchrotron Steven Banks Control Systems Group Where Are We? Where Are We? Where Are We? The Building Development being managed by Major Projects Victoria (MPV) Budget is

More information

Status of Radiation Safety System at

Status of Radiation Safety System at Status of Radiation Safety System at Taiwan Photon Source Joseph C. Liu Radiation and Operation Safety Division National Synchrotron Radiation Research Center, Taiwan NSRRC layout 1.5 GeV, 120m, 400 ma

More information

Zero Degree Extraction using an Electrostatic Separator

Zero Degree Extraction using an Electrostatic Separator Zero Degree Extraction using an Electrostatic Separator L. Keller Aug. 2005 Take another look at using an electrostatic separator and a weak dipole to allow a zero degree crossing angle a la the TESLA

More information

Undulators and wigglers for the new generation of synchrotron sources

Undulators and wigglers for the new generation of synchrotron sources Undulators and wigglers for the new generation of synchrotron sources P. Elleaume To cite this version: P. Elleaume. Undulators and wigglers for the new generation of synchrotron sources. Journal de Physique

More information

Industrial Involvement in the Construction of Synchrotron Light Sources

Industrial Involvement in the Construction of Synchrotron Light Sources Industrial Involvement in the Construction of Synchrotron Light Sources M.S. de Jong, Canadian Light Source Inc. European Particle Accelerator Conference 2004-07-07 Introduction Large demand for synchrotron

More information

Possible Upgrades and New Design. F. Velotti and B. Goddard

Possible Upgrades and New Design. F. Velotti and B. Goddard Possible Upgrades and New Design F. Velotti and B. Goddard Outline Possible system upgrade General principles TIDVG modifications needed MKDV modifications needed External beam dump study Requirements

More information

SOLEIL Current Performances. And. Futur Developments

SOLEIL Current Performances. And. Futur Developments SOLEIL Current Performances And Futur Developments Amor Nadji On Behalf of the SOLEIL Team A. Nadji, ESLSXVIII, Trieste, November 25-26 2010 1 Main Parameters Energy (GeV) 2.75 Emittance H (nm.rad) 3.7

More information

A new extraction system for the upgraded AIC-144 cyclotron

A new extraction system for the upgraded AIC-144 cyclotron NUKLEONIKA 2001;46(2):51 57 ORIGINAL PAPER A new extraction system for the upgraded AIC-144 cyclotron Edmund Bakewicz, Krzysztof Daniel, Henryk Doruch, Jacek Sulikowski, Ryszard Taraszkiewicz, Nikolaj

More information

HIGH-ENERGY COLLIDER PARAMETERS: e + e Colliders (I)

HIGH-ENERGY COLLIDER PARAMETERS: e + e Colliders (I) 28. High-energy collider parameters 1 HIGH-ENERGY COLLIDER PARAMETERS: e + e Colliders (I) Updated in early 2012 with numbers received from representatives of the colliders (contact J. Beringer, LBNL).

More information

Beam Dynamics Studies and Design Optimisation of New Low Energy Antiproton Facilities arxiv:1606.06697v1 [physics.acc-ph] 21 Jun 2016

Beam Dynamics Studies and Design Optimisation of New Low Energy Antiproton Facilities arxiv:1606.06697v1 [physics.acc-ph] 21 Jun 2016 Beam Dynamics Studies and Design Optimisation of New Low Energy Antiproton Facilities arxiv:606.06697v [physics.acc-ph] 2 Jun 206 Javier Resta-Lopez, James R. Hunt, Carsten P. Welsch Department of Physics,

More information

Institute of Accelerator Technologies of Ankara University and TARLA Facility

Institute of Accelerator Technologies of Ankara University and TARLA Facility Institute of Accelerator Technologies of Ankara University and TARLA Facility Avni Aksoy Ankara University avniaksoy@ankara.edu.tr On behalf of IAT & TARLA Team Contents Brief history of TAC project Institute

More information

Libera at ELETTRA: prehistory, history and present state

Libera at ELETTRA: prehistory, history and present state Libera at ELETTRA: prehistory, history and present state S. Cleva, S. Bassanese, R. De Monte, G. Gaio, M. Lonza, C. Scafuri Elettra - Sincrotrone Trieste 1 ELETTRA and FERMI@Elettra plants ELETTRA (SR):

