Modeling Human Walking: Position and Velocity Graphs


 Veronica Hamilton
 11 months ago
 Views:
Transcription
1 HPP A3v1 Modeling Human Walking: Position and Velocity Graphs In this activity we will investigate the relationship between positiontime graphs and velocitytime graphs for a walking person. Materials DataStudio software motion detector number line on floor in meters (optional) Exploration You have looked at position and velocitytime graphs separately. Now you will see how they are related. GE 1. Predicting Velocity Graphs from Position Graphs 1. Suppose you are looking at a graph of position versus time for a person walking in a straight line. Would this graph allow you to make predictions for the shape of the velocitytime graph? Explain. 2. Download the DataStudio file dist_vel.ds, or set up DataStudio to show both positiontime and velocitytime graphs. 3. Carefully study the position graph shown below and predict the velocitytime graph that would result from the motion. Sketch your prediction of the corresponding velocitytime graph on the velocity axes. Be as quantitative as possible! Supported in part by NSFCCLI Program under grants DUE # and DUE #
2 HPP A3v Make the graphs. After each person has sketched a prediction, Start, and do your group's best to make a position graph like the one shown. Walk as smoothly as possible. When you have made a good duplicate of the position graph, paste the postion and velocitytime graphs in the table below. Paste the positiontim graph here. Paste the velocitytime graph here. 5. How would the position graph be different if you moved faster? Slower? 6. How would the velocity graph be different if you moved faster? Slower? Invention GE Make a general statement that describes how a velocitytime graph for a person walking in a straight line is related to the positiontime graph of the person. 2. Discuss your answer with the instructor. Note any changes you want to make in the statement here. GE 3. Estimating and Calculating Velocity
3 HPP A3v1 3 In this activity, you will estimate a statistical average velocity from the velocity graph in Activity 1. Then, we will introduce a new physics concept also called average velocity, which is different from a simple statistical average or mean. We will calculate this physics average velocity using your position graph. 1. Estimate your average velocity from your velocity graph in Activity 1. You are to estimate an average value for velocity while you were walking steadily in Activity 1. Select Examine in the Analysis Menu, then drag the mouse over the graph and read a number of values (at least five) from the velocity graph, and use them to calculate the average (mean) velocity. Make sure you indicate the velocity units in the proper column heading. Also estimate the uncertainty in the mean. Velocity values read from graph: Velocity ( ) Definition Statistical Average value of the velocity: ( ) Statistical uncertainty in the mean: ( ) The physics average velocity during a particular time interval is the change of position divided by the change in time. By definition, this is also the (average) slope of the positiontime graph for that time period. As you have observed, the faster you move, the more inclined is your positiontime graph. The slope of a positiontime graph is a quantitative measure of this incline, and therefore it tells you the velocity of the object. 2. Calculate your physics average velocity from your position graph in Activity 1. Use the Smart Tool to read the position and time coordinates for two typical points while you were moving. For a more accurate answer, use two points as far apart as possible but still typical of the motion, and within the time interval over which you took velocity readings in (1). Remember to include units in the parentheses! Point 1 Position ( ) Time ( ) Point 2 Position ( ) Time ( ) Change in position: Change in time: ( ) ( )
4 HPP A3v1 4 Physics Average velocity : ( ) Calculate the change in position between points 1 and 2. Also calculate the corresponding change in time (time interval). Divide the change in position by the change in time to calculate the (physics) average velocity. Show your calculations in the table above. 3. Is the average velocity positive or negative? 4. Does the (physics) average velocity you just calculated from the position graph agree with the (statistical) average velocity you estimated from the velocity graph? Do you expect them to agree? How would you account for any differences? Application GE The figure below shows the positiontime graph of a person walking in a straight line. Sketch the corresponding velocitytime graph X [m] t [s] 3 2 V [m/s] t [s] 2. What is the (physics) average velocity between 0.50 [s] and 1.0 [s] for the person whose motion is shown in the graph above?
5 HPP A3v1 5 Application GE 5. Predicting Position Graphs from Velocity Graphs Predict a position(position)time graph from a velocitytime graph. Carefully study the velocity graph below. Using a dotted line, sketch your prediction of the corresponding position graph on the bottom set of axes. (Assume that you started at the 1meter mark.) 2. Make the graphs. After you have sketched a prediction do your group's best to duplicate the top (velocitytime) graph by walking. (Make sure the Time axis is set 0 to 10 sec before you start. Ask your instructor how to do this!) When you have made a good duplicate of the velocitytime graph, paste your graph here. 3. How can you tell from a velocitytime graph that the moving object has changed direction?
