# Chapter 5 TRANSFORMERS

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Chapter 5 TRANSFORMERS

2 Objective Understand the transformer nameplate Describe the basic construction features of a transformer. Explain the relationship between voltage, current, impedance, and power in a transformer. Define transformer exciting current. Develop transformer equivalent circuits from open-circuit and shortcircuit test data. Analyze transformer operation. Calculate transformer voltage regulation and efficiency. Use K-factor-rated transformer to solve nonlinear load problems. Explain the four standard three-phase transformer configurations 2

3 Introduction A transformer is an electrical device that transfers energy from one circuit to another purely by magnetic coupling. Relative motion of the parts of the transformer is not required for transfer of energy. Transformers are often used to convert between high and low voltages and to change impedance. Transformers alone cannot do the following: - Convert DC to AC or vice versa - Change the voltage or current of DC - Change the AC supply frequency. However, transformers are components of the systems that perform all these functions. 3

4 Transformer Nameplate Data Transformer nameplates contain information about the size of the transformer in terms of how much apparent power (rated in kva) it is designated to deliver to the load on a continuous basis as well primary and secondary voltages and currents. Example: 75 kva, *120V U-W primary winding is rated U volts and secondary winding is rated V volts U/W indicates that two voltages are from the same winding and that both voltages are available U*V two part winding that can be connected in series or parallel to give higher voltage but only one voltage is available at a time. U Y/W the Y indicates a 3-phase winding connected in a WYE configuration. 4 Example

5 An idealized step-down transformer showing resultant flux in the core Basic principles The transformer may be considered as a simple two-wheel 'gearbox' for electrical voltage and current. The primary winding is analogous to the input shaft The secondary winding is analogous to the output shaft. In this comparison, current is equivalent to shaft speed and voltage to shaft torque. In a gearbox, mechanical power (speed multiplied by torque) is constant (neglecting losses) and is equivalent to electrical power (voltage multiplied by current) which is also constant. 5

6 An idealized step-down transformer showing resultant flux in the core The gear ratio is equivalent to the transformer step-up or step-down ratio. A step-up transformer acts analogously to a reduction gear (in which mechanical power is transferred from a small, rapidly rotating gear to a large, slowly rotating gear): it trades current (speed) for voltage (torque), by transferring power from a primary coil to a secondary coil having more turns. A step-down transformer acts analogously to a multiplier gear (in which mechanical power is transferred from a large gear to a small gear): it trades voltage (torque) for current (speed), by transferring power from a primary coil to a secondary coil having fewer turns. 6

7 1/1 Transformer When the primary winding and the secondary winding have the same amount of turns there is no change voltage, the ratio is 1/1 unity. Step-Down Transformer If there are fewer turns in the secondary winding than in the primary winding, the secondary voltage will be lower than the primary. Step Up Transformers If there are fewer turns in the primary winding than in the secondary winding, the secondary voltage will be higher than the secondary circuit. 7

8 A simple transformer consists of two electrical conductors called the primary winding and the secondary winding. If a time-varying voltage is applied to the primary winding of turns, a current will flow in it producing a magnetomotive force (MMF). The primary MMF produces a varying magnetic flux in the core. In accordance with Faraday's Law, the voltage induced across the primary winding is proportional to the rate of change of flux : Similarly, the voltage induced across the secondary winding is: 8

9 With perfect flux coupling, the flux in the secondary winding will be equal to that in the primary winding, and so we can equate and. Hence, in an ideal transformer, the ratio of the primary and secondary voltages is equal to the ratio of the number of turns in their windings, or alternatively, the voltage per turn is the same for both windings. This leads to the most common use of the transformer: to convert electrical energy at one voltage to energy at a different voltage by means of windings with different numbers of turns. 9 Example

10 The Universal EMF equation Faraday s law tells: If we apply sinusoidal voltage to the transformer: Flux is given by: This equation demonstrates a definite relation between the voltage in a coil, the flux density, and the size of the core. The designer must make trade-offs among the variables when design a transformer. 10 Example