More information

Mission: Cure, Research and Teaching. Marco Pullia Cnao design and commissioning

Mission: Cure, Research and Teaching. Marco Pullia Cnao design and commissioning CNAO design and commissioning Marco Pullia, CNAO Foundation What is the CNAO Foundation No profit organisation (Foundation) created with the financial law 2001 to build the national center for hadrontherapy

More information

Beam Energy (GeV) 2 Beam Current (ma) 400 Horizontal Emittance (nm) 16.960

Beam Energy (GeV) 2 Beam Current (ma) 400 Horizontal Emittance (nm) 16.960 7. Vacuum System 7.1 Introduction Beam lifetime and beam stability are of major importance to any synchrotron; the interaction of the stored particles with the residual gas molecules leads to particles

More information

K O M A C. Beam Commissioning of 100-MeV KOMAC Linac. Korea Multi-purpose Accelerator Complex 양 성 자 가 속 기 연 구 센 터

K O M A C. Beam Commissioning of 100-MeV KOMAC Linac. Korea Multi-purpose Accelerator Complex 양 성 자 가 속 기 연 구 센 터 LINAC14, Geneva Beam Commissioning of 100-MeV KOMAC Linac Yong-Sub Cho for KOMAC accelerator team September 2, 2014 KOMAC, KAERI 0 Outline KOrea Multi-purpose Accelerator Complex Facility Introduction

More information

Polarization Dependence in X-ray Spectroscopy and Scattering. S P Collins et al Diamond Light Source UK

Polarization Dependence in X-ray Spectroscopy and Scattering. S P Collins et al Diamond Light Source UK Polarization Dependence in X-ray Spectroscopy and Scattering S P Collins et al Diamond Light Source UK Overview of talk 1. Experimental techniques at Diamond: why we care about x-ray polarization 2. How

More information

Copyright. Ryoichi Miyamoto

Copyright. Ryoichi Miyamoto Copyright by Ryoichi Miyamoto 2008 The Dissertation Committee for Ryoichi Miyamoto certifies that this is the approved version of the following dissertation: Diagnostics of the Fermilab Tevatron Using

More information

X-Ray Free Electron Lasers

X-Ray Free Electron Lasers X-Ray Free Electron Lasers Lecture 1. Introduction. Acceleration of charged particles Igor Zagorodnov Deutsches Elektronen Synchrotron TU Darmstadt, Fachbereich 18 0. April 015 General information Lecture:

More information

How To Understand Light And Color

How To Understand Light And Color PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order

More information

THE TAIWAN LIGHT SOURCE AND SUPERCONDUCTING CAVITY

THE TAIWAN LIGHT SOURCE AND SUPERCONDUCTING CAVITY THE TAIWAN LIGHT SOURCE AND SUPERCONDUCTING CAVITY G.H. Luo, Ch. Wang, L.H. Chang, M.C. Lin, T.T. Yang and C.T. Chen SRRC, No. 1 R&D Road VI, HSIP, Hsinchu, Taiwan Abstract The Taiwan Light Source (TLS)

More information

Undulators at PETRA: Experience and Perspectives

Undulators at PETRA: Experience and Perspectives Undulators at PETRA: Experience and Perspectives Markus Tischer for the Insertion Devices Group at DESY 3-Way Meeting, Argonne, Aug 1 st - 2 nd 2013 Outline > PETRA III IDs > Commissioning experience >

More information

LHC optics measurement & correction procedures. M. Aiba, R. Calaga, A. Morita, R. Tomás & G. Vanbavinckhove

LHC optics measurement & correction procedures. M. Aiba, R. Calaga, A. Morita, R. Tomás & G. Vanbavinckhove LHC optics measurement & correction procedures M. Aiba, R. Calaga, A. Morita, R. Tomás & G. Vanbavinckhove Thanks to: I. Agapov, M. Bai, A. Franchi, M. Giovannozzi, V. Kain, G. Kruk, J. Netzel, S. Redaelli,

More information

FLS 2010 Storage Ring Working Group Session 4: Future ring technology and design issues