6 HPP A3v What is the velocity at the moment the direction changes? 5. Is there something about the velocitytime graph above that is physically impossible? 6. How can you tell from a positiontime graph that your motion is steady (motion at a constant velocity)? 7. How can you tell from a velocitytime graph that your motion is steady?
LAB 1: INTRODUCTION TO MOTION
Name Date Partners V1 OBJECTIVES OVERVIEW LAB 1: INTRODUCTION TO MOTION To discover how to measure motion with a motion detector To see how motion looks as a positiontime graph To see how motion looks
More informationWEEK 2: INTRODUCTION TO MOTION
Names Date OBJECTIVES WEEK 2: INTRODUCTION TO MOTION To discover how to use a motion detector. To explore how various motions are represented on a distance (position) time graph. To explore how various
More informationUnit 2 Kinematics Worksheet 1: Position vs. Time and Velocity vs. Time Graphs
Name Physics Honors Pd Date Unit 2 Kinematics Worksheet 1: Position vs. Time and Velocity vs. Time Graphs Sketch velocity vs. time graphs corresponding to the following descriptions of the motion of an
More informationKinematics 1D ~ Lab. 4. What was the average speed of the truck for the six seconds? show your work here.
Kinematics 1D ~ Lab Name: Instructions: Using a pencil, answer the following questions. The lab is marked based on clarity of responses, completeness, neatness, and accuracy. Do your best! Part 1: Graphing
More informationThe Jumping Human: Projectile Motion
HPP A8 The Jumping Human: Projectile Motion Our goal in this activity is to use what we've learned for one dimensional motion, to help us understand the motion of humans when airborne, such as divers,
More informationLAB 1 Graphing techniques and the acceleration of objects in free fall on Planet 'X' by R.E.Tremblay
Purpose: To learn how to make position and velocity verses time graphs when given the position of an object at various times. You will also learn how to determine initial velocity and acceleration from
More informationGraphing Motion. Every Picture Tells A Story
Graphing Motion Every Picture Tells A Story Read and interpret motion graphs Construct and draw motion graphs Determine speed, velocity and accleration from motion graphs If you make a graph by hand it
More informationMotion Graphs. Plotting distance against time can tell you a lot about motion. Let's look at the axes:
Motion Graphs 1 Name Motion Graphs Describing the motion of an object is occasionally hard to do with words. Sometimes graphs help make motion easier to picture, and therefore understand. Remember: Motion
More informationLAB 6  GRAVITATIONAL AND PASSIVE FORCES
L061 Name Date Partners LAB 6  GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies
More informationThe figure shows the position vs. time graphs of two objects A and B moving along xaxis for 5 seconds.
Velocity from position vs. time graph The figure shows the position vs. time graphs of two objects A and B moving along xaxis for 5 seconds. (a) Do objects A and B moving along a straight line? Explain?
