55:041 Electronic Circuits The University of Iowa Fall IR Receiver Lab

Size: px
Start display at page:

Download "55:041 Electronic Circuits The University of Iowa Fall IR Receiver Lab"

Transcription

1 General Instructions IR Receiver Lab Students work in teams of two. Teams must demonstrate before 5 p.m. on Thursday November 20 th that the following parts of their circuit works: detector block, buffer block, and driver for the load. Teams must demonstrate the complete receiver circuit by Thursday December 4 th. Each team member must submit an individual Post-Lab report, but the reports can be identical. Students must submit their individual reports on ICON by 5 p.m. on the last day of class. At end of this document is a checklist that will be used during lab demonstration. Teams have access to the lab during any of the lab sessions posted on the class website. There will be several questions related to this lab on the final exam. System Overview In this lab students design and build an IR receiver that is compatible with the IR transmitter that they built in a previous lab. This lab is about designing and demonstrating a proof-of-concept circuit. A successful design will meet the specifications and adhere to constraints placed on the design. It will be useful if students imagine themselves as working at a company, say ACME IR Controls, which markets IR remote controls. Figure 1 is a block diagram of the IR receiver which the design should follow. From left to right in the diagram, the circuit works as follows. The photodetector receives the 5-kHz IR signal from the transmitter. However, the photodetector will also respond to the much larger ambient light, which will result in a slowly varying dc component. The photodetector will also respond to the light generated by indoor fluorescent lighting and incandescent lights that which generate light fluctuations at 120 Hz. The signal-to-noise ratio at the detector is poor a very small 5- khz signal superimposed on a large dc component, and mixed with a large 120-Hz signal. The detector block will remove the dc component and provide some filtering, suppressing the 120- Hz signal. The buffer block will provide significant filtering, further suppressing the 120-Hz signal. It has a low output resistance and can drive the gain block. The gain block further filters the signal and amplifies the signal from mv-levels to V-levels. The output of the gain block is a (albeit possibly distorted) 5-kHz square wave. The AC DC convert block converts this square wave to a dc voltage that is the input to the output driver. When the output from this block is high enough, it turns on the driver which activates a load. Version 1.3 1

2 Specifications and Constraints Figure 1. Block diagram of IR receiver. The requirement that the IR receiver should follow the design in Figure 1 is a design constraint. Another constraint is that designs may only use certain components, and yet another constraint is the following. Students design all the blocks, except the AC DC convert block. The design for this block is given (see below) and must be used. specifications and constraints are those that are required, and secondary specifications/constraints are those that are desired. As an example, if the receiver does not respond the 5-kHz signal from the transmitter (previously built), the designed is fatally flawed. If this flawed design were presented at ACME s design meeting, the team leader may reassign the project to another designer. On the other hand, a secondary constraint for this design is that the number of components should be less than 35. If a design uses, say 37 components, but adheres to all primary constrains and meet all primary specifications, the team leader will probably sign off on the design. Table 1 summarizes the specifications for the design and Table 2 summarizes the design constraints. Figure 2 shows the AC DC convert block that the design must incorporate. Figure 2. The AC DC conversion circuit that must be used. The diode is a 1N914 diode. Version 1.3 2

3 Item Specification / Operating frequency Must detect 5-kHz transmitter from previous lab Sensitivity Must respond across 6 feet Noise rejection Load Short-circuit protection at load Power-on LED indicator Must operate in brightly-lit fluorescent lab (2251 SC), situated 1 feet away from 100 W incandescent light Must be able to drive a 5 V, 50 ma noninductive load Must limit output current to 50 ma when load is shorted Light a green LED when the circuit is powered up Power supply Dual ±15V or single +15V Table 1. Specifications for IR receiver. Item Constraint / Components available Cost AD/DC conversion and detection LM358 op-amp, 2N7000 MOSFET, 2N2222 BJT, 1N914 diodes, 5% resistors, standard selection of capacitors. Cost of all materials, excluding plastic breadboard and power supplies < $20. Use Digikey s 1-off pricing for calculations. Use supplied design (see below) Phototransistor Use LTR-4206E Number of components 35 Buffer amplifier configuration Common source MOSFET amplifier Main voltage amplifier configuration Can be MOSFET, BJT, or Op-Amp Table 2. Design constraints. Version 1.3 3