11 Voltage and Current For the ideal transformer, all the flux is confined to the iron core and thus links the primary and secondary. Because the losses are zero in the ideal transformer, the apparent power in and out of the transformer must be the same: Ratio of the currents is inverse of the voltage ratio or the inverse of the turns ratio. It makes sense: if we raise the voltage level to a load with a step-up transformer, then the secondary current drawn by the load would have to be less than the primary current, science the apparent power is constant Turns ratio For step-down transformer, the primary side has more turns than secondary, therefore a >1; For step-up transformer, the primary side has fewer turns than secondary, therefore a <1; Example 11 Example

12 Impedance Due to the fact that the transformer changes the voltage and current levels in opposite directions, it also changes the apparent impedance as seen from the two sides of the transformer. Ohm s law applied at the load: Recollect: When we move an impedance from the secondary to the primary side of the transformer we multiply by the turns ratio squared. When moving the impedance from the primary to the secondary, we divide it by the turns ratio squared. The Reflected (referred) impedance (the impedance looking into the primary side of the transformer) This process is called referring the impedance to the side we move it, and allows us to use transformers to match impedances between a source and a load 12 Example

13 Exciting Current In real life we deal with real transformers which require current in the primary winding to establish the flux in the core. The current that establishes the flux is called the exiting current. Magnitude of the exciting current is usually about 1%-5% of the rated current of the primary. According to Faraday s law if we apply a sinusoidal voltage to the transformer, then the flux will also be sinusoidal. Due to the non-linearity of B-H curve, the current will not be sinusoidal even if the flux is sinusoidal and the current will be out of phase with flux. 13

14 The current is not sinusoidal but it is periodic, thus can be represented by a Fourier series. a. Harmonic content of exciting current. b. Measured exciting current. A slightly higher applied voltage causes the transformer to draw a much higher exiting current which would also increase the RMS value of the exiting current is calculated : core losses. 14

15 The exciting current is not in phase with the flux. The voltage is 90 degrees ahead of the flux, science voltage is the derivative of the flux. The exciting current phasor lies between the voltage phasor and the flux phasor, therefore the current can be separated into two components: - One in phase with the voltage, Ife. Represents real power being consumed and is called: Core-loss current - One in phase with the flux, Im. Represents reactive power and is called: Magnetizing current Equivalent circuit of transformer core Phasor diagram of exciting current The resistance Rc consumes real power corresponding to the core loss of the transformer. The inductive reactance Xm draws the current to create the magnetic field in the transformer core. 15

16 We can calculate Rfe and Xm : 1. With no load on the transformer measure: the RMS current into the transformer the input voltage the real power into transformer 2. The product of the voltage and the current gives the apparent power, S. 3. Science the real power is known, we can find the power factor and the impedance angle. The elements then can be calculated. 16

17 Transformer Equivalent Circuits All non-ideal transformers have: - Winding resistance - A core with finite permeability - Leakage flux - Hysteresis - Eddy current losses Current flows in Current flows out Can be represented as a resistor and inductor in series with transformer Primary leakage flux Mutual flux that links both coils 17

18 Non-ideal (real) transformer Magnetizing branch The transformer is now ideal and the circuit elements account for the losses and voltage drops in the real transformer. 18

19 Equivalent T-circuit Third order circuit. It takes third order differential equation to solve it. 19

20 We can refer the impedances of the secondary to the primary side (or vise versa) yielding the equivalent circuits All resistances and reactances have been referred to the primary side All resistances and reactances have been referred to the secondary side 20

21 Cantilever Equivalent Circuit. The combination of the winding resistances is called equivalent resistance. The combination of the leakage reactances is called the equivalent reactance. The Cantilever Equivalent Circuit Model neglects the voltage drop of the exciting current in the primary coil but makes calculation the exciting current much easier because the primary voltage is applied directly to the magnetizing reactance and the core-loss resistance. Cantilever circuit referred to the primary. 21

