Lesson 32: Using Trigonometry to Find Side Lengths of an Acute Triangle


 Sandra Heath
 1 years ago
 Views:
Transcription
1 : Using Trigonometry to Find Side Lengths of n Aute Tringle Clsswork Opening Exerise. Find the lengths of d nd e.. Find the lengths of x nd y. How is this different from prt ()? Exmple 1 A surveyor needs to determine the distne etween two points A nd B tht lie on opposite nks of river. A point C is hosen 160 meters from point A, on the sme side of the river s A. The mesures of ngles BAC nd ACB re 41 nd 55, respetively. Approximte the distne from A to B to the nerest meter. : Using Trigonometry to Find Side Lengths of n Aute Tringle Dte: 10/28/14 S.201 This work is liensed under
2 Exerises In ABC, m A 30, 12, nd 10. Find sin B. Inlude digrm in your nswer. 2. A r is moving towrds tunnel rved out of the se of hill. As the ompnying digrm shows, the top of the hill, H, is sighted from two lotions, A nd B. The distne etween A nd B is 250 ft. Wht is the height, h, of the hill to the nerest foot? Exmple 2 Our friend the surveyor from Exmple 1 is doing some further work. He hs lredy found the distne etween points A nd B (from Exmple 1). Now he wnts to lote point D tht is equidistnt from oth A nd B nd on the sme side of the river s A. He hs his ssistnt mrk the point D so tht the ngles ABD nd BAD oth mesure 75. Wht is the distne etween D nd A to the nerest meter? : Using Trigonometry to Find Side Lengths of n Aute Tringle Dte: 10/28/14 S.202 This work is liensed under
3 Exerise 3 3. Prllelogrm ABCD hs sides of lengths 44 mm nd 26 mm, nd one of the ngles hs mesure of 100. Approximte the length of digonl AC to the nerest mm. : Using Trigonometry to Find Side Lengths of n Aute Tringle Dte: 10/28/14 S.203 This work is liensed under
4 Prolem Set 1. Given ABC, AB 14, A 57.2, nd C 78.4, lulte the mesure of ngle B to the nerest tenth of degree, nd use the Lw of Sines to find the lengths of AC nd BC to the nerest tenth. Clulte the re of ABC to the nerest squre unit. 2. Given DEF, F 39, nd EF 13, lulte the mesure of E, nd use the Lw of Sines to find the lengths of DF nd DE to the nerest hundredth. 3. Does the lw of sines pply to right tringle? Bsed on ABC, the following rtios were set up ording to the lw of sines. Fill in the prtilly ompleted work elow. Wht onlusions n we drw? : Using Trigonometry to Find Side Lengths of n Aute Tringle Dte: 10/28/14 S.204 This work is liensed under
5 4. Given qudrilterl GHKJ, H 50, HKG 80, KGJ 50, J is right ngle nd GH 9 in., use the lw of sines to find the length of GK, nd then find the lengths of GJ nd JK to the nerest tenth of n inh. 5. Given tringle LMN, LM 10, LN 15, nd L 38, use the lw of osines to find the length of MN to the nerest tenth. 6. Given tringle ABC, AC 6, AB 8, nd A 78. Drw digrm of tringle ABC, nd use the lw of osines to find the length of BC. Clulte the re of tringle ABC. : Using Trigonometry to Find Side Lengths of n Aute Tringle Dte: 10/28/14 S.205 This work is liensed under
Geometry 71 Geometric Mean and the Pythagorean Theorem
Geometry 71 Geometric Men nd the Pythgoren Theorem. Geometric Men 1. Def: The geometric men etween two positive numers nd is the positive numer x where: = x. x Ex 1: Find the geometric men etween the
More informationEssential Question What are the Law of Sines and the Law of Cosines?
9.7 TEXS ESSENTIL KNOWLEDGE ND SKILLS G.6.D Lw of Sines nd Lw of osines Essentil Question Wht re the Lw of Sines nd the Lw of osines? Disovering the Lw of Sines Work with prtner.. opy nd omplete the tle
More informationThe remaining two sides of the right triangle are called the legs of the right triangle.