4 Receiver Demonstration and Grading Teams must demonstrate their design to the instructor or T.A. in the lab. The fluorescent lights will be turned on, and students circuit will sit 1 foot away from a 100 W incandescent light. Students will use their previously-designed and built IR transmitter. The specifications require that the design has a range of 6 feet, so the initial test distance will be 6 feet. If the receiver does not respond, we will reduce the distance to 5 feet and test again. If the receiver still does not work, we will reduce the distance to 4 feet and so on. As the distance decreases, so does the maximum possible grade. Designs that operate across 6 feet are eligible for an A grade, assuming an acceptable post-lab report. Designs that fail to work across 1 foot can still receive a D grade assuming the post-lab report is solid. Post-Lab Report Students work in teams on the design and demonstration, but must submit individual post-lab reports. Mandatory elements are the following. Complete schematic of the overall circuit. It should contain all the information needed to build the circuit: component values, pinouts of semiconductors, and so on. All relevant design details. This will generally mean design calculations, but in some instances it may be solid motivation for design values. For example, assuming a design uses a BJT amplifier, the design should show calculations for the bias resistors. By contrast, it not required to calculate values for decoupling capacitors which one would place close to op-amps. From experience we know that 0.1 μμf capacitors will most likely suffice. Frequency-response calculations and measurements for the buffer and main amplifier. A consideration of an alternate design for at least one block. For example, assume that the design uses a BJT amplifier for the main gain block. The post-lab report should include some analysis/discussion of an op-amp based gain block. Cost estimate and component count. Photograph of the built circuit. Extra Credit Designs that significantly exceed the criteria in one or more aspect will receive extra credit, assuming the primary criteria are met. Here are some examples: In addition to the mandatory consideration of an alternate design for the gain block, analyze alternate designs for the buffer- or driver block. Use SPICE to optimize the design with respect to either distance or noise immunity. Create a PCB for and build the circuit on the PCB. Version 1.3 4

5 IR Link Check-off Sheet Team Member Present for Demonstration Yes Yes No No Item Check Notes ff TTTT = 5 khz ± 20%? # of TX diodes Value of TX RR llllllllll Tested range with Range without noise lamp Range with noise lamp Drive 50 ma load? Current Limiting? RR llllllllll = Short circuit protection at load? Power on LED at receiver? Number of components < 35? Coupling Cap CC CC1 = Designed CC CC1? (or trial-and-error) Coupling Cap CC CC2 = Designed CC CC2? (or trial-and-error) Own Tx Lab Tx ft ft Circuit Construction. Does the circuit layout follow a logical left-to-right flow, is the power supply at the top, and the ground at the bottom, are components laid out neatly, etc. Very neat, logical layout Acceptable Needs improvement Rats nest, sloppy Extra Credit, Additional Comments List and/or describe things that are worthy of extra credit. For example, particularly neat construction on a perforated board, very long range, reverse polarity protection, Version 1.3 5

MAS.836 HOW TO BIAS AN OP-AMP

MAS.836 HOW TO BIAS AN OP-AMP MAS.836 HOW TO BIAS AN OP-AMP Op-Amp Circuits: Bias, in an electronic circuit, describes the steady state operating characteristics with no signal being applied. In an op-amp circuit, the operating characteristic

More information

1. Learn about the 555 timer integrated circuit and applications 2. Apply the 555 timer to build an infrared (IR) transmitter and receiver

1. Learn about the 555 timer integrated circuit and applications 2. Apply the 555 timer to build an infrared (IR) transmitter and receiver Electronics Exercise 2: The 555 Timer and its Applications Mechatronics Instructional Laboratory Woodruff School of Mechanical Engineering Georgia Institute of Technology Lab Director: I. Charles Ume,

More information

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common

More information

Bipolar Transistor Amplifiers

Bipolar Transistor Amplifiers Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must

More information

Transistor Amplifiers

Transistor Amplifiers Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input

More information

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors. LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

More information

LM1036 Dual DC Operated Tone/Volume/Balance Circuit

LM1036 Dual DC Operated Tone/Volume/Balance Circuit LM1036 Dual DC Operated Tone/Volume/Balance Circuit General Description The LM1036 is a DC controlled tone (bass/treble), volume and balance circuit for stereo applications in car radio, TV and audio systems.