22 Cantilever circuit referred to the secondary. Example 22

23 Series Equivalent Circuit Note: In large-scale system studies, even cantilever model becomes too complex, so one final simplification is made. We completely neglect the magnetizing branch of the transformer model. Only combined winding resistance and leakage reactance are included, resulting in the first order model (takes first order differential equation to solve it). Series equivalent circuit. Science there are no shunt elements, the primary and secondary currents are equal to each other. 23

24 Determining Circuit Parameters For developed model to be useful, there must be a way to determine the values of the model parameters. We use two test to determine this parameters: Short-circuit test One side of the transformer is shorted, and voltage is applied on the other side until rated current flows in the winding. The applied voltage, winding current, and input power are measured. Technique: the low-voltage side of the transformer is shorted and voltage is applied to the high-voltage side, because it only takes about 4%-7% of rated voltage to cause rated current to flow in the winding. The measurements are used to calculate value of Req and jxeq. Input impedance to the transformer is the primary winding in series with the parallel combination of the secondary winding and the exciting branch: The core branch elements are much larger that the winding impedance: 24

25 To conduct the short-circuit test: - Measure the voltage applied to the transformer high side Vsc - Measure the short-circuit current in the high-side winding Isc - Measure the power into the transformer Psc. - Having these parameters we calculate the magnitude of input impedance: Once we have values for the equivalent winding resistance and reactance we can apportion them to the two sides by assuming the windings have equal resistance and reactance when referred to the same side: 25

26 Open-circuit test High-voltage side is opened and rated voltage is applied to the low-voltage side (primary side). The low-voltage side is used to avoid high-voltage measurements. With no load current, only exciting current Io flows and because the impedance of the primary side is small, the voltage across the magnetizing branch is approximately equal to the applied voltage. Procedure: - Measure the voltage applied to the transformer low side Voc, the open-circuit current in the low-side winding Ioc and the power into the transformer during open circuit test Poc. - Calculate resistance and reactance. 26

27 The input impedance during open-circuit test is the primary winding in series with the exciting branch: Now we have the voltage applied to and the power dissipated, so we can calculate: Because the magnetizing reactance is in parallel with reactive power to find reactance: we first need to find the 27

28 Transformer Efficiency Efficiency is defined as: Input is the output plus losses: LOSSES Copper losses (the energy dissipated in the resistance of the windings ) Core losses (hysteresis and eddy current losses in ferromagnetic core of the transformer) 28

29 K-Factor-Rated Transformers The overheating effect of nonlinear loads on wiring systems, transformers, motors, and generators can be severe. K-Factor-Rated transformers are specifically designed to handle nonlinear loads. They are typically constructed of thinner steel laminations, lower-loss steel, and larger conductors. This allows them to provide harmonic currents without overheating. The K-factor rating of the transformer is an indication of the transformer s ability to deliver power to a load without exceeding the transformer specified operating temperature limits. K-factor is defined as: where h is the harmonic number, Ih is the RMS value of the harmonic current, and I RMS is the total RMS current. Example: K-4 rated transformer means that this transformer can handle a load that produces harmonic currents that would cause four times the normal eddy current loss in a standard transformer 29

30 Voltage Regulation The transformer windings have impedance so there will be a voltage drop across them that changes with current. The secondary voltage will vary as the load changes. Voltage regulation is a measure of the change in secondary voltage from no-load to full-load and is usually expressed as a percentage of the full-load voltage. If there were no load on the transformer, the current would be zero and the referred secondary voltage would be equal to the primary voltage. The no-load voltage (referred to the primary) of the transformer is the primary voltage. As the load increases to full load, current flows in the windings of the transformer and there is a voltage drop across the transformer, and the referred value of the secondary voltage is no longer equal to the primary voltage. Voltage regulation: 30