10 MODULE 6. RADICAL EXPRESSIONS 6 Pythgoren Theorem The Pythgoren Theorem An ngle tht mesures 90 degrees is lled right ngle. If one of the ngles of tringle is right ngle, then the tringle is lled right
More informationThree squares with sides 3, 4, and 5 units are used to form the right triangle shown. In a right triangle, the sides have special names.
1 The Pythgoren Theorem MAIN IDEA Find length using the Pythgoren Theorem. New Voulry leg hypotenuse Pythgoren Theorem Mth Online glenoe.om Extr Exmples Personl Tutor SelfChek Quiz Three squres with
More information81. The Pythagorean Theorem and Its Converse. Vocabulary. Review. Vocabulary Builder. Use Your Vocabulary
81 The Pythgoren Theorem nd Its Converse Voulry Review 1. Write the squre nd the positive squre root of eh numer. Numer Squre Positive Squre Root 9 81 3 1 4 1 16 1 2 Voulry Builder leg (noun) leg Relted
More information11. PYTHAGORAS THEOREM
11. PYTHAGORAS THEOREM 111 Along the Nile 2 112 Proofs of Pythgors theorem 3 113 Finding sides nd ngles 5 114 Semiirles 7 115 Surds 8 116 Chlking hndll ourt 9 117 Pythgors prolems 10 118 Designing
More informationKnow the sum of angles at a point, on a straight line and in a triangle
2.1 ngle sums Know the sum of ngles t point, on stright line n in tringle Key wors ngle egree ngle sum n ngle is mesure of turn. ngles re usully mesure in egrees, or for short. ngles tht meet t point mke
More informationLesson 18.2: Right Triangle Trigonometry
Lesson 8.: Right Tringle Trigonometry lthough Trigonometry is used to solve mny prolems, historilly it ws first pplied to prolems tht involve right tringle. This n e extended to nonright tringles (hpter
More information8.2 Trigonometric Ratios
8.2 Trigonometri Rtios Ojetives: G.SRT.6: Understnd tht y similrity, side rtios in right tringles re properties of the ngles in the tringle, leding to definitions of trigonometri rtios for ute ngles. For
More informationThe Parallelogram Law. Objective: To take students through the process of discovery, making a conjecture, further exploration, and finally proof.
The Prllelogrm Lw Objective: To tke students through the process of discovery, mking conjecture, further explortion, nd finlly proof. I. Introduction: Use one of the following Geometer s Sketchpd demonstrtion
More informationRight Triangle Trigonometry 8.7
304470_Bello_h08_se7_we 11/8/06 7:08 PM Pge R1 8.7 Right Tringle Trigonometry R1 8.7 Right Tringle Trigonometry T E G T I N G S T R T E D The origins of trigonometry, from the Greek trigonon (ngle) nd
More informationSECTION 72 Law of Cosines
516 7 Additionl Topis in Trigonometry h d sin s () tn h h d 50. Surveying. The lyout in the figure t right is used to determine n inessile height h when seline d in plne perpendiulr to h n e estlished
More informationexcenters and excircles
21 onurrene IIi 2 lesson 21 exenters nd exirles In the first lesson on onurrene, we sw tht the isetors of the interior ngles of tringle onur t the inenter. If you did the exerise in the lst lesson deling
More informationTwo special Righttriangles 1. The
Mth Right Tringle Trigonometry Hndout B (length of )  c  (length of side ) (Length of side to ) Pythgoren s Theorem: for tringles with right ngle ( side + side = ) + = c Two specil Righttringles. The