More information

Multipurpose Analog PID Controller

Multipurpose Analog PID Controller Multipurpose Analog PID Controller Todd P. Meyrath Atom Optics Laboratory Center for Nonlinear Dynamics University of Texas at Austin c 00 March 4, 00 revised December 0, 00 See disclaimer This analog

More information

ENEE 307 Electronic Circuit Design Laboratory Spring 2012. A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742

ENEE 307 Electronic Circuit Design Laboratory Spring 2012. A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742 1.1. Differential Amplifiers ENEE 307 Electronic Circuit Design Laboratory Spring 2012 A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742 Differential Amplifiers

More information

Kit 106. 50 Watt Audio Amplifier

Kit 106. 50 Watt Audio Amplifier Kit 106 50 Watt Audio Amplifier T his kit is based on an amazing IC amplifier module from ST Electronics, the TDA7294 It is intended for use as a high quality audio class AB amplifier in hi-fi applications

More information

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. 6.002 Electronic Circuits Spring 2007

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. 6.002 Electronic Circuits Spring 2007 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.002 Electronic Circuits Spring 2007 Lab 4: Audio Playback System Introduction In this lab, you will construct,

More information

Programmable Single-/Dual-/Triple- Tone Gong SAE 800

Programmable Single-/Dual-/Triple- Tone Gong SAE 800 Programmable Single-/Dual-/Triple- Tone Gong Preliminary Data SAE 800 Bipolar IC Features Supply voltage range 2.8 V to 18 V Few external components (no electrolytic capacitor) 1 tone, 2 tones, 3 tones

More information

Laboratory 4: Feedback and Compensation

Laboratory 4: Feedback and Compensation Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 20-24) and Week 10 (Oct. 27-31) Due Week 11 (Nov. 3-7) 1 Pre-Lab This Pre-Lab should be completed before attending your regular

More information

The full wave rectifier consists of two diodes and a resister as shown in Figure

The full wave rectifier consists of two diodes and a resister as shown in Figure The Full-Wave Rectifier The full wave rectifier consists of two diodes and a resister as shown in Figure The transformer has a centre-tapped secondary winding. This secondary winding has a lead attached

More information

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems

More information

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier TL082 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost high speed dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information

Precision Diode Rectifiers

Precision Diode Rectifiers by Kenneth A. Kuhn March 21, 2013 Precision half-wave rectifiers An operational amplifier can be used to linearize a non-linear function such as the transfer function of a semiconductor diode. The classic

More information

INTEGRATED CIRCUITS DATA SHEET. TDA7000 FM radio circuit. Product specification File under Integrated Circuits, IC01

INTEGRATED CIRCUITS DATA SHEET. TDA7000 FM radio circuit. Product specification File under Integrated Circuits, IC01 INTEGRATED CIRCUITS DATA SHEET File under Integrated Circuits, IC01 May 1992 GENERAL DESCRIPTION The is a monolithic integrated circuit for mono FM portable radios, where a minimum on peripheral components

More information

SIMPLE HEART RATE MONITOR FOR ANALOG ENTHUSIASTS

SIMPLE HEART RATE MONITOR FOR ANALOG ENTHUSIASTS SIMPLE HEART RATE MONITOR FOR ANALOG ENTHUSIASTS Jelimo B Maswan, Abigail C Rice 6.101: Final Project Report Date: 5/15/2014 1 Project Motivation Heart Rate Monitors are quickly becoming ubiquitous in

More information

Diode Applications. As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off.

Diode Applications. As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off. Diode Applications Diode Switching As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off. Voltage Rectifier A voltage rectifier is a circuit that converts an

More information

Low Cost Pure Sine Wave Solar Inverter Circuit

Low Cost Pure Sine Wave Solar Inverter Circuit Low Cost Pure Sine Wave Solar Inverter Circuit Final Report Members: Cameron DeAngelis and Luv Rasania Professor: Yicheng Lu Advisor: Rui Li Background Information: Recent rises in electrical energy costs

More information

ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEM 102 INTRODUCTION TO ELECTRICAL ENGINEERING EXPERIMENT 9: DIODES AND DC POWER SUPPLY OBJECTIVE: To observe how a diode functions

More information

Ultrasound Distance Measurement

Ultrasound Distance Measurement Final Project Report E3390 Electronic Circuits Design Lab Ultrasound Distance Measurement Yiting Feng Izel Niyage Asif Quyyum Submitted in partial fulfillment of the requirements for the Bachelor of Science

More information

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012 1 Secondary Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding of proper

More information

A Trigger Circuit for the 555 Timer IC Scope

A Trigger Circuit for the 555 Timer IC Scope Scope This document describes a trigger circuit that allows the 555 timer IC to produce a voltage pulse when triggered with a voltage that is brought low and held low for an arbitrary amount of time (even

More information

Equivalent Circuit. Operating Characteristics at Ta = 25 C, V CC = ±34V, R L = 8Ω, VG = 40dB, Rg = 600Ω, R L : non-inductive load STK4181V