FLS 2010 Storage Ring Working Group Session 4: Future ring technology and design issues FLS 2010 Storage Ring Working Group Session 4: Future ring technology and design issues 10:45 11:10 Limits to achievable stability Glenn Decker, APS 11:10 11:35 Stability and alignment of NSLS II magnet

More information

Insertion Devices Lecture 4 Permanent Magnet Undulators. Jim Clarke ASTeC Daresbury Laboratory

Insertion Devices Lecture 4 Permanent Magnet Undulators. Jim Clarke ASTeC Daresbury Laboratory Insertion Devices Lecture 4 Permanent Magnet Undulators Jim Clarke ASTeC Daresbury Laboratory Introduction to Lecture 4 So far we have discussed at length what the properties of SR are, when it is generated,

More information

BEAM OPERATION OF THE PAL-XFEL INJECTOR TEST FACILITY

BEAM OPERATION OF THE PAL-XFEL INJECTOR TEST FACILITY Proceedings of FEL2014, Basel, Switzerland WEB02 BEAM OPERATION OF THE PAL-XFEL INJECTOR TEST FACILITY J.-H. Han, J. Hong, J. H. Lee, M. S. Chae, S. Y. Baek, H. J. Choi, T. Ha, J. Hu, W. H. Hwang, S. H.

More information

ELECTRON-CLOUD EFFECTS IN THE TESLA AND CLIC POSITRON DAMPING RINGS

ELECTRON-CLOUD EFFECTS IN THE TESLA AND CLIC POSITRON DAMPING RINGS ELECTRON-CLOUD EFFECTS IN THE TESLA AND CLIC POSITRON DAMPING RINGS D. Schulte, R. Wanzenberg 2, F. Zimmermann CERN, Geneva, Switzerland 2 DESY, Hamburg, Germany Abstract Damping rings reduce the emittances

More information

OVERVIEW OF PROTON DRIVERS FOR NEUTRINO SUPER BEAMS AND NEUTRINO FACTORIES*

OVERVIEW OF PROTON DRIVERS FOR NEUTRINO SUPER BEAMS AND NEUTRINO FACTORIES* FERMILAB-CONF-06-213-AD OVERVIEW OF PROTON DRIVERS FOR NEUTRINO SUPER BEAMS AND NEUTRINO FACTORIES* W. Chou #, Fermilab, Batavia, IL 60510, U.S.A. Abstract There has been a world-wide interest in Proton

More information

View of ΣIGMA TM (Ref. 1)

View of ΣIGMA TM (Ref. 1) Overview of the FESEM system 1. Electron optical column 2. Specimen chamber 3. EDS detector [Electron Dispersive Spectroscopy] 4. Monitors 5. BSD (Back scatter detector) 6. Personal Computer 7. ON/STANDBY/OFF

More information

ULTRAFAST LASERS: Free electron lasers thrive from synergy with ultrafast laser systems

ULTRAFAST LASERS: Free electron lasers thrive from synergy with ultrafast laser systems Page 1 of 6 ULTRAFAST LASERS: Free electron lasers thrive from synergy with ultrafast laser systems Free electron lasers support unique time-resolved experiments over a wide range of x-ray wavelengths,

More information

Cathode Ray Tube. Introduction. Functional principle

Cathode Ray Tube. Introduction. Functional principle Introduction The Cathode Ray Tube or Braun s Tube was invented by the German physicist Karl Ferdinand Braun in 897 and is today used in computer monitors, TV sets and oscilloscope tubes. The path of the

More information

Status of the FERMI@Elettra Free Electron Laser

Status of the FERMI@Elettra Free Electron Laser Status of the FERMI@Elettra Free Electron Laser E. Allaria on behalf of the FERMI team Work partially supported by the Italian Ministry of University and Research under grants FIRB-RBAP045JF2 and FIRB-RBAP06AWK3

More information

STATUS OF THE SISjESR-FACILITY AT GSI-DARMSTADT

STATUS OF THE SISjESR-FACILITY AT GSI-DARMSTADT Particle Accelerators, 1990, Vol. 32, pp. 83-90 Reprints available directly from the publisher Photocopying permitted by license only 1990 Gordon and Breach, Science Publishers, nc. Printed in the United

More information

Relativistic kinematics basic energy, mass and momentum units, Lorents force, track bending, sagitta. First accelerator: cathode ray tube