More informationLAB 6: GRAVITATIONAL AND PASSIVE FORCES
55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction
More informationHOMEWORK FOR UNIT 51: FORCE AND MOTION
Name Date Partners HOMEWORK FOR UNIT 51: FORCE AND MOTION 1. You are given ten identical springs. Describe how you would develop a scale of force (ie., a means of producing repeatable forces of a variety
More informationAcceleration of Gravity
Acceleration of Gravity Introduction: In this experiment, several objects' motion are studied by making several measurements of the objects position (or displacement) at different times. Since the objects
More informationGRAPH MATCHING EQUIPMENT/MATERIALS
GRAPH MATCHING LAB MECH 6.COMP. From Physics with Computers, Vernier Software & Technology, 2000. Mathematics Teacher, September, 1994. INTRODUCTION One of the most effective methods of describing motion
More informationCHAPTER 2 TEST REVIEW  ANSWER KEY
AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 MultiResponse Free Response 3 Short Free Response 2 Long Free Response DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM CHAPTER TEST
More information1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time
PHY132 Experiment 1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time One of the most effective methods of describing motion is to plot graphs of distance, velocity, and acceleration
More informationA Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion
A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for
More informationlanguage Vectors, Scalars, Distance, Displacement, Speed, Velocity, Acceleration
I. Mechanics the study of the motion of objects introduction to the language Vectors, Scalars, Distance, Displacement, Speed, Velocity, Acceleration 1 Describing motion is a mathematical science. The underlying
More informationACCELERATION DUE TO GRAVITY
EXPERIMENT 1 PHYSICS 107 ACCELERATION DUE TO GRAVITY Skills you will learn or practice: Calculate velocity and acceleration from experimental measurements of x vs t (spark positions) Find average velocities
More informationFREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5
Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities
More informationInstitute for Teaching through Technology and Innovative Practices at Longwood University Grade 8
Institute for Teaching through Technology and Innovative Practices at Longwood University Grade 8 Speed, Velocity, and Acceleration Major Topic and SOL: Science SOL Length of Unit: Speed, Velocity, and
More informationNewton s Second Law. Evaluation copy
Newton s Second Law Experiment 4 INTRODUCTION In your discussion of Newton s first law, you learned that when the sum of the forces acting on an object is zero, its velocity does not change. However, when
More informationGraph Matching. walk back and forth in front of Motion Detector
Experiment 1 One of the most effective methods of describing motion is to plot graphs of distance, velocity, and acceleration vs. time. From such a graphical representation, it is possible to determine
More informationEXCEL EXERCISE AND ACCELERATION DUE TO GRAVITY
EXCEL EXERCISE AND ACCELERATION DUE TO GRAVITY Objective: To learn how to use the Excel spreadsheet to record your data, calculate values and make graphs. To analyze the data from the Acceleration Due
More informationEquations: Average Speed (v) = distance time Velocity = displacement time Acceleration = V f  V i time
Motion (Speed, Velocity, Acceleration) Test Review Name _Riehbrandt Key for student use_ Physical Science Riehbrandt Hr. Equations: Average Speed (v) = distance time Velocity = displacement time Acceleration
More informationVelocity Test: Interpreting Velocity Graphs
Velocity Test: Interpreting Velocity Graphs Activity 3 When you walk, ride a bike, or travel in a car, you are often interested in the distance traveled, the time it took, and the speed or velocity of
More informationPositiontime and velocitytime graphs Uniform motion problems algebra Acceleration and displacement
Positiontime and velocitytime graphs Uniform motion problems algebra Acceleration and displacement Topics: The kinematics of motion in one dimension: graphing and calculations Problemsolving strategies
More informationOneDimensional Kinematics
OneDimensional Kinematics Copyright 2010 Pearson Education, Inc. Position, Distance, and Displacement Average Speed and Velocity Instantaneous Velocity Acceleration Motion with Constant Acceleration Applications
More informationFrom Motion diagrams to Position and Velocity Graphs
From Motion diagrams to Position and Velocity Graphs Name: Group Members: Date: TA s Name: Apparatus: Aluminum track and a support, cart, plastic ruler, tape timer, and pencil Objectives: 1) To be familiar
More information1.3.1 Position, Distance and Displacement
In the previous section, you have come across many examples of motion. You have learnt that to describe the motion of an object we must know its position at different points of time. The position of an
More information4. Analysis of Standing Vertical Jumps Using a Force Platform
4. Analysis of Standing Vertical Jumps Using a Force Platform OBJECTIVES To examine a standing vertical jump from the viewpoints of forcetime, velocitytime, positiontime, and forceposition. To develop