Equivalent Circuit. Operating Characteristics at Ta = 25 C, V CC = ±34V, R L = 8Ω, VG = 40dB, Rg = 600Ω, R L : non-inductive load STK4181V Ordering number: 2137B Thick Film Hybrid IC STK4181V AF Power Amplifier (Split Power Supply) (45W + 45W min, THD = 0.08%) Features Pin-compatible with the STK4102II series. The STK4101V series use the

More information

High Common-Mode Rejection. Differential Line Receiver SSM2141. Fax: 781/461-3113 FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection

High Common-Mode Rejection. Differential Line Receiver SSM2141. Fax: 781/461-3113 FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection a FEATURES High Common-Mode Rejection DC: 00 db typ 60 Hz: 00 db typ 20 khz: 70 db typ 40 khz: 62 db typ Low Distortion: 0.00% typ Fast Slew Rate: 9.5 V/ s typ Wide Bandwidth: 3 MHz typ Low Cost Complements

More information

LH0091 True RMS to DC Converter

LH0091 True RMS to DC Converter LH0091 True RMS to DC Converter General Description The LH0091 rms to dc converter generates a dc output equal to the rms value of any input per the transfer function E OUT(DC) e 0 1 T T 0 E IN 2 (t) dt

More information

Design Project: Power inverter

Design Project: Power inverter Design Project: Power inverter This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Common-Emitter Amplifier

Common-Emitter Amplifier Common-Emitter Amplifier A. Before We Start As the title of this lab says, this lab is about designing a Common-Emitter Amplifier, and this in this stage of the lab course is premature, in my opinion,

More information

Single Supply Op Amp Circuits Dr. Lynn Fuller

Single Supply Op Amp Circuits Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Single Supply Op Amp Circuits Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585)

More information

13. Diode Rectifiers, Filters, and Power Supplies

13. Diode Rectifiers, Filters, and Power Supplies 1 13. Diode Rectifiers, Filters, and Power Supplies Introduction A power supply takes Alternating Current or A.C. power from your electric utility (Con Edison) and converts the A.C. electrical current

More information

AN ISOLATED GATE DRIVE FOR POWER MOSFETs AND IGBTs

AN ISOLATED GATE DRIVE FOR POWER MOSFETs AND IGBTs APPLICATION NOTE AN ISOLATED GATE DRIVE FOR POWER MOSFETs AND IGBTs by J.M. Bourgeois ABSTRACT Power MOSFET and IGBT gate drives often face isolation and high voltage constraints. The gate drive described

More information

The D.C Power Supply

The D.C Power Supply The D.C Power Supply Voltage Step Down Electrical Isolation Converts Bipolar signal to Unipolar Half or Full wave Smoothes the voltage variation Still has some ripples Reduce ripples Stabilize the output

More information

Ignition Alert Anti-Theft Security System for Motorbikes with Remote Control Amit Yadav, Anushri Jha, Neelesh Gupta amitrinku007@yahoo.

Ignition Alert Anti-Theft Security System for Motorbikes with Remote Control Amit Yadav, Anushri Jha, Neelesh Gupta amitrinku007@yahoo. Ignition Alert Anti-Theft Security System for Motorbikes with Remote Control Amit Yadav, Anushri Jha, Neelesh Gupta amitrinku007@yahoo.com Abstract There are many vehicle security system are available

More information

11: AUDIO AMPLIFIER I. INTRODUCTION

11: AUDIO AMPLIFIER I. INTRODUCTION 11: AUDIO AMPLIFIER I. INTRODUCTION The properties of an amplifying circuit using an op-amp depend primarily on the characteristics of the feedback network rather than on those of the op-amp itself. A

More information

LM78XX Series Voltage Regulators

LM78XX Series Voltage Regulators LM78XX Series Voltage Regulators General Description Connection Diagrams The LM78XX series of three terminal regulators is available with several fixed output voltages making them useful in a wide range

More information

AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE

AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE Thank you for purchasing your Amplified High Speed Fiber Photodetector. This user s guide will help answer any questions you may have regarding the

More information

6.101 Final Project Proposal Class G Audio Amplifier. Mark Spatz

6.101 Final Project Proposal Class G Audio Amplifier. Mark Spatz 6.101 Final Project Proposal Class G Audio Amplifier Mark Spatz 1 1 Introduction For my final project, I will be constructing a 30V audio amplifier capable of delivering about 150 watts into a network

More information

Digital to Analog Converter. Raghu Tumati

Digital to Analog Converter. Raghu Tumati Digital to Analog Converter Raghu Tumati May 11, 2006 Contents 1) Introduction............................... 3 2) DAC types................................... 4 3) DAC Presented.............................