Relativistic kinematics basic energy, mass and momentum units, Lorents force, track bending, sagitta. First accelerator: cathode ray tube Accelerators Relativistic kinematics basic energy, mass and momentum units, Lorents force, track bending, sagitta Basic static acceleration: First accelerator: cathode ray tube Cathode C consist of a filament,

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2014

Candidate Number. General Certificate of Education Advanced Level Examination June 2014 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday

More information

Status of High Current Ion Sources. Daniela Leitner Lawrence Berkeley National Laboratory

Status of High Current Ion Sources. Daniela Leitner Lawrence Berkeley National Laboratory http://ecrgroup.lbl.gov Status of High Current Ion Sources Daniela Leitner Lawrence Berkeley National Laboratory October, 27th, 2003 1 Content Overview of available high current sources Requirements for

More information

Reliability and Availability Aspects of. the IPHI Project

Reliability and Availability Aspects of. the IPHI Project Reliability and Availability Aspects of the IPHI Project Pierre-Yves Beauvais CEA/DSM/DAPNIA for the IPHI Team 18/02/2002 Pierre-Yves Beauvais, CEA Saclay 1 Table of contents Brief description of IPHI

More information

Activities at the University of Frankfurt (IAP)

Activities at the University of Frankfurt (IAP) Activities at the University of Frankfurt (IAP) Holger Podlech Ulrich Ratzinger Oliver Kester Institut für Angewandte Physik (IAP) Goethe-Universität Frankfurt am Main H. Podlech 1 Development of 325 MHz

More information

Machine Protection and Interlock Systems for Circular Machines Example for LHC

Machine Protection and Interlock Systems for Circular Machines Example for LHC Published by CERN in the Proceedings of the Joint International Accelerator School: Beam Loss and Accelerator Protection, Newport Beach, US, 5 14 November 2014, edited by R. Schmidt, CERN-2016-002 (CERN,

More information

Results and Plans for April 2013

Results and Plans for April 2013 Results and Plans for April 3 Start-to-End Simulations Igor Zagorodnov Deutsches Elektronen Synchrotron, Hamburg, Germany SE Meeting, DESY 8. April 3 Plan/Results for March 3 FLASH simulations with Elegant

More information

Experiment 5. Lasers and laser mode structure

Experiment 5. Lasers and laser mode structure Northeastern University, PHYS5318 Spring 2014, 1 1. Introduction Experiment 5. Lasers and laser mode structure The laser is a very important optical tool that has found widespread use in science and industry,

More information

CLS Beamline Remote Control Project. E. Matias Canadian Light Source University of Saskatchewan

CLS Beamline Remote Control Project. E. Matias Canadian Light Source University of Saskatchewan CLS Beamline Remote Control Project E. Matias Canadian Light Source University of Saskatchewan Background on CLS Accelerator Complex 1964 Saskatchewan Accelerator Lab (SAL) was established for chemistry

More information

Shielding and Radiation Measurements at ESRF

Shielding and Radiation Measurements at ESRF Shielding and Radiation Measurements at ESRF Radiation Safety Meeting SOLEIL Synchrotron, 18 October 26 P. Berkvens European Synchrotron Radiation Facility Radiation protection policy at the ESRF Storage

More information

The BESSY HOM Damped Cavity with Ferrite Absorbers. Review of prototype cavity test results, taperedwaveguidesvshomogenouswaveguides

The BESSY HOM Damped Cavity with Ferrite Absorbers. Review of prototype cavity test results, taperedwaveguidesvshomogenouswaveguides The BESSY HOM Damped Cavity with Ferrite Absorbers E. Weihreter / BESSY Review of prototype cavity test results, taperedwaveguidesvshomogenouswaveguides Design of a ferrite loaded ridged circular waveguide

More information

Wir schaffen Wissen heute für morgen

Wir schaffen Wissen heute für morgen Diffractive optics for photon beam diagnostics at hard XFELs Wir schaffen Wissen heute für morgen PSI: SLAC: ESRF: SOLEIL: APS: SACLA: EuroXFEL C. David, S. Rutishauser, P. Karvinen, Y. Kayser, U. Flechsig,