More informationSTRAND I: Geometry and Trigonometry. UNIT I2 Trigonometric Problems: Text * * Contents. Section. I2.1 Mixed Problems Using Trigonometry
Mthemtics SKE: STRND I UNIT I Trigonometric Prolems: Text STRND I: Geometry nd Trigonometry I Trigonometric Prolems Text ontents Section * * * I. Mixed Prolems Using Trigonometry I. Sine nd osine Rules
More informationLesson 12.1 Trigonometric Ratios
Lesson 12.1 rigonometric Rtios Nme eriod Dte In Eercises 1 6, give ech nswer s frction in terms of p, q, nd r. 1. sin 2. cos 3. tn 4. sin Q 5. cos Q 6. tn Q p In Eercises 7 12, give ech nswer s deciml
More informationState the size of angle x. Sometimes the fact that the angle sum of a triangle is 180 and other angle facts are needed. b y 127
ngles 2 CHTER 2.1 Tringles Drw tringle on pper nd lel its ngles, nd. Ter off its orners. Fit ngles, nd together. They mke stright line. This shows tht the ngles in this tringle dd up to 180 ut it is not
More informationSect 8.3 Triangles and Hexagons
13 Objective 1: Sect 8.3 Tringles nd Hexgons Understnding nd Clssifying Different Types of Polygons. A Polygon is closed twodimensionl geometric figure consisting of t lest three line segments for its
More informationTHE PYTHAGOREAN THEOREM
THE PYTHAGOREAN THEOREM The Pythgoren Theorem is one of the most wellknown nd widely used theorems in mthemtis. We will first look t n informl investigtion of the Pythgoren Theorem, nd then pply this
More information8. Hyperbolic triangles
8. Hyperoli tringles Note: This yer, I m not doing this mteril, prt from Pythgors theorem, in the letures (nd, s suh, the reminder isn t exminle). I ve left the mteril s Leture 8 so tht (i) nyody interested
More informationThe area of the larger square is: IF it s a right triangle, THEN + =
8.1 Pythgoren Theorem nd 2D Applitions The Pythgoren Theorem sttes tht IF tringle is right tringle, THEN the sum of the squres of the lengths of the legs equls the squre of the hypotenuse lengths. Tht
More informationThe Math Learning Center PO Box 12929, Salem, Oregon 97309 0929 Math Learning Center
Resource Overview Quntile Mesure: Skill or Concept: 1010Q Determine perimeter using concrete models, nonstndrd units, nd stndrd units. (QT M 146) Use models to develop formuls for finding res of tringles,
More informationLesson 18.3: Triangle Trigonometry ( ) : OBTUSE ANGLES
Lesson 1.3: Tringle Trigonometry We now extend te teory of rigt tringle trigonometry to nonrigt or olique tringles. Of te six omponents wi form tringle, tree sides nd tree ngles, te possiilities for omintion
More informationHomework Assignment 1 Solutions
Dept. of Mth. Sci., WPI MA 1034 Anlysis 4 Bogdn Doytchinov, Term D01 Homework Assignment 1 Solutions 1. Find n eqution of sphere tht hs center t the point (5, 3, 6) nd touches the yzplne. Solution. The
More informationIntroduction. Law of Cosines. a 2 b2 c 2 2bc cos A. b2 a 2 c 2 2ac cos B. c 2 a 2 b2 2ab cos C. Example 1
3330_060.qxd 1/5/05 10:41 M Pge 439 Setion 6. 6. Lw of osines 439 Lw of osines Wht you should lern Use the Lw of osines to solve olique tringles (SSS or SS). Use the Lw of osines to model nd solve rellife
More informationFinal Exam covers: Homework 0 9, Activities 1 20 and GSP 1 6 with an emphasis on the material covered after the midterm exam.