More information

Common Base BJT Amplifier Common Collector BJT Amplifier

Common Base BJT Amplifier Common Collector BJT Amplifier Common Base BJT Amplifier Common Collector BJT Amplifier Common Collector (Emitter Follower) Configuration Common Base Configuration Small Signal Analysis Design Example Amplifier Input and Output Impedances

More information

DATA SHEET. TDA8560Q 2 40 W/2 Ω stereo BTL car radio power amplifier with diagnostic facility INTEGRATED CIRCUITS. 1996 Jan 08

DATA SHEET. TDA8560Q 2 40 W/2 Ω stereo BTL car radio power amplifier with diagnostic facility INTEGRATED CIRCUITS. 1996 Jan 08 INTEGRATED CIRCUITS DATA SHEET power amplifier with diagnostic facility Supersedes data of March 1994 File under Integrated Circuits, IC01 1996 Jan 08 FEATURES Requires very few external components High

More information

BJT Characteristics and Amplifiers

BJT Characteristics and Amplifiers BJT Characteristics and Amplifiers Matthew Beckler beck0778@umn.edu EE2002 Lab Section 003 April 2, 2006 Abstract As a basic component in amplifier design, the properties of the Bipolar Junction Transistor

More information

PIN CONFIGURATION FEATURES ORDERING INFORMATION ABSOLUTE MAXIMUM RATINGS. D, F, N Packages

PIN CONFIGURATION FEATURES ORDERING INFORMATION ABSOLUTE MAXIMUM RATINGS. D, F, N Packages DESCRIPTION The µa71 is a high performance operational amplifier with high open-loop gain, internal compensation, high common mode range and exceptional temperature stability. The µa71 is short-circuit-protected

More information

Creating a Usable Power Supply from a Solar Panel

Creating a Usable Power Supply from a Solar Panel Creating a Usable Power Supply from a Solar Panel An exploration in DC- DC converters By Kathleen Ellis Advised by Dr. Derin Sherman Department of Physics, Cornell College November 21, 2012 Introduction

More information

Properties of electrical signals

Properties of electrical signals DC Voltage Component (Average voltage) Properties of electrical signals v(t) = V DC + v ac (t) V DC is the voltage value displayed on a DC voltmeter Triangular waveform DC component Half-wave rectifier

More information

LM138 LM338 5-Amp Adjustable Regulators

LM138 LM338 5-Amp Adjustable Regulators LM138 LM338 5-Amp Adjustable Regulators General Description The LM138 series of adjustable 3-terminal positive voltage regulators is capable of supplying in excess of 5A over a 1 2V to 32V output range

More information

6.101 Final Project Report Class G Audio Amplifier

6.101 Final Project Report Class G Audio Amplifier 6.101 Final Project Report Class G Audio Amplifier Mark Spatz 4/3/2014 1 1 Introduction For my final project, I designed and built a 150 Watt audio amplifier to replace the underpowered and unreliable

More information

Hands On ECG. Sean Hubber and Crystal Lu

Hands On ECG. Sean Hubber and Crystal Lu Hands On ECG Sean Hubber and Crystal Lu The device. The black box contains the circuit and microcontroller, the mini tv is set on top, the bars on the sides are for holding it and reading hand voltage,

More information

Wireless Home Security System

Wireless Home Security System Wireless Home Security System Group: D14 Members: Vaibhav Singh (05D07026) Abhishek Tiwari (05D07028) Sauvik Chowdhury (05D07029) 1. Abstract The project is aimed at designing a low cost and reliable wireless

More information

Precision, Unity-Gain Differential Amplifier AMP03

Precision, Unity-Gain Differential Amplifier AMP03 a FEATURES High CMRR: db Typ Low Nonlinearity:.% Max Low Distortion:.% Typ Wide Bandwidth: MHz Typ Fast Slew Rate: 9.5 V/ s Typ Fast Settling (.%): s Typ Low Cost APPLICATIONS Summing Amplifiers Instrumentation

More information

= V peak 2 = 0.707V peak

= V peak 2 = 0.707V peak BASIC ELECTRONICS - RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard

More information

Welcome to this presentation on Driving LEDs AC-DC Power Supplies, part of OSRAM Opto Semiconductors LED Fundamentals series. In this presentation we

Welcome to this presentation on Driving LEDs AC-DC Power Supplies, part of OSRAM Opto Semiconductors LED Fundamentals series. In this presentation we Welcome to this presentation on Driving LEDs AC-DC Power Supplies, part of OSRAM Opto Semiconductors LED Fundamentals series. In this presentation we will look at: - the typical circuit structure of AC-DC