More information

1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D

1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be

More information

Status of the HOM Damped Cavity for the Willy Wien Ring

Status of the HOM Damped Cavity for the Willy Wien Ring Status of the HOM Damped Cavity for the Willy Wien Ring Ernst Weihreter / BESSY Short Review of HOM Damped Cavity Prototype Modifications for the Willy Wien Ring Cavity Results of Low Power Measurements

More information

Tune and Chromaticity Tracking in the Tevatron. C.Y. Tan 09 May 2006

Tune and Chromaticity Tracking in the Tevatron. C.Y. Tan 09 May 2006 Tune and Chromaticity Tracking in the Tevatron C.Y. Tan 09 May 2006 Overview What is the Tevatron tune tracker? Selected results from some stores. (There are many stores with TT running). Planned chromaticity

More information

Towards large dynamic range beam diagnostics and beam dynamics studies. Pavel Evtushenko

Towards large dynamic range beam diagnostics and beam dynamics studies. Pavel Evtushenko Towards large dynamic range beam diagnostics and beam dynamics studies Pavel Evtushenko Motivation Linacs with average current 1-2 ma and energy 1-2.5 GeV are envisioned as drivers for next generation

More information

LHC MACHINE PROTECTION

LHC MACHINE PROTECTION LHC MACHINE PROTECTION Rossano Giachino, CERN, Geneva, Switzerland Abstract The energy stored in LHC magnets presents a considerable challenge for commissioning even before any beam is injected. Furthermore,

More information

Development of a Low Frequency Superconducting RF Electron Gun. September 2010

Development of a Low Frequency Superconducting RF Electron Gun. September 2010 Development of a Low Frequency Superconducting RF Electron Gun Contract DE-FG02-07ER84861 07ER84861 Terry Grimm September 2010 Outline Collaboration Concept Scientific justification Design electromagnetic

More information

Study of electron cloud at MI and slip stacking process simulation

Study of electron cloud at MI and slip stacking process simulation Study of electron cloud at MI and slip stacking process simulation Alexandr S. Valkovich Purpose 1.Understand the slip stacking process which happens in the Main Injector. 2. Calculation of bunch distortion

More information

Charged Particle in a Magnetic Field

Charged Particle in a Magnetic Field Charged Particle in a Magnetic Field Consider a particle moving in an external magnetic field with its velocity perpendicular to the field The force is always directed toward the center of the circular

More information

Lab 4: Magnetic Force on Electrons

Lab 4: Magnetic Force on Electrons Lab 4: Magnetic Force on Electrons Introduction: Forces on particles are not limited to gravity and electricity. Magnetic forces also exist. This magnetic force is known as the Lorentz force and it is

More information

Short overview of TEUFEL-project

Short overview of TEUFEL-project Short overview of TEUFEL-project ELAN-meeting may 2004 Frascati (I) Contents Overview of TEUFEL project at Twente Photo cathode research Recent experience Outlook Overview FEL Drive laser Photo cathode

More information

Time out states and transitions

Time out states and transitions Time out states and transitions Spectroscopy transitions between energy states of a molecule excited by absorption or emission of a photon hn = DE = E i - E f Energy levels due to interactions between

More information

Development of Virtual Accelerator Environment for Beam Diagnostics *

Development of Virtual Accelerator Environment for Beam Diagnostics * Development of Virtual Accelerator Environment for Beam Diagnostics * Gu Duan, Zhang Meng, Gu Qiang, Huang Dazhang, Zhao Minghua (Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai

More information

Accelerator Design for Proton Therapy

Accelerator Design for Proton Therapy Accelerator Design for Proton Therapy 1. In 1998 OCPA school, Profs. Yuzheng Lin (Tsing-Hua Univ, China) and Frank K.H. Ngo (Yang-Ming Univ, Taiwan) gave three excellent LECTURES on Medical applications,

More information

SYNCHROTRON RADIATION PROJECTS OF INDUSTRIAL INTEREST

SYNCHROTRON RADIATION PROJECTS OF INDUSTRIAL INTEREST SYNCHROTRON RADIATION PROJECTS OF INDUSTRIAL INTEREST N. Marks, CLRC Daresbury Laboratory, Warrington WA4 4AD, UK Abstract The paper briefly reviews the nature and generation of synchrotron radiation.