More informationExperiment: Static and Kinetic Friction
PHY 201: General Physics I Lab page 1 of 6 OBJECTIVES Experiment: Static and Kinetic Friction Use a Force Sensor to measure the force of static friction. Determine the relationship between force of static
More informationSome practice with velocity and position graphs
Some practice with velocity and position graphs Position to Velocity The main idea here is that the velocity is the rate of change of the position. A large velocity means the position changes fast, a big
More informationMechanics Cycle 2 Chapter 2+ Chapter 2+
Chapter 2+ 1D Constant Acceleration: Throwup and Catchup Revisit: Constant acceleration in 1D Learn: 1D Throwup problems: Knowing what variables to look for Catchup: Intersections of two 1D trajectories
More informationSimple Harmonic Motion
Simple Harmonic Motion 9M Object: Apparatus: To determine the force constant of a spring and then study the harmonic motion of that spring when it is loaded with a mass m. Force sensor, motion sensor,
More informationComputer Experiment. Simple Harmonic Motion. Kinematics and Dynamics of Simple Harmonic Motion. Evaluation copy
INTRODUCTION Simple Harmonic Motion Kinematics and Dynamics of Simple Harmonic Motion Computer Experiment 16 When you suspend an object from a spring, the spring will stretch. If you pull on the object,
More informationINTRODUCTION TO FORCE Investigation 1: Examining our initial ideas about force
31 To explore INTRODUCTION TO FORCE Investigation 1: Examining our initial ideas about force Our ideas about the connection between forces and various states of motion or of rest. Introduction We have
More informationEXPERIMENT 2: FREE FALL and PROJECTILE MOTION
TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 2: FREE FALL and PROJECTILE MOTION ONE AND TWODIMENSIONAL KINEMATICS WITH GRAVITY 117 Textbook Reference:
More informationSIMPLE HARMONIC MOTION
SIMPLE HARMONIC MOTION PURPOSE The purpose of this experiment is to investigate one of the fundamental types of motion that exists in nature  simple harmonic motion. The importance of this kind of motion
More informationAcceleration of Gravity Lab Basic Version
Acceleration of Gravity Lab Basic Version In this lab you will explore the motion of falling objects. As an object begins to fall, it moves faster and faster (its velocity increases) due to the acceleration
More informationWEEK 6: FORCE, MASS, AND ACCELERATION
Name Date Partners WEEK 6: FORCE, MASS, AND ACCELERATION OBJECTIVES To develop a definition of mass in terms of an object s acceleration under the influence of a force. To find a mathematical relationship
More informationExperiment P007: Acceleration due to Gravity (Free Fall Adapter)
Experiment P007: Acceleration due to Gravity (Free Fall Adapter) EQUIPMENT NEEDED Science Workshop Interface Clamp, right angle Base and support rod Free fall adapter Balls, 13 mm and 19 mm Meter stick
More informationThe Nerve as a Capacitor
HPP Activity 72v1 The Nerve as a Capacitor Exploration  How Does a Neuron Transmit a Signal? Electrical processes are essential to the working of the human body. The transmission of information in the
More informationThe slope m of the line passes through the points (x 1,y 1 ) and (x 2,y 2 ) e) (1, 3) and (4, 6) = 1 2. f) (3, 6) and (1, 6) m= 6 6
Lines and Linear Equations Slopes Consider walking on a line from left to right. The slope of a line is a measure of its steepness. A positive slope rises and a negative slope falls. A slope of zero means
More informationLines and Linear Equations. Slopes
Lines and Linear Equations Slopes Consider walking on a line from left to right. The slope of a line is a measure of its steepness. A positive slope rises and a negative slope falls. A slope of zero means
More informationSTATIC AND KINETIC FRICTION
STATIC AND KINETIC FRICTION LAB MECH 3.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult
More informationChapter 3 Falling Objects and Projectile Motion
Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave
More informationSimple Harmonic Motion Experiment. 1 f
Simple Harmonic Motion Experiment In this experiment, a motion sensor is used to measure the position of an oscillating mass as a function of time. The frequency of oscillations will be obtained by measuring
More informationRun! 8. Suggested Grade Range: Approximate Time: 1 hour. State of California Content Standards:
8 Students will practice creating and analyzing distancetime graphs by engaging in timed runs and using their collected data to plot distancetime graphs. They will recognize the slope of a line on a
More informationPHYSICS Unit 1A Kinematics 1
PHYSICS 2204 Unit 1A Kinematics 1 SI Units Metric Prefixes Factor Prefix Symbol 10 12 tera T 10 9 giga G 10 6 mega M 10 3 kilo k 10 2 hecto h 10 0 Standard unit  101 deci d 102 centi c 103 milli
More informationMotion in One Dimension  Grade 10
Chapter 3 Motion in One Dimension  Grade 10 3.1 Introduction This chapter is about how things move in a straight line or more scientifically how things move in one dimension. This is useful for learning
More informationThe car is pulled up a long hill. 2. Does the roller coaster ever get higher than the first hill? No.