31 If we know the primary voltage and the current, we can calculate the secondary voltage: If we know the secondary voltage and current, then we can calculate the primary voltage, which is referred to the secondary and primary, respectively. Referred to the secondary Referred to the primary 31 example

32 There are some applications, however, where poor regulation is desired. 1. Discharge lighting, where a step-up transformer is required to initially generate a high voltage (necessary to "ignite" the lamps), then the voltage is expected to drop off once the lamp begins to draw current. This is because discharge lamps' voltage requirements tend to be much lower after a current has been established through the arc path. In this case, a step-up transformer with poor voltage regulation suffices nicely for the task of conditioning power to the lamp. 2. Current control for AC arc welders, which are nothing more than step-down transformers supplying low-voltage, high-current power for the welding process. A high voltage is desired to assist in "striking" the arc (getting it started), but like the discharge lamp, an arc doesn't require as much voltage to sustain itself once the air has been heated to the point of ionization. 32

33 Autotransformers Elementary autotransformer. Autotransformer schematic. The low-voltage coil; is essentially placed on the top of the high-voltage coil and called the series coil. This connection is called autotransformer and can be used as a step-up or a step-down transformer. Advantages of an autotransformer: 1. Higher power rating 2. Cheaper 3. More efficient 4. Low exciting current 5. Better voltage regulation As an autotransformer, the kva rating is: Disadvantages of an autotransformer: 1. Larger short-circuit currents available 2. No isolation between the primary and secondary 3. Most useful for relatively small voltage changes 33

34 Autotransformers are one winding transformers that are often used in transmission and sub transmission substations. Figure 4.21 page 125 Note that the primary and secondary sides are not isolated from each other. So if the secondary neutral, which is common to the primary neutral, is opened for any reason the full primary voltage could appear on the secondary side with disastrous results. Unsafe conditions would result for people as well as damage to the low voltage side protective devices and equipment. For this reason autotransformers are never used as the final transformer in distribution substations. The ideal transformer relationships are approximately true for autotransformers as well as isolation (conventional) transformers. 34

35 Practical applications of autotransformers: 1. Connecting transmission lines of slightly different voltages (F.E 115kV and 138kV) 2. Compensating for voltage drop on long feeder circuits 3. Providing variable voltage control in the laboratory 4. Changing 208V to 240V or vice versa 5. Adjusting the output voltage of a transformer to keep the system voltage constant as the load varies. Photograph of an autotransformer for variable-voltage control in the lab. a. Laboratory autotransformer. b. Cover removed to show coil and sliding contact. 35

36 The Autotransformer Rating Advantage Scan figure 4.22 Page

37 Three-phase transformer connections There are four major three-phase transformer connections : 1. WYE-WYE 2. Delta-Delta 3. WYE-Delta 4. Delta-WYE Three-phase transformers are less expensive than 3-single-phase transformers because less total core material is needed for the three-phase transformer and the packaging cost is reduced. Additionally they take up less space, are lighter, require less on site external wiring for installation, and more efficient than three single-phase transformers. Single phase transformer has one voltage ratio which agrees with the turns ratio. For 3-phase transformer: 1. Bank Ratio = BR = the ratio of line-to-line voltages. 2. Phase Ratio = PR = the ratio of the voltages in the coils of the transformer and thus agrees with the turns ratio. 37

38 The WYE-WYE connection has significant third harmonic content on the secondary lines (unless the neutral point is grounded) There is no phase shift between the primary and secondary of a Y- Y connected transformer. The Delta-Delta connection has no harmonic problem and no phase shift from primary to secondary. The only disadvantage with respect to a WYE connection is that the delta insulation class must be for the line to line instead of line to neutral voltage. 38