MTH 494.594 / FINL EXM REVIEW Finl Exm overs: Homework 0 9, tivities 1 0 nd GSP 1 6 with n emphsis on the mteril overed fter the midterm exm. You my use oth sides of one 3 5 rd of notes on the exm onepts
More informationRight Triangle Trigonometry for College Algebra
Right Tringle Trigonometry for ollege Alger B A sin os A = = djent A = = tn A = = djent sin B = = djent os B = = tn B = = djent ontents I. Bkground nd Definitions (exerises on pges 34) II. The Trigonometri
More informationOVERVIEW Prove & Use the Laws of Sines & Cosines G.SRT.10HONORS
OVERVIEW Prove & Use te Lws of Sines & osines G.SRT.10HONORS G.SRT.10 (HONORS ONLY) Prove te Lws of Sines nd osines nd use tem to solve prolems. No interprettion needed  prove te Lw of Sines nd te Lw
More informationPythagoras theorem and trigonometry (2)
HPTR 10 Pythgors theorem nd trigonometry (2) 31 HPTR Liner equtions In hpter 19, Pythgors theorem nd trigonometry were used to find the lengths of sides nd the sizes of ngles in rightngled tringles. These
More informationMathematics in Art and Architecture GEK1518K
Mthemtics in Art nd Architecture GEK1518K Helmer Aslksen Deprtment of Mthemtics Ntionl University of Singpore slksen@mth.nus.edu.sg www.mth.nus.edu.sg/slksen/ The Golden Rtio The Golden Rtio Suppose we
More informationPYTHAGORAS THEOREM. Answers. Edexcel GCSE Mathematics (Linear) 1MA0
Edexel GSE Mthemtis (Liner) 1M0 nswers PYTHGORS THEOREM Mterils required for exmintion Ruler grduted in entimetres nd millimetres, protrtor, ompsses, pen, H penil, erser. Tring pper my e used. Items inluded
More informationTo apply the Law of Cosines. Key Concept Law of Cosines
86 6 Law of osines ontent Standards G.SRT.11 Understand and apply the... Law of osines... lso G.SRT.10 Ojective To apply the Law of osines c a MTHEMTIL PRTIES In the Solve It, you used right triangle
More information4.5 The Converse of the
Pge 1 of. The onverse of the Pythgoren Theorem Gol Use the onverse of Pythgoren Theorem. Use side lengths to lssify tringles. Key Words onverse p. 13 grdener n use the onverse of the Pythgoren Theorem
More informationQuadrilaterals Here are some examples using quadrilaterals
Qudrilterls Here re some exmples using qudrilterls Exmple 30: igonls of rhomus rhomus hs sides length nd one digonl length, wht is the length of the other digonl? 4  Exmple 31: igonls of prllelogrm Given
More information. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2
7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6
More informationAngles and Triangles
nges nd Tringes n nge is formed when two rys hve ommon strting point or vertex. The mesure of n nge is given in degrees, with ompete revoution representing 360 degrees. Some fmiir nges inude nother fmiir
More informationUnit 6 Solving Oblique Triangles  Classwork
Unit 6 Solving Oblique Tringles  Clsswork A. The Lw of Sines ASA nd AAS In geometry, we lerned to prove congruence of tringles tht is when two tringles re exctly the sme. We used severl rules to prove
More informationLines and angles. Name. Use a ruler and pencil to draw: a 2 parallel lines. c 2 perpendicular lines. b 2 intersecting lines. Complete the following:
Lines nd s 1 Use ruler nd pencil to drw: 2 prllel lines 2 intersecting lines c 2 perpendiculr lines 2 Complete the following: drw in the digonls on this shpe mrk the interior s on this shpe c mrk equl
More informationAngles 2.1. Exercise 2.1... Find the size of the lettered angles. Give reasons for your answers. a) b) c) Example
2.1 Angles Reognise lternte n orresponing ngles Key wors prllel lternte orresponing vertilly opposite Rememer, prllel lines re stright lines whih never meet or ross. The rrows show tht the lines re prllel
More informationProving the Pythagorean Theorem
Proving the Pythgoren Theorem Proposition 47 of Book I of Eulid s Elements is the most fmous of ll Eulid s propositions. Disovered long efore Eulid, the Pythgoren Theorem is known y every high shool geometry
More informationLesson 2.1 Inductive Reasoning
Lesson.1 Inutive Resoning Nme Perio Dte For Eerises 1 7, use inutive resoning to fin the net two terms in eh sequene. 1. 4, 8, 1, 16,,. 400, 00, 100, 0,,,. 1 8, 7, 1, 4,, 4.,,, 1, 1, 0,,. 60, 180, 10,
More informationLines and Angles. 2. Straight line is a continuous set of points going on forever in both directions:
Lines nd Angles 1. Point shows position. A 2. Stright line is continuous set of points going on forever in oth directions: 3. Ry is line with one endpoint. The other goes on forever. G 4. Line segment
More informationNapoleon and Pythagoras with Geometry Expressions
Npoleon nd Pythgors with eometry xpressions NPOLON N PYTORS WIT OMTRY XPRSSIONS... 1 INTROUTION... xmple 1: Npoleon s Theorem... 3 xmple : n unexpeted tringle from Pythgorslike digrm... 5 xmple 3: Penequilterl
More informationPythagoras theorem is one of the most popular theorems. Paper Folding And The Theorem of Pythagoras. Visual Connect in Teaching.