Roller Coaster Physics Answer Key Vocabulary: friction, gravitational potential energy, kinetic energy, momentum, velocity Prior Knowledge Questions (Do these BEFORE using the Gizmo.) [Note: The purpose
More informationSTAAR Tutorial: Motion, Speed, Velocity and Acceleration
Name: Teacher: Period: Date: STAAR Tutorial: Motion, Speed, Velocity and Acceleration TEK 6.8C (Supporting): Calculate average speed using distance and time measurements. TEK 6.8D (Supporting: Measure
More informationMotion 1. 1 Introduction. 2 The Motion Sensor
Motion 1 Equipment: DataStudio, motion sensor mounted about 25 cm above lab bench, Data studio files mot1.ds and mot2.ds. Lab Report: Describe procedures not given in the write up. Submit data graphs where
More informationTable of Contents. Graphing with Excel 1
Table of Contents Graphing with Excel 1 1. Graphing Data 1.1. Starting the Chart Wizard 1.2. Selecting the Data 1.3. Selecting the Chart Options 1.3.1. Titles Tab 1.3.2. Axes Tab 1.3.3. Gridlines Tab 1.3.4.
More informationTo define concepts such as distance, displacement, speed, velocity, and acceleration.
Chapter 7 Kinematics of a particle Overview In kinematics we are concerned with describing a particle s motion without analysing what causes or changes that motion (forces). In this chapter we look at
More informationPhysics Strauss Chapter 2 Lecture Notes
Physics 2414  Strauss Chapter 2 Lecture Notes Formulas: Constants: v = v 0 + at x = x 0 +v 0 t + (1/2)at 2 x = x 0 + (1/2)(v 0 + v )t v 2 = v 2 0 + 2a (x  x 0 ) v = ( v + v)/ 0 2 g = 980 m/s 2 Main Ideas:
More informationKinematics: The Gravity Lab Teacher Advanced Version (Grade Level: 8 12)
Kinematics: The Gravity Lab Teacher Advanced Version (Grade Level: 8 12) *** Experiment with Audacity and Excel to be sure you know how to do what s needed for the lab*** Kinematics is the study of how
More informationPhysics 1050 Experiment 2. Acceleration Due to Gravity
Acceleration Due to Gravity Prelab Questions These questions need to be completed before entering the lab. Please show all workings. Prelab 1: For a falling ball, which bounces, draw the expected shape
More information8.4.1.C. YEAR 11 HSC PHYSICS 8.4 MOVING ABOUT Worksheet Velocity Time Graphs. Set 1 Drawing velocitytime graphs
YEAR 11 HSC PHYSICS 8.4 MOVING ABOUT Worksheet Velocity Time Graphs 8.4.1.C Set 1 Drawing velocitytime graphs 1. The table below is a table of data from an experiment measuring the! variation of speed
More informationThe quest to find how x(t) and y(t) depend on t is greatly simplified by the following facts, first discovered by Galileo:
Team: Projectile Motion So far you have focused on motion in one dimension: x(t). In this lab, you will study motion in two dimensions: x(t), y(t). This 2D motion, called projectile motion, consists of
More informationLinear functions Increasing Linear Functions. Decreasing Linear Functions
3.5 Increasing, Decreasing, Max, and Min So far we have been describing graphs using quantitative information. That s just a fancy way to say that we ve been using numbers. Specifically, we have described
More informationUpdates to Graphing with Excel
Updates to Graphing with Excel NCC has recently upgraded to a new version of the Microsoft Office suite of programs. As such, many of the directions in the Biology Student Handbook for how to graph with
More informationExperiment 5: Newton s Second Law
Name Section Date Introduction Experiment : Newton s Second Law In this laboratory experiment you will consider Newton s second law of motion, which states that an object will accelerate if an unbalanced
More informationb) Find the speed (in km/h) of the airplane relative to the ground.
I. An airplane is heading due east and is moving at a speed of 370 km/h relative to the air. The wind is blowing 45.0 degrees north of west at a speed of 93.0 km/h. a) Represent the airplane s and wind
More informationTime hours. 1. Above is a velocity time graph of a moving car. Answer the following questions using the graph. a. At what time was the car stopped?
Time hours 1. Above is a velocity time graph of a moving car. Answer the following questions using the graph. a. At what time was the car stopped? b. At what time did the car have the greatest velocity?