39 There is a 30 degrees phase shift in both connections. United States industry convention is to connect the secondary so it lags the high voltage primary by 30 degrees. Figure 4.16 page 120 When possible the Y is connected to the high voltage side because the insulation requirements are lower (recall that Y phase voltage is 1/sqrt(3) that of the line voltage). The Y may be necessary on the low voltage side because of the distribution system requirements as in 480/277 V and 208/120 V installations. 39

40 40

### Applying Faraday s law to both the primary and the secondary (noting the possibility of sources applied to either winding), yields

TRANSFORMERS Transformers are key elements in power systems. In order to effectively transmit power over long distances without prohibitive line losses, the voltage from the generator (a maximum of output

### IVE(TY) Department of Engineering Electrical Machines 1

Hour 8 slide 1 Introduction Transformer Transformer is a machine that has no moving parts but is able to transform alternating voltages and currents from high to low (step-up transformer ) and vice versa

### 2. TRANSFORMERS. The main learning objectives for this chapter are listed below. Use equivalent circuits to determine voltages and currents.

. TRANSFORMERS Transformers are commonly used in applications which require the conversion of AC voltage from one voltage level to another. There are two broad categories of transformers: electronic transformers,

### Open circuit and short circuit tests on single phase transformer

1 Aim Experiment No: 2 Open circuit and short circuit tests on single phase transformer To understand the basic working principle of a transformer. To obtain the equivalent circuit parameters from OC and

### Electric Engineering II EE 326 Lecture 4 & 5

Electric Engineering II EE 326 Lecture 4 & 5 Transformers ١ Transformers Electrical transformers have many applications: Step up voltages (for electrical energy transmission with

### Chapter 9: Ideal Transformer. 10/9/2003 Electromechanical Dynamics 1

Chapter 9: Ideal Transformer 10/9/003 Electromechanical Dynamics 1 Introduction Transformers are one of the most useful electrical devices provides a change in voltage and current levels provides galvanic

### STUDY OF IDEAL TRANSFORMER AND PRACTICAL TRANSFORMER

STUDY OF IDEAL TRANSFORMER AND PRACTICAL TRANSFORMER RUBY DHANKAR, SAPNA KAMRA,VISHAL JANGRA Abstract- This paper proposes the study of real and ideal transformer. It also explains load, no-load conditions

### Module 19 Units 1-3 Three-Phase Transformers

Module 19 Units 1-3 Three-Phase Transformers 1. What is the difference between a three-phase transformer and a bank of singlephase transformers? Windings from all three phases are wound on the same core

### Module Overview. This module presents the following topics: Principle of Operation Types of Transformers Operating Considerations and Limitations

Course Outline 1. Introduction to WECC 2. Fundamentals of Electricity 3. Power System Overview 4. Principles of Generation 5. Substation Overview 6. Transformers 7. Power Transmission 8. System Protection

### APPLICATION NOTE - 018

APPLICATION NOTE - 018 Power Transformers Background Power Transformers are used within an AC power distribution systems to increase or decrease the operating voltage to achieve the optimum transmission

### Module 7. Transformer. Version 2 EE IIT, Kharagpur

Module 7 Transformer Version EE IIT, Kharagpur Lesson 4 Practical Transformer Version EE IIT, Kharagpur Contents 4 Practical Transformer 4 4. Goals of the lesson. 4 4. Practical transformer. 4 4.. Core

### Supplementary Notes on Transformers

Supplementary Notes on Transformers A transformer is a device that transfers electrical energy from one circuit to another through inductively coupled conductors the transformer's coils. Figure 1 illustrates

### Electrical Machines. Electrical Engineering. for

Electrical Machines for Electrical Engineering By www.thegateacademy.com Syllabus Syllabus for Electrical Machines Single Phase Transformer: Equivalent Circuit, Phasor Diagram, Open Circuit and Short Circuit

### Electrical Machines II. Week 1: Construction and theory of operation of single phase transformer

Electrical Machines II Week 1: Construction and theory of operation of single phase transformer Transformers Overview A transformer changes ac electric power at one frequency and voltage level to ac electric