in the lssroom Visul Connet in Tehing Pper Folding And The Theorem of Pythgors Cn unfolding pper ot revel proof of Pythgors theorem? Does mking squre within squre e nything more thn n exerise in geometry
More informationRight Triangle Trigonometry
CONDENSED LESSON 1.1 Right Tringle Trigonometr In this lesson ou will lern out the trigonometri rtios ssoited with right tringle use trigonometri rtios to find unknown side lengths in right tringle use
More information5.6 The Law of Cosines
44 HPTER 5 nlyti Trigonometry 5.6 The Lw of osines Wht you ll lern out Deriving the Lw of osines Solving Tringles (SS, SSS) Tringle re nd Heron s Formul pplitions... nd why The Lw of osines is n importnt
More informationThank you for participating in Teach It First!
Thnk you for prtiipting in Teh It First! This Teh It First Kit ontins Common Core Coh, Mthemtis teher lesson followed y the orresponding student lesson. We re onfident tht using this lesson will help you
More informationSOLVING EQUATIONS BY FACTORING
316 (560) Chpter 5 Exponents nd Polynomils 5.9 SOLVING EQUATIONS BY FACTORING In this setion The Zero Ftor Property Applitions helpful hint Note tht the zero ftor property is our seond exmple of getting
More information1. Definition, Basic concepts, Types 2. Addition and Subtraction of Matrices 3. Scalar Multiplication 4. Assignment and answer key 5.
. Definition, Bsi onepts, Types. Addition nd Sutrtion of Mtries. Slr Multiplition. Assignment nd nswer key. Mtrix Multiplition. Assignment nd nswer key. Determinnt x x (digonl, minors, properties) summry
More informationExample
6. SOLVING RIGHT TRINGLES In the right tringle B shwn in Figure 6.1, the ngles re dented y α t vertex, β t vertex B, nd t vertex. The lengths f the sides ppsite the ngles α, β, nd re dented y,, nd. Nte
More informationTRIGONOMETRIC APPLICATIONS
HPTER TRIGONOMETRI PPLITIONS n ocen is vst expnse tt cn e lifetretening to person wo experiences disster wile oting. In order for elp to rrive on time, it is necessry tt te cost gurd or sip in te re e
More informationIt may be helpful to review some right triangle trigonometry. Given the right triangle: C = 90º
Ryn Lenet Pge 1 Chemistry 511 Experiment: The Hydrogen Emission Spetrum Introdution When we view white light through diffrtion grting, we n see ll of the omponents of the visible spetr. (ROYGBIV) The diffrtion
More informationVectors Summary. Projection vector AC = ( Shortest distance from B to line A C D [OR = where m1. and m
. Slr prout (ot prout): = osθ Vetors Summry Lws of ot prout: (i) = (ii) ( ) = = (iii) = (ngle etween two ientil vetors is egrees) (iv) = n re perpeniulr Applitions: (i) Projetion vetor: B Length of projetion
More informationPrealgebra 7* In your group consider the following problems:
Prelger * Group Activit # Group Memers: In our group consider the following prolems: 1) If ever person in the room, including the techer, were to shke hnds with ever other person ectl one time, how mn
More information9.1 PYTHAGOREAN THEOREM (right triangles)
Simplifying Rdicls: ) 1 b) 60 c) 11 d) 3 e) 7 Solve: ) x 4 9 b) 16 80 c) 9 16 9.1 PYTHAGOREAN THEOREM (right tringles) c If tringle is right tringle then b, b re the legs * c is clled the hypotenuse (side
More informationUnit 2: Right Triangle Trigonometry RIGHT TRIANGLE RELATIONSHIPS
Unit 2: Right Triangle Trigonometry This unit investigates the properties of right triangles. The trigonometric ratios sine, cosine, and tangent along with the Pythagorean Theorem are used to solve right
More informationChess and Mathematics
Chess nd Mthemtis in UK Seondry Shools Dr Neill Cooper Hed of Further Mthemtis t Wilson s Shool Mnger of Shool Chess for the English Chess Federtion Mths in UK Shools KS (up to 7 yers) Numers: 5 + 7; x
More informationTriangles, Altitudes, and Area Instructor: Natalya St. Clair
Tringle, nd ltitudes erkeley Mth ircles 015 Lecture Notes Tringles, ltitudes, nd re Instructor: Ntly St. lir *Note: This M session is inspired from vriety of sources, including wesomemth, reteem Mth Zoom,
More informationPROJECTILE MOTION PRACTICE QUESTIONS (WITH ANSWERS) * challenge questions
PROJECTILE MOTION PRACTICE QUESTIONS (WITH ANSWERS) * hllenge questions e The ll will strike the ground 1.0 s fter it is struk. Then v x = 20 m s 1 nd v y = 0 + (9.8 m s 2 )(1.0 s) = 9.8 m s 1 The speed