More information

11th International Computational Accelerator Physics Conference (ICAP) August 19 24, 2012, Rostock-Warnemünde (Germany)

11th International Computational Accelerator Physics Conference (ICAP) August 19 24, 2012, Rostock-Warnemünde (Germany) Numerical Modeling of RF Electron Sources for FEL-Accelerators Erion Gjonaj Computational Electromagetics Laboratory (TEMF), Technische Universität Darmstadt, Germany 11th International Computational Accelerator

More information

MYRRHA Injector Design

MYRRHA Injector Design MYRRHA Injector Design Horst Klein Dominik Mäder, Holger Podlech, Ulrich Ratzinger, Alwin Schempp, Rudolf Tiede, Markus Vossberg, Chuan Zhang Institute for Applied Physics, Goethe-University Frankfurt

More information

The ithemba LABS Radioactive Beam Project. R A Bark

The ithemba LABS Radioactive Beam Project. R A Bark The ithemba LABS Radioactive Beam Project R A Bark Scientific Committee Local Committee Rob Bark Krish Bharuth-Ram Pete Jones Steve Karataglidis Kobus Lawrie Rudzani Nemutudi Rudolf Nchodu Paul Papka Carlos

More information

ALIGNMENT FOR NEW SUBARU RING

ALIGNMENT FOR NEW SUBARU RING ALIGNMENT FOR NEW SUBARU RING Chao ZHANG 1), Sakuo MATSUI 1) and Satoshi HASHIMOTO 2) 1) Japan Synchrotron Radiation Research Institute (JASRI), Sayo-gun, Hyogo 678-5198, Japan 2) Himeji Institute of Technology,

More information

Technical Report FP-2010-06. Simple injector for high-current sheet electron beams

Technical Report FP-2010-06. Simple injector for high-current sheet electron beams Technical Report FP-2010-06 Simple injector for high-current sheet electron beams Stanley Humphries, Ph.D. Field Precision LLC Albuquerque, New Mexico U.S.A. December 2010 1 Figure 1: Model electron trajectories

More information

STUDY OF THE TRANSVERSE BEAM EMITTANCE OF THE BERN MEDICAL CYCLOTRON

STUDY OF THE TRANSVERSE BEAM EMITTANCE OF THE BERN MEDICAL CYCLOTRON Proceedings of IBIC15, Melbourne, Australia - Pre-Release Snapshot 17-Sep-15 1:3 MOPB41 STUDY OF THE TRANSVERSE BEAM EMITTANCE OF THE BERN MEDICAL CYCLOTRON K. P. Nesteruka,, M. Augera, S. Braccinia, T.

More information

Status And Future Plans. Mitsuyoshi Tanaka. AGS Department.Brookhaven National Laboratory* Upton NY 11973, USA INTRODUCTION

Status And Future Plans. Mitsuyoshi Tanaka. AGS Department.Brookhaven National Laboratory* Upton NY 11973, USA INTRODUCTION 6th Conference on the Intersections of Particle & Nuclear Physics Big Sky, Montana May 27-June 2, 1997 / BNL-6 40 4 2 c0,lvf- 7 70 5 The BNL AGS Accelerator Complex Status And Future Plans Mitsuyoshi Tanaka

More information

FLASH Commissioning and Startup

FLASH Commissioning and Startup FLASH Seminar 8-May-2007, DESY FLASH Commissioning and Startup email: siegfried.schreiber@desy.de Commissioning Startup Accelerator/FEL Studies Main Commissioning Tasks Modules: RF/LLRF warm/cold coupler

More information

Introduction. Magnet Coordinate System

Introduction. Magnet Coordinate System 283 Fiducialization Procedures for the ALS Ring Magnets and the Booster Synchrotron Girders Jack Tanabe, Roderich Keller and Ted Lauritzen Lawrence Berkeley Laboratory, Berkeley, CA 94720, U. S. A. Introduction

More information

HIGH CURRENT OPERATION OF THE ACSI TR30 CYCLOTRON

HIGH CURRENT OPERATION OF THE ACSI TR30 CYCLOTRON HIGH CURRENT OPERATION OF THE ACSI TR30 CYCLOTRON 18 th International Conference on Cyclotrons and their Applications, Sicily, 2007 Vasile Sabaiduc, Project Manager, RF Senior Engineer Advanced Cyclotron