### Lecture 5: Transformers(continued)

Lecture 5: Transformers(continued) Equivalent circuit of a transformer Figure (1) shows an equivalent circuit of a transformer. R 1 and R 2 represent the resistances of the primary and secondary windings

### Chapter 11. Inductors. Objectives

Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive

### rd Class / AC Machines Dr. Inaam Ibrahim

3 rd Class / AC Machines Dr. Inaam Ibrahim 1 1. Introduction Induction Motors The induction motor derives its name from the fact that ac voltages are induced in the rotor circuit by the rotating magnetic

### Chapt ha e pt r e r 12 RL Circuits

Chapter 12 RL Circuits Sinusoidal Response of RL Circuits The inductor voltage leads the source voltage Inductance causes a phase shift between voltage and current that depends on the relative values of

### Chapter 14. Transformers ISU EE. C.Y. Lee

Chapter 14 Transformers Objectives Explain mutual inductance Describe how a transformer is constructed and how it works Explain how a step-up and -down transformer works Discuss the effect of a resistive

Chapter 1 Introduction to Machinery Principles 1 1.1 Electrical Machines, Transformers, and Daily Life 1 1.2 A Note on Units and Notation 2 Notation 1.3 Rotational Motion, Newton s Law, and Power Relationships

### Coupled Inductors. Introducing Coupled Inductors

Coupled Inductors From power distribution across large distances to radio transmissions, coupled inductors are used extensively in electrical applications. Their properties allow for increasing or decreasing

### Extra Questions - 1. 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A

Extra Questions - 1 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A 2. A current of 500mA flows in a resistance of 12Ω. What power is dissipated

Induction Motor (No-Load Test) Induction Motor (Blocked Rotor Test) Example (No-Load/Blocked Rotor Tests) The results of the no-load and blocked rotor tests on a three-phase, 60 hp, 2200 V, six-pole, 60

### Basics of Electricity

Basics of Electricity Generator Theory PJM State & Member Training Dept. PJM 2014 8/6/2013 Objectives The student will be able to: Describe the process of electromagnetic induction Identify the major components

### Functions, variations and application areas of magnetic components

Westring 18 3314 Büren Germany T +49 951 60 01 0 F +49 951 60 01 3 www.schaffner.com energy efficiency and reliability 1.1 Transformers The transformer is one of the traditional components of electrical

### 2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?

Extra Questions - 2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux

### Questions. Question 1

Question 1 Questions Explain why transformers are used extensively in long-distance power distribution systems. What advantage do they lend to a power system? file 02213 Question 2 Are the transformers

### SYNCHRONOUS MACHINES

SYNCHRONOUS MACHINES The geometry of a synchronous machine is quite similar to that of the induction machine. The stator core and windings of a three-phase synchronous machine are practically identical

### Electrical Machines-I Prof. D. Kastha Department of Electrical Engineering Indian Institute of Technology, Kharagpur

Electrical Machines-I Prof. D. Kastha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Lecture - 7 Voltage Regulation of Single Phase Transformers (Refer Slide Time: 00:59)

### Before we proceed with a study of electric machinery, it is desirable to discuss

CHAPTER 2 Transformers Before we proceed with a study of electric machinery, it is desirable to discuss certain aspects of the theory of magnetically coupled circuits, with emphasis on transformer action.