More informationTRIGONOMETRY OF THE RIGHT TRIANGLE
HPTER 8 HPTER TLE OF ONTENTS 81 The Pythagorean Theorem 82 The Tangent Ratio 83 pplications of the Tangent Ratio 84 The Sine and osine Ratios 85 pplications of the Sine and osine Ratios 86 Solving
More informationSection 55 Solving Right Triangles*
55 Solving Right Tringles 379 79. Geometry. The re of retngulr nsided polygon irumsried out irle of rdius is given y A n tn 80 n (A) Find A for n 8, n 00, n,000, nd n 0,000. Compute eh to five deiml
More informationChapter. Contents: A Constructing decimal numbers
Chpter 9 Deimls Contents: A Construting deiml numers B Representing deiml numers C Deiml urreny D Using numer line E Ordering deimls F Rounding deiml numers G Converting deimls to frtions H Converting
More information24.1 Polygons. Example 1 Ù Ù Ù Ù Ù Ù Ù Ù Ù Ù. For Free Distribution
24 24.1 Plygns mple 1 Ù Ù Ù Ù Ù P Q T Ù Ù Ù Ù Ù R S 84 Fr Free istributin 24.2 Sum f the interir ngles f plygn O Ù Ù Ù Ù Ù Ù Ù Ù Ù Ù The sum f the interir ngles f plygn with n sides is (2n  4) right ngles'
More informationLet us recall some facts you have learnt in previous grades under the topic Area.
6 Are By studying this lesson you will be ble to find the res of sectors of circles, solve problems relted to the res of compound plne figures contining sectors of circles. Ares of plne figures Let us
More informationNCERT INTRODUCTION TO TRIGONOMETRY AND ITS APPLICATIONS. Trigonometric Ratios of the angle A in a triangle ABC right angled at B are defined as:
INTRODUCTION TO TRIGONOMETRY AND ITS APPLICATIONS (A) Min Concepts nd Results Trigonometric Rtios of the ngle A in tringle ABC right ngled t B re defined s: side opposite to A BC sine of A = sin A = hypotenuse
More information11.1 Conic sections (conics)
. Coni setions onis Coni setions re formed the intersetion of plne with right irulr one. The tpe of the urve depends on the ngle t whih the plne intersets the surfe A irle ws studied in lger in se.. We
More informationThe theorem of. Pythagoras. Opening problem
The theorem of 8 Pythgors ontents: Pythgors theorem [4.6] The onverse of Pythgors theorem [4.6] Prolem solving [4.6] D irle prolems [4.6, 4.7] E Threedimensionl prolems [4.6] Opening prolem The Louvre
More informationSquare Roots Teacher Notes
Henri Picciotto Squre Roots Techer Notes This unit is intended to help students develop n understnding of squre roots from visul / geometric point of view, nd lso to develop their numer sense round this
More informationGeometry Notes SIMILAR TRIANGLES
Similr Tringles Pge 1 of 6 SIMILAR TRIANGLES Objectives: After completing this section, you shoul be ble to o the following: Clculte the lengths of sies of similr tringles. Solve wor problems involving
More informationMBF 3C Unit 2 Trigonometry Outline
Dy MF 3 Unit 2 Trigonometry Outline Lesson Title Speifi Expettions 1 Review Trigonometry Solving for Sides Review Gr. 10 2 Review Trigonometry Solving for ngles Review Gr. 10 3 Trigonometry in the Rel
More informationRightangled triangles
13 13A Pythgors theorem 13B Clulting trigonometri rtios 13C Finding n unknown side 13D Finding ngles 13E Angles of elevtion nd depression Rightngled tringles Syllus referene Mesurement 4 Rightngled tringles
More information76 The Law of Sines
76 The Law of Sines So far, we have learned how to use geometric mean, Pythagorean Theorem, properties of 306090 and 454590 triangles, and Soh, Cah, Toa to solve triangles. The Law of Sines is used
More information2.1 ANGLES AND THEIR MEASURE. y I
.1 ANGLES AND THEIR MEASURE Given two interseting lines or line segments, the mount of rottion out the point of intersetion (the vertex) required to ring one into orrespondene with the other is lled the
More informationCalculating Principal Strains using a Rectangular Strain Gage Rosette
Clulting Prinipl Strins using Retngulr Strin Gge Rosette Strin gge rosettes re used often in engineering prtie to determine strin sttes t speifi points on struture. Figure illustrtes three ommonly used
More informationSine and Cosine Ratios. For each triangle, find (a) the length of the leg opposite lb and (b) the length of the leg adjacent to lb.