More information

An example: helium isotopes. An example: helium isotopes. Limits to Detection/Measurement. Lecture 14 Measurements II: Mass spectrometry

An example: helium isotopes. An example: helium isotopes. Limits to Detection/Measurement. Lecture 14 Measurements II: Mass spectrometry Limits to Detection/Measurement Ionization is fundamentally a Probabilistic Process Just like radioactive decay So is transmission through the analyzer There is an intrinsic statistical uncertainty Proportional

More information

ESRF OPTICAL METROLOGY APPLIED TO BENDABLE OPTICAL SURFACES

ESRF OPTICAL METROLOGY APPLIED TO BENDABLE OPTICAL SURFACES ESRF OPTICAL METROLOGY APPLIED TO BENDABLE OPTICAL SURFACES ACTOP8 Trieste Italy, October 9-11, 28 Amparo Rommeveaux Raymond Barrett Robert Baker Slide: 1 Amparo Rommeveaux ACTOP8, Trieste 1 October, 28

More information

Monitoring and Controlling Particle Beams in Real Time

Monitoring and Controlling Particle Beams in Real Time Monitoring and Controlling Particle Beams in Real Time Application Note High-performance digitizers enhance beam quality in advanced applications High-energy particle accelerators are helping researchers

More information

AUTOMATION OF OPERATIONS ON THE VEPP-4 CONTROL SYSTEM

AUTOMATION OF OPERATIONS ON THE VEPP-4 CONTROL SYSTEM 10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 10-14 Oct 2005, PO1.072-7 (2005) AUTOMATION OF OPERATIONS ON THE VEPP-4 CONTROL SYSTEM A. Bogomyagkov, S. Karnaev,

More information

Review Questions PHYS 2426 Exam 2

Review Questions PHYS 2426 Exam 2 Review Questions PHYS 2426 Exam 2 1. If 4.7 x 10 16 electrons pass a particular point in a wire every second, what is the current in the wire? A) 4.7 ma B) 7.5 A C) 2.9 A D) 7.5 ma E) 0.29 A Ans: D 2.

More information

Systems, Inc. Energy Advanced

Systems, Inc. Energy Advanced Systems, Inc. nergy Advanced ADVAND NRGY SYSTMS, IN Our Mission To be the supplier of choice for advanced radiation sources, high brightness commercial accelerator applications, government accelerator

More information

il nostro mondo ALBA, the Spanish Light Source Caterina Biscari, Salvador Ferrer, CELLS-ALBA*, Cerdanyola del Vallès, Barcelona, Spain

il nostro mondo ALBA, the Spanish Light Source Caterina Biscari, Salvador Ferrer, CELLS-ALBA*, Cerdanyola del Vallès, Barcelona, Spain il nostro mondo ALBA, the Spanish Light Source Caterina Biscari, Salvador Ferrer, GastóN García, INmaculaDa Ramos CELLS-ALBA*, Cerdanyola del Vallès, Barcelona, Spain ALBA is the Spanish 3rd-generation

More information

Physics 441/2: Transmission Electron Microscope

Physics 441/2: Transmission Electron Microscope Physics 441/2: Transmission Electron Microscope Introduction In this experiment we will explore the use of transmission electron microscopy (TEM) to take us into the world of ultrasmall structures. This

More information

Status Report on Tools Development. Work done by O. Hensler, R. Kammering, T. Limberg, S. Meykopff, C. Schmidt, M. Tischer, M. Vogt and many more

Status Report on Tools Development. Work done by O. Hensler, R. Kammering, T. Limberg, S. Meykopff, C. Schmidt, M. Tischer, M. Vogt and many more Status Report on Tools Development Work done by O. Hensler, R. Kammering, T. Limberg, S. Meykopff, C. Schmidt, M. Tischer, M. Vogt and many more Outline > Status old tools : Orbit Feedback Slow Longitudinal

More information

Physics and Technology of Particle Accelerators Basics, Overview and Outlook Simone Di Mitri, Elettra Sincrotrone Trieste University of Trieste, Dept. of Engineering 1 Prologue This seminar samples the