More information

Rail-to-Rail, High Output Current Amplifier AD8397

Rail-to-Rail, High Output Current Amplifier AD8397 Rail-to-Rail, High Output Current Amplifier AD8397 FEATURES Dual operational amplifier Voltage feedback Wide supply range from 3 V to 24 V Rail-to-rail output Output swing to within.5 V of supply rails

More information

LF412 Low Offset Low Drift Dual JFET Input Operational Amplifier

LF412 Low Offset Low Drift Dual JFET Input Operational Amplifier LF412 Low Offset Low Drift Dual JFET Input Operational Amplifier General Description These devices are low cost high speed JFET input operational amplifiers with very low input offset voltage and guaranteed

More information

Building the AMP Amplifier

Building the AMP Amplifier Building the AMP Amplifier Introduction For about 80 years it has been possible to amplify voltage differences and to increase the associated power, first with vacuum tubes using electrons from a hot filament;

More information

Current Loop Application Note 1495

Current Loop Application Note 1495 Current Loop Application Note Document No. CLAN1495 International Headquarter B&B Electronics Mfg. Co. Inc. 707 Dayton Road -- P.O. Box 1040 -- Ottawa, IL 61350 USA Phone (815) 433-5100 -- General Fax

More information

Experiment # (4) AM Demodulator

Experiment # (4) AM Demodulator Islamic University of Gaza Faculty of Engineering Electrical Department Experiment # (4) AM Demodulator Communications Engineering I (Lab.) Prepared by: Eng. Omar A. Qarmout Eng. Mohammed K. Abu Foul Experiment

More information

LM117 LM317A LM317 3-Terminal Adjustable Regulator

LM117 LM317A LM317 3-Terminal Adjustable Regulator LM117 LM317A LM317 3-Terminal Adjustable Regulator General Description The LM117 series of adjustable 3-terminal positive voltage regulators is capable of supplying in excess of 1 5A over a 1 2V to 37V

More information

SINGLE-SUPPLY OPERATION OF OPERATIONAL AMPLIFIERS

SINGLE-SUPPLY OPERATION OF OPERATIONAL AMPLIFIERS SINGLE-SUPPLY OPERATION OF OPERATIONAL AMPLIFIERS One of the most common applications questions on operational amplifiers concerns operation from a single supply voltage. Can the model OPAxyz be operated

More information

www.jameco.com 1-800-831-4242

www.jameco.com 1-800-831-4242 Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. LF411 Low Offset, Low Drift JFET Input Operational Amplifier General Description

More information

Table 1 Comparison of DC, Uni-Polar and Bi-polar Stepper Motors

Table 1 Comparison of DC, Uni-Polar and Bi-polar Stepper Motors Electronics Exercise 3: Uni-Polar Stepper Motor Controller / Driver Mechatronics Instructional Laboratory Woodruff School of Mechanical Engineering Georgia Institute of Technology Lab Director: I. Charles

More information

Lecture - 4 Diode Rectifier Circuits

Lecture - 4 Diode Rectifier Circuits Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits

More information

LM386 Low Voltage Audio Power Amplifier

LM386 Low Voltage Audio Power Amplifier Low Voltage Audio Power Amplifier General Description The LM386 is a power amplifier designed for use in low voltage consumer applications. The gain is internally set to 20 to keep external part count

More information

Photo Modules for PCM Remote Control Systems

Photo Modules for PCM Remote Control Systems Photo Modules for PCM Remote Control Systems Available types for different carrier frequencies Type fo Type fo TSOP183 3 khz TSOP1833 33 khz TSOP1836 36 khz TSOP1837 36.7 khz TSOP1838 38 khz TSOP184 4

More information

PLL frequency synthesizer

PLL frequency synthesizer ANALOG & TELECOMMUNICATION ELECTRONICS LABORATORY EXERCISE 4 Lab 4: PLL frequency synthesizer 1.1 Goal The goals of this lab exercise are: - Verify the behavior of a and of a complete PLL - Find capture

More information

Section 3. Sensor to ADC Design Example

Section 3. Sensor to ADC Design Example Section 3 Sensor to ADC Design Example 3-1 This section describes the design of a sensor to ADC system. The sensor measures temperature, and the measurement is interfaced into an ADC selected by the systems

More information

OPERATIONAL AMPLIFIERS

OPERATIONAL AMPLIFIERS INTRODUCTION OPERATIONAL AMPLIFIERS The student will be introduced to the application and analysis of operational amplifiers in this laboratory experiment. The student will apply circuit analysis techniques

More information

Measuring Electric Phenomena: the Ammeter and Voltmeter

Measuring Electric Phenomena: the Ammeter and Voltmeter Measuring Electric Phenomena: the Ammeter and Voltmeter 1 Objectives 1. To understand the use and operation of the Ammeter and Voltmeter in a simple direct current circuit, and 2. To verify Ohm s Law for

More information

See Horenstein 4.3 and 4.4

See Horenstein 4.3 and 4.4 EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes by Drs. A.V. Radun and K.D. Donohue (2/14/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated

More information

Objectives The purpose of this lab is build and analyze Differential amplifiers based on NPN transistors (or NMOS transistors).