 Wht You ll ern o use sine nd osine to determine side lengths in tringles... nd Wh o use the sine rtio to estimte stronomil distnes indiretl, s in Emple Sine nd osine tios hek Skills You ll Need for Help
More informationEnd of term: TEST A. Year 4. Name Class Date. Complete the missing numbers in the sequences below.
End of term: TEST A You will need penil nd ruler. Yer Nme Clss Dte Complete the missing numers in the sequenes elow. 8 30 3 28 2 9 25 00 75 25 2 Put irle round ll of the following shpes whih hve 3 shded.
More informationUse Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.
Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd
More informationThe Pythagorean Theorem
The Pythgoren Theorem Pythgors ws Greek mthemtiin nd philosopher, orn on the islnd of Smos (. 58 BC). He founded numer of shools, one in prtiulr in town in southern Itly lled Crotone, whose memers eventully
More informationLesson 4.1 Triangle Sum Conjecture
Lesson 4.1 ringle um onjecture Nme eriod te n ercises 1 9, determine the ngle mesures. 1. p, q 2., y 3., b 31 82 p 98 q 28 53 y 17 79 23 50 b 4. r, s, 5., y 6. y t t s r 100 85 100 y 30 4 7 y 31 7. s 8.
More informationMath 2201 Unit 3: Acute Triangle Trigonometry. Ch. 3 Notes
Rea Learning Goals, p. 17 text. Math 01 Unit 3: ute Triangle Trigonometry h. 3 Notes 3.1 Exploring Siengle Relationships in ute Triangles (0.5 lass) Rea Goal p. 130 text. Outomes: 1. Define an aute triangle.
More informationLecture 15  Curve Fitting Techniques
Lecture 15  Curve Fitting Techniques Topics curve fitting motivtion liner regression Curve fitting  motivtion For root finding, we used given function to identify where it crossed zero where does fx
More informationThe Pythagorean Theorem Tile Set
The Pythgoren Theorem Tile Set Guide & Ativities Creted y Drin Beigie Didx Edution 395 Min Street Rowley, MA 01969 www.didx.om DIDAX 201 #211503 1. Introdution The Pythgoren Theorem sttes tht in right
More information6.1 Ratios, Proportions, and the Geometric Mean
6.1 Ratios, Proportions, and the Geometric Mean Obj.: Solve problems by writing and solving proportions. Key Vocabulary Ratio  If a and b are two numbers or quantities and b 0, then the ratio of a to
More information4 Geometry: Shapes. 4.1 Circumference and area of a circle. FM Functional Maths AU (AO2) Assessing Understanding PS (AO3) Problem Solving HOMEWORK 4A
Geometry: Shpes. Circumference nd re of circle HOMEWORK D C 3 5 6 7 8 9 0 3 U Find the circumference of ech of the following circles, round off your nswers to dp. Dimeter 3 cm Rdius c Rdius 8 m d Dimeter
More informationGeometry and Measure. 12am 1am 2am 3am 4am 5am 6am 7am 8am 9am 10am 11am 12pm
Reding Scles There re two things to do when reding scle. 1. Mke sure you know wht ech division on the scle represents. 2. Mke sure you red in the right direction. Mesure Length metres (m), kilometres (km),
More informationInterior and exterior angles add up to 180. Level 5 exterior angle
22 ngles n proof Ientify interior n exterior ngles in tringles n qurilterls lulte interior n exterior ngles of tringles n qurilterls Unerstn the ie of proof Reognise the ifferene etween onventions, eﬁnitions
More informationRatio and Proportion
Rtio nd Proportion Rtio: The onept of rtio ours frequently nd in wide vriety of wys For exmple: A newspper reports tht the rtio of Repulins to Demorts on ertin Congressionl ommittee is 3 to The student/fulty
More information15. Let f (x) = 3x Suppose rx 2 + sx + t = 0 where r 0. Then x = 24. Solve 5x 25 < 20 for x. 26. Let y = 7x
Pretest Review The pretest will onsist of 0 problems, eh of whih is similr to one of the following 49 problems If you n do problems like these 49 listed below, you will hve no problem with the pretest
More informationAngles. Angles. Curriculum Ready.