More information

Cryogenic Current Comparator Status at GSI/FAIR -

Cryogenic Current Comparator Status at GSI/FAIR - Cryogenic Current Comparator Status at GSI/FAIR - Outline Overview and timeline of the FAIR project at GSI Cryogenic Current Comparators as German In-Kind to FAIR CCCs in HEBT section of FAIR CCC inside

More information

Calculation of Eigenmodes in Superconducting Cavities

Calculation of Eigenmodes in Superconducting Cavities Calculation of Eigenmodes in Superconducting Cavities W. Ackermann, C. Liu, W.F.O. Müller, T. Weiland Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt Status Meeting December

More information

LEReC Engineering. J. Tuozzolo, C-AD Chief Mechanical Engineer (LEReC Project Engineer)

LEReC Engineering. J. Tuozzolo, C-AD Chief Mechanical Engineer (LEReC Project Engineer) LEReC Engineering J. Tuozzolo, C-AD Chief Mechanical Engineer (LEReC Project Engineer) Layout, Infrastructure, and Engineering IP 2:00 location - available. Engineering interface issues. Engineering support

More information

Low-loss design for the high-intensity accumulator ring of the Spallation Neutron Source

Low-loss design for the high-intensity accumulator ring of the Spallation Neutron Source PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 3, 811 (2) Low-loss design for the high-intensity accumulator ring of the Spallation Neutron Source J. Wei, D. T. Abell, J. Beebe-Wang, M.

More information

6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?

6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm? Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes through

More information

THE ALIGNMENT STRATEGY FOR THE SPIRAL2 SUPERCONDUCTING LINAC CRYOMODULES

THE ALIGNMENT STRATEGY FOR THE SPIRAL2 SUPERCONDUCTING LINAC CRYOMODULES THE ALIGNMENT STRATEGY FOR THE SPIRAL2 SUPERCONDUCTING LINAC CRYOMODULES R. Beunard, GANIL, BP 55027, 14076 CAEN, CEDEX 5, France Abstract The SPIRAL2* project, located at the GANIL** facility in Caen,

More information

SOLUTIONS TO CONCEPTS CHAPTER 15

SOLUTIONS TO CONCEPTS CHAPTER 15 SOLUTIONS TO CONCEPTS CHAPTER 15 1. v = 40 cm/sec As velocity of a wave is constant location of maximum after 5 sec = 40 5 = 00 cm along negative x-axis. [(x / a) (t / T)]. Given y = Ae a) [A] = [M 0 L

More information

Instrumenter til E-XFEL. Martin Meedom Nielsen Section for Neutrons and X-rays for Materials Physics

Instrumenter til E-XFEL. Martin Meedom Nielsen Section for Neutrons and X-rays for Materials Physics Instrumenter til E-XFEL Martin Meedom Nielsen Section for Neutrons and X-rays for Materials Physics Enlightening Science European XFEL a leading new research facility 2 The European XFEL (X-Ray Free-Electron

More information

Dissertation. submitted to the. Combined Faculties for the Natural Sciences and Mathematics. of the Ruperto-Carola University of Heidelberg, Germany

Dissertation. submitted to the. Combined Faculties for the Natural Sciences and Mathematics. of the Ruperto-Carola University of Heidelberg, Germany Dissertation submitted to the Combined Faculties for the Natural Sciences and Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences Presented

More information

THE DUKE FEL LIGHT SOURCE FACILITY

THE DUKE FEL LIGHT SOURCE FACILITY THE DUKE FEL LIGHT SOURCE FACILITY J. M. J. Madey, Director, and the Faculty and Staff of the FEL Laboratory PO Box 90319, Duke University, Durham, NC 27708 Abstract FEL research has proceeded during the

More information

High Power Neutral Beam Injection in LHD

High Power Neutral Beam Injection in LHD JP0655016 High Power Neutral Beam Injection in LHD K. Tsumori, Y. Takeiri, K. Nagaoka, K. Ikeda, M. Osakabe, Y. Oka, O. Kaneko, M. Shibuya, T. Kondo, M. Sato and E. Asano. National Institute for Fusion

More information

3 - Atomic Absorption Spectroscopy

3 - Atomic Absorption Spectroscopy 3 - Atomic Absorption Spectroscopy Introduction Atomic-absorption (AA) spectroscopy uses the absorption of light to measure the concentration of gas-phase atoms. Since samples are usually liquids or solids,

More information