Objectives The purpose of this lab is build and analyze Differential amplifiers based on NPN transistors (or NMOS transistors). 1 Lab 03: Differential Amplifiers (BJT) (20 points) NOTE: 1) Please use the basic current mirror from Lab01 for the second part of the lab (Fig. 3). 2) You can use the same chip as the basic current mirror;

More information

Using voltage regulator to convert 5-12V range to 3.3V. Huan Lin

Using voltage regulator to convert 5-12V range to 3.3V. Huan Lin Using voltage regulator to convert 5-12V range to 3.3V Huan Lin 4/2/2010 1 Table of Contents 1. Introduction... Error! Bookmark not defined. 2. Objective... Error! Bookmark not defined. 3. Implementation...

More information

Application Examples

Application Examples ISHAY SEMICONDUCTORS www.vishay.com Optocouplers and Solid-State Relays Application Note 2 INTRODUCTION Optocouplers are used to isolate signals for protection and safety between a safe and a potentially

More information

Series and Parallel Circuits

Series and Parallel Circuits Direct Current (DC) Direct current (DC) is the unidirectional flow of electric charge. The term DC is used to refer to power systems that use refer to the constant (not changing with time), mean (average)

More information

ECEN 1400, Introduction to Analog and Digital Electronics

ECEN 1400, Introduction to Analog and Digital Electronics ECEN 1400, Introduction to Analog and Digital Electronics Lab 4: Power supply 1 INTRODUCTION This lab will span two lab periods. In this lab, you will create the power supply that transforms the AC wall

More information

Bridgeless PFC Implementation Using One Cycle Control Technique

Bridgeless PFC Implementation Using One Cycle Control Technique Bridgeless PFC Implementation Using One Cycle Control Technique Bing Lu Center for Power Electronics Systems Virginia Polytechnic Institute and State University 674 Whittemore Hall Blacksburg, VA 24061

More information

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,

More information

0.9V Boost Driver PR4403 for White LEDs in Solar Lamps

0.9V Boost Driver PR4403 for White LEDs in Solar Lamps 0.9 Boost Driver for White LEDs in Solar Lamps The is a single cell step-up converter for white LEDs operating from a single rechargeable cell of 1.2 supply voltage down to less than 0.9. An adjustable

More information

Buffer Op Amp to ADC Circuit Collection

Buffer Op Amp to ADC Circuit Collection Application Report SLOA098 March 2002 Buffer Op Amp to ADC Circuit Collection Bruce Carter High Performance Linear Products ABSTRACT This document describes various techniques that interface buffer op

More information

Lab 3 Rectifier Circuits

Lab 3 Rectifier Circuits ECET 242 Electronic Circuits Lab 3 Rectifier Circuits Page 1 of 5 Name: Objective: Students successfully completing this lab exercise will accomplish the following objectives: 1. Learn how to construct

More information

Frequency Response of Filters

Frequency Response of Filters School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To

More information

Fiber Optics. Integrated Photo Detector Receiver for Plastic Fiber Plastic Connector Housing SFH551/1-1 SFH551/1-1V

Fiber Optics. Integrated Photo Detector Receiver for Plastic Fiber Plastic Connector Housing SFH551/1-1 SFH551/1-1V Fiber Optics Integrated Photo Detector Receiver for Plastic Fiber Plastic Connector Housing SFH551/1-1 Features Bipolar IC with open-collector output Digital output, TTL compatible Sensitive in visible

More information

Baseband delay line QUICK REFERENCE DATA

Baseband delay line QUICK REFERENCE DATA FEATURES Two comb filters, using the switched-capacitor technique, for one line delay time (64 µs) Adjustment-free application No crosstalk between SECAM colour carriers (diaphoty) Handles negative or

More information

Application Note AN1

Application Note AN1 TAKING INVENTIVE STEPS IN INFRARED. MINIATURE INFRARED GAS SENSORS GOLD SERIES UK Patent App. No. 799A USA Patent App. No. 9/78,7 World Patents Pending SENSOR OVERVIEW Application Note AN The Dynament