### AC Generators. Basic Generator

AC Generators Basic Generator A basic generator consists of a magnetic field, an armature, slip rings, brushes and a resistive load. The magnetic field is usually an electromagnet. An armature is any number

### Chapter 12. RL Circuits. Objectives

Chapter 12 RL Circuits Objectives Describe the relationship between current and voltage in an RL circuit Determine impedance and phase angle in a series RL circuit Analyze a series RL circuit Determine

### Module 7. Transformer. Version 2 EE IIT, Kharagpur

Module 7 Transformer Lesson 27 Auto-Transformer ontents 27 Auto-Transformer 4 27.1 Goals of the lesson. 4 27.2 Introduction 4 27.3 2-winding transformer as Autotransformer... 5 27.4 Autotransformer as

### Electrical Machines II. Week 3: Transformer Tests and voltage regulation

Electrical Machines Week 3: Transformer Tests and voltage regulation Determination of Equivalent Circuit Parameters All the circuit parameters can be easily determined by performing three tests, a no-load

### Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49

Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large

### 1. Title Electrical fundamentals II (Mechanics Repair and Maintenance)

1. Title Electrical fundamentals II (Mechanics Repair and Maintenance) 2. Code EMAMBG429A 3. Range The knowledge is needed for a wide range of aircraft repair and maintenance works,e.g. applicable to aircrafts,

### ESO 210 Introduction to Electrical Engineering

ESO 210 Introduction to Electrical Engineering Lecture-22 Transformers 2 After going through this lecture students will be able to answer the following questions. 3 After developing the equivalent circuit

### MOTIONLESS ELECTRIC GENERATOR DESIGN BASED ON PERMANENT MAGNETS AND MAGNETIC AMPLIFIER

12/28/2009 MOTIONLESS ELECTRIC GENERATOR DESIGN BASED ON PERMANENT MAGNETS AND MAGNETIC AMPLIFIER FEDERALLY SPONSOR RESEARCH Not Applicable BACKGROUND - Field [0001] This application relates to motionless

### Three phase circuits

Three phase circuits THREE PHASE CIRCUITS THREE-PHASE ADVANTAGES 1. The horsepower rating of three-phase motors and the kva rating of three-phase transformers are 150% greater than single-phase motors

### Electrical Machines-I Prof. D. Kastha Department of Electrical Engineering Indian Institute of Technology, Kharagpur

Electrical Machines-I Prof. D. Kastha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Lecture - 6 Efficiency of Single Phase Transformers (Refer Slide Time: 01:04) In the

### ELEC-E8407 Electromechanics. Laboratory exercise 1: Transformer

ELEC-E8407 Electromechanics Laboratory exercise 1: Transformer ELEC-E8407 Electromechanics 2 In the exercise, the properties of a core-type transformer are tested by carrying out the following measurements

### * Self-inductance * Mutual inductance * Transformers. PPT No. 32

* Self-inductance * Mutual inductance * Transformers PPT No. 32 Inductance According to Faraday s Electromagnetic Induction law, induction of an electromotive force occurs in a circuit by varying the magnetic

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3. OUTCOME 3 - MAGNETISM and INDUCTION

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 3 - MAGNETISM and INDUCTION 3 Understand the principles and properties of magnetism Magnetic field:

### Chapter 4. Magnetic Materials and Circuits

Chapter 4 Magnetic Materials and Circuits Objectives List six characteristics of magnetic field. Understand the right-hand rule for current and magnetic fluxes. Define magnetic flux, flux density, magnetomotive

### Unit 33 Three-Phase Motors

Unit 33 Three-Phase Motors Objectives: Discuss the operation of wound rotor motors. Discuss the operation of selsyn motors. Discuss the operation of synchronous motors. Determine the direction of rotation

### Synchronous Generators. Spring 2013

Synchronous Generators Spring 2013 Construction of synchronous machines In a synchronous generator, a DC current is applied to the rotor winding producing a rotor magnetic field. The rotor is then turned

### 13 ELECTRIC MOTORS. 13.1 Basic Relations

13 ELECTRIC MOTORS Modern underwater vehicles and surface vessels are making increased use of electrical actuators, for all range of tasks including weaponry, control surfaces, and main propulsion. This

### ACCURACY OF POTENTIALTRANSFORMERS

8 VOLTAGE TRANSFORMERS Two types of voltage transformer are used for protective-relaying purposes, as follows: (1) the "instrument potential transformer," hereafter to be called simply "potential transformer,"