More informationName Class Date. Activity P25: Transforming Gravitational Potential Energy to Kinetic Energy (Rotary Motion Sensor)
Activity P25: Transforming Gravitational Potential Energy to Kinetic Energy (Rotary Motion Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Energy P25 GPE to KE.DS (See end of activity)
More informationPhysics Labs with Computers, Vol. 2 P38: Conservation of Linear Momentum 01207001A
Name Class Date Activity P38: Conservation of Linear Momentum (Motion Sensors) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Newton s Laws P38 Linear Momentum.DS P16 Cons. of Momentum
More informationPhysics 1010: The Physics of Everyday Life. TODAY Velocity, Acceleration 1D motion under constant acceleration Newton s Laws
Physics 11: The Physics of Everyday Life TODAY, Acceleration 1D motion under constant acceleration Newton s Laws 1 VOLUNTEERS WANTED! PHET, The PHysics Educational Technology project, is looking for students
More informationPhysics 201. Fall 2009. Two Dimensional Motion Due Friday November 6, 2009
Physics 201 Fall 2009 Two Dimensional Motion Due Friday November 6, 2009 Points: 30 Name Partners This is a more detailed lab experiment than the exercises you have done in the class in the past. You will
More informationLecture Presentation. Chapter 2 Motion in One Dimension. Chapter 2 Motion in One Dimension Chapter Goal: To describe and analyze linear motion.
Chapter 2 Motion in One Dimension Lecture Presentation Chapter 2 Motion in One Dimension Chapter Goal: To describe and analyze linear motion. Slide 22 Chapter 2 Preview Looking Ahead Chapter 2 Preview
More informationLesson 8: Velocity. Displacement & Time
Lesson 8: Velocity Two branches in physics examine the motion of objects: Kinematics: describes the motion of objects, without looking at the cause of the motion (kinematics is the first unit of Physics
More informationLABORATORY 9. Simple Harmonic Motion
LABORATORY 9 Simple Harmonic Motion Purpose In this experiment we will investigate two examples of simple harmonic motion: the massspring system and the simple pendulum. For the massspring system we
More informationMeet You at the Intersection: Solving a System of Linear Equations
Meet You at the Intersection: Solving a System of Linear Equations Activity 30 Many times, the solution to a reallife problem involves solving more than one mathematical equation at the same time. The
More informationStatic and Kinetic Friction. = k
Name Partner Names Static and Kinetic Friction New Concepts/Questions to ask yourself before lab: 1. What is friction? Explain the difference between static & kinetic friction using a real life example.
More information21 Position, Displacement, and Distance
21 Position, Displacement, and Distance In describing an object s motion, we should first talk about position where is the object? A position is a vector because it has both a magnitude and a direction:
More informationUnit 4 Physical Science: Motion
Unit 4 SCIENCE 1206 CURRICULUM GUIDE 91 Unit Overview Introduction The concept of motion allows students to investigate and develop their interest in the sports that are part of their daily lives. Students
More informationAcceleration Due to Gravity
Activity 5 PS2826 Acceleration Due to Gravity Kinematics: linear motion, acceleration, free fall, graphing GLX setup file: free fall Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS2002
More informationMotion Unit: Part1 Speed and Acceleration Learning Targets
Motion Unit: Part1 Speed and Acceleration Learning Targets These are the things that you will know and be able to do after we finish this unit: I know  the definition for speed.  the definition for velocity.
More informationEXPERIMENT GRAPHING IN EXCEL
EXPERIMENT GRAPHING IN EXCEL Introduction In this lab you will learn how to use Microsoft Excel to plot and analyze data that you obtain while doing experiments. In this lab you learn how to Enter data
More informationLAB 9: NEWTON'S THIRD LAW AND CONSERVATION OF MOMENTUM
Name Date Partners LAB 9: NEWTON'S THIRD LAW AND CONSERVATION OF MOMENTUM To every action there is always opposed an equal reaction, or the mutual actions of two bodies upon each other are always equal,
More informationIntroduction to graphs and trajectories
Introduction to graphs and trajectories Sample Modelling Activities with Excel and Modellus ITforUS (Information Technology for Understanding Science) 2007 IT for US  The project is funded with support
More informationAcceleration Due to Gravity
Acceleration Due to Gravity Introduction When forces on an object become unbalanced, an acceleration will ensue. This dictum has been in our vernacular for several centuries now. It accurately describes
More informationFree Fall and Projectile Motion
Phsics 44 Free Fall and Projectile Motion Introduction Part I : Free Fall This experiment is designed to stud the onedimensional motion of an object that is accelerated b the force of gravit. It also
More information1 of 7 9/5/2009 6:12 PM
1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]
More informationLab: Vectors. You are required to finish this section before coming to the lab. It will be checked by one of the lab instructors when the lab begins.