More information

Projects. Objective To gain hands-on design and measurement experience with real-world applications. Contents

Projects. Objective To gain hands-on design and measurement experience with real-world applications. Contents Projects Contents 9-1 INTRODUCTION...................... 43 9-2 PROJECTS......................... 43 9-2.1 Alarm Radar Sensor................ 43 9-2.2 Microwave FM Communication Link....... 46 9-2.3 Optical

More information

Evaluating AC Current Sensor Options for Power Delivery Systems

Evaluating AC Current Sensor Options for Power Delivery Systems Evaluating AC Current Sensor Options for Power Delivery Systems State-of-the-art isolated ac current sensors based on CMOS technology can increase efficiency, performance and reliability compared to legacy

More information

HIGH VOLTAGE POWER SUPPLY FOR ELECTRO-OPTICS APPLICATIONS

HIGH VOLTAGE POWER SUPPLY FOR ELECTRO-OPTICS APPLICATIONS HIGH VOLTAGE POWER SUPPLY FOR ELECTRO-OPTICS APPLICATIONS A. R. Tamuri, N. Bidin & Y. M. Daud Laser Technology Laboratory, Physics Department Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai,

More information

LM1084 5A Low Dropout Positive Regulators

LM1084 5A Low Dropout Positive Regulators 5A Low Dropout Positive Regulators General Description The LM1084 is a series of low dropout voltage positive regulators with a maximum dropout of 1.5 at 5A of load current. It has the same pin-out as

More information

Description. 5k (10k) - + 5k (10k)

Description. 5k (10k) - + 5k (10k) THAT Corporation Low Noise, High Performance Microphone Preamplifier IC FEATURES Excellent noise performance through the entire gain range Exceptionally low THD+N over the full audio bandwidth Low power

More information

Analog & Digital Electronics Course No: PH-218

Analog & Digital Electronics Course No: PH-218 Analog & Digital Electronics Course No: PH-18 Lec 3: Rectifier and Clipper circuits Course nstructors: Dr. A. P. VAJPEY Department of Physics, ndian nstitute of Technology Guwahati, ndia 1 Rectifier Circuits:

More information

LM118/LM218/LM318 Operational Amplifiers

LM118/LM218/LM318 Operational Amplifiers LM118/LM218/LM318 Operational Amplifiers General Description The LM118 series are precision high speed operational amplifiers designed for applications requiring wide bandwidth and high slew rate. They

More information

Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz

Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz Author: Don LaFontaine Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz Abstract Making accurate voltage and current noise measurements on op amps in

More information

EGR 278 Digital Logic Lab File: N278L3A Lab # 3 Open-Collector and Driver Gates

EGR 278 Digital Logic Lab File: N278L3A Lab # 3 Open-Collector and Driver Gates EGR 278 Digital Logic Lab File: N278L3A Lab # 3 Open-Collector and Driver Gates A. Objectives The objectives of this laboratory are to investigate: the operation of open-collector gates, including the

More information

Conversion Between Analog and Digital Signals

Conversion Between Analog and Digital Signals ELET 3156 DL - Laboratory #6 Conversion Between Analog and Digital Signals There is no pre-lab work required for this experiment. However, be sure to read through the assignment completely prior to starting

More information

Operational Amplifiers

Operational Amplifiers Module 6 Amplifiers Operational Amplifiers The Ideal Amplifier What you ll learn in Module 6. Section 6.0. Introduction to Operational Amplifiers. Understand Concept of the Ideal Amplifier and the Need

More information

Datasheet - DS0002 Indice Semiconductor Pty Ltd

Datasheet - DS0002 Indice Semiconductor Pty Ltd Datasheet - DS0002 Indice Semiconductor Pty Ltd MR16 LED Driver IC INDICE0002 with Power and Active Temperature Management KEY FEATURES Input voltage range: 12 V DC / 12 V AC. Input frequency range from

More information

Amplified High Speed Fiber Photodetectors

Amplified High Speed Fiber Photodetectors Amplified High Speed Fiber Photodetectors User Guide (800)697-6782 sales@eotech.com www.eotech.com Page 1 of 7 EOT AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE Thank you for purchasing your Amplified

More information

AM TRANSMITTERS & RECEIVERS

AM TRANSMITTERS & RECEIVERS Reading 30 Ron Bertrand VK2DQ http://www.radioelectronicschool.com AM TRANSMITTERS & RECEIVERS Revision: our definition of amplitude modulation. Amplitude modulation is when the modulating audio is combined

More information