ngles ngles urriculum Redy www.mthletics.com ngles mesure the mount of turn in degrees etween two lines tht meet t point. Mny gmes re sed on interpreting using ngles such s pool, snooker illirds. lck
More informationSAMPLE. Trigonometric ratios and applications
jetives H P T E R 12 Trigonometri rtios nd pplitions To solve prtil prolems using the trigonometri rtios To use the sine rule nd the osine rule to solve prolems To find the re of tringle given two sides
More informationCHAPTER 38 INTRODUCTION TO TRIGONOMETRY
CHAPTER 38 INTRODUCTION TO TRIGONOMETRY EXERCISE 58 Page 47. Find the length of side x. By Pythagoras s theorem, 4 = x + 40 from which, x = 4 40 and x = 4 40 = 9 cm. Find the length of side x. By Pythagoras
More informationHeron s Formula for Triangular Area
Heron s Formul for Tringulr Are y Christy Willims, Crystl Holom, nd Kyl Gifford Heron of Alexndri Physiist, mthemtiin, nd engineer Tught t the museum in Alexndri Interests were more prtil (mehnis, engineering,
More informationCHAPTER 4: POLYGONS AND SOLIDS. 3 Which of the following are regular polygons? 4 Draw a pentagon with equal sides but with unequal angles.
Mthemtis for Austrli Yer 6  Homework POLYGONS AND SOLIDS (Chpter 4) CHAPTER 4: POLYGONS AND SOLIDS 4A POLYGONS 3 Whih of the following re regulr polygons? A polygon is lose figure whih hs only stright
More informationMath 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.
Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose
More informationSection 54 Trigonometric Functions
5 Trigonometric Functions Section 5 Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form
More informationTriangle applications
Tringle pplitions Syllus Guide Chpter 1 Contents 1.1 Using rightngled tringles 1.2 pplying erings nd diretion 1.3 The sine rule 1.4 The osine rule 1.5 Trig pplitions 1.6 Working in three dimensions Chpter
More informationFURTHER TRIGONOMETRY
0 YER The Improving Mthemtics Eduction in Schools (TIMES) Project FURTHER TRIGONOMETRY MESUREMENT ND GEOMETRY Module 24 guide for techers  Yer 0 June 20 Further Trigonometry (Mesurement nd Geometry: Module
More informationMaths Assessment Year 4: Number and Place Value
Nme: Mths Assessment Yer 4: Numer nd Plce Vlue 1. Count in multiples of 6, 7, 9, 25 nd 1 000; find 1 000 more or less thn given numer. 2. Find 1,000 more or less thn given numer. 3. Count ckwrds through
More information4.1 Converse of the Pyth TH and Special Right Triangles
Name Per 4.1 Converse of the Pyth TH and Special Right Triangles CONVERSE OF THE PYTHGOREN THEOREM Can be used to check if a figure is a right triangle. If triangle., then BC is a Eample 1: Tell whether
More informationContent Objectives: After completing the activity, students will gain experience of informally proving Pythagoras Theorem
Pythgors Theorem S Topic 1 Level: Key Stge 3 Dimension: Mesures, Shpe nd Spce Module: Lerning Geometry through Deductive Approch Unit: Pythgors Theorem Student ility: Averge Content Ojectives: After completing
More information