Lab: Vectors Lab Section (circle): Day: Monday Tuesday Time: 8:00 9:30 1:10 2:40 Name Partners PreLab You are required to finish this section before coming to the lab. It will be checked by one of the
More informationLab 3  Projectile Motion Scientific Data Collection and Analysis (with some experimental design)
Partner 1: Lab 3  Scientific Data Collection and Analysis (with some experimental design) Purpose: This Minilab is designed help you apply the skills you learned in the homework; that is, to collect data
More informationPhysics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE
1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object
More informationIn order to describe motion you need to describe the following properties.
Chapter 2 One Dimensional Kinematics How would you describe the following motion? Ex: random 1D path speeding up and slowing down In order to describe motion you need to describe the following properties.
More informationMotion in OneDimension
This test covers onedimensional kinematics, including speed, velocity, acceleration, motion graphs, with some problems requiring a knowledge of basic calculus. Part I. Multiple Choice 1. A rock is released
More informationCoins, Presidents, and Justices: Normal Distributions and zscores
activity 17.1 Coins, Presidents, and Justices: Normal Distributions and zscores In the first part of this activity, you will generate some data that should have an approximately normal (or bellshaped)
More informationPHYSICS 220 LAB #2: PROJECTILE MOTION
Name: Partners: PHYSICS 220 LAB #2: PROJECTILE MOTION As a dolphin leaps out of the water, it experiences a change in velocity that is the same as that of any other mass moving freely close to the surface
More informationJSUNIL TUTORIAL, PANJABI COLONY GALI 01
SCIENCE & TECHNOLOGY (Class09) Chapter Motion and Rest In the physical world, one of the most common phenomena is motion. The branch of Physics, which deals with the behavior of moving objects, is known
More informationPhysics 2048 Test 1 Solution (solutions to problems 25 are from student papers) Problem 1 (Short Answer: 20 points)
Physics 248 Test 1 Solution (solutions to problems 25 are from student papers) Problem 1 (Short Answer: 2 points) An object's motion is restricted to one dimension along the distance axis. Answer each
More informationChapter 2  Representing Motion w./ QuickCheck Questions
Chapter 2  Representing Motion w./ QuickCheck Questions 2015 Pearson Education, Inc. Anastasia Ierides Department of Physics and Astronomy University of New Mexico August 27, 2015 Review of Last Time
More informationCOEFFICIENT OF KINETIC FRICTION
COEFFICIENT OF KINETIC FRICTION LAB MECH 5.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult
More informationHomework #5 Solutions
Homework # Solutions Problems Bolded problems are worth 2 points. Section 2.3: 10, 16, 26 Section 2.4: 2, 6, 10, 22, 28 Section 3.1: 4, 14, 24, 28, 36, 38, 0, 60 2.3.10. On May 9, 2007, CBS Evening News
More informationEvaluation copy. Centripetal Acceleration on a Turntable. computer OBJECTIVES MATERIALS
Computer 20 Centripetal Acceleration on a Turntable As a child, you may remember the challenge of spinning a playground merrygoround so you could scare the unfortunate riders as they traveled around
More informationGravity PreLab 1. Why do you need an inclined plane to measure the effects due to gravity?
AS 101 Lab Exercise: Gravity (Report) Your Name & Your Lab Partner s Name Due Date Gravity PreLab 1. Why do you need an inclined plane to measure the effects due to gravity? 2. What are several advantage
More informationVelocity. x Worldline. Spacetime. y z. Motion Function x(t) The motion of an object in one dimension is described by the motion function x(t):
Team Velocity Motion Function (t) The motion of an object in one dimension is described by the motion function (t): (t) position of the object as a function of time t. The velocity of the object is defined
More information