### MAGNETISM MAGNETISM. Principles of Imaging Science II (120)

Principles of Imaging Science II (120) Magnetism & Electromagnetism MAGNETISM Magnetism is a property in nature that is present when charged particles are in motion. Any charged particle in motion creates

### TRANSFORMERS INTRODUCTION

Tyco Electronics Corporation Crompton Instruments 1610 Cobb International Parkway, Unit #4 Kennesaw, GA 30152 Tel. 770-425-8903 Fax. 770-423-7194 TRANSFORMERS INTRODUCTION A transformer is a device that

### BALANCED THREE-PHASE CIRCUITS

BALANCED THREE-PHASE CIRCUITS The voltages in the three-phase power system are produced by a synchronous generator (Chapter 6). In a balanced system, each of the three instantaneous voltages have equal

### Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur. Lecture 2

Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Lecture 2 (Refer Slide Time: 01:01) Welcome to lesson 2 on Power System Analysis.

### 15-Non-Ideal Single Phase Transformers. ECEGR 450 Electromechanical Energy Conversion

15NonIdeal Single Phase Transformers ECEGR 450 Electromechanical Energy Conversion Magnetizing Reactance Core Resistance Leakage Reactance Winding Resistance Overview Dr. Louie 2 Questions What are the

### Application guide for power factor testing of power & distribution transformers

Application guide for power factor testing of power & distribution transformers Introduction The transformer is probably one of the most useful electrical devices ever invented. It can raise or lower the

### Three-phase AC circuits

Three-phase AC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

### DIRECT CURRENT GENERATORS

DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle

### Single and Three Phase Transformer Testing Using Static Motor Circuit Analysis Techniques

Single and Three Phase Transformer Testing Using Static Motor Circuit Analysis Techniques Howard W. Penrose, Ph.D On behalf of ALL-TEST Pro, LLC Old Saybrook, CT Introduction Field and shop testing of

### Transformer circuit calculations

Transformer circuit calculations This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

### Single-Phase. Three-Phase

Three-Phase Transformers When more power is needed - three transformers can be tied together. This is called three-phase. Here s a simple way of comparing single-phase to threephase power. Single-Phase

### CHAPTER 3 INDUCTION MOTOR AND DIFFERENT SPEED CONTROL METHODS

CHAPTER 3 INDUCTION MOTOR AND DIFFERENT SPEED CONTROL METHODS Page No 3.1 Introduction 58 3.2 Three Phase Induction Motor 58 3.2.1 Stator 60 3.2.2 Rotor 60 3.2.3 Working principle of three phase induction

### EE 221 Circuits II. Chapter 13 Magnetically Coupled Circuits

EE Circuits II Chapter 3 Magnetically Coupled Circuits Magnetically Coupled Circuits 3. What is a transformer? 3. Mutual Inductance 3.3 Energy in a Coupled Circuit 3.4 inear Transformers 3.5 Ideal Transformers

### Digital Energy ITI. Instrument Transformer Basic Technical Information and Application

g Digital Energy ITI Instrument Transformer Basic Technical Information and Application Table of Contents DEFINITIONS AND FUNCTIONS CONSTRUCTION FEATURES MAGNETIC CIRCUITS RATING AND RATIO CURRENT TRANSFORMER

### 3 Phase Power Basics. Thomas Greer Executive Director Engineering Services TLG Services

3 Phase Power Basics Thomas Greer Executive Director Engineering Services TLG Services Agenda Terminology Basic Electrical Circuits Basic Power Calculations Why This Electricity Stuff? To Become an Electrical

### NZQA registered unit standard 20431 version 2 Page 1 of 7. Demonstrate and apply fundamental knowledge of a.c. principles for electronics technicians

NZQA registered unit standard 0431 version Page 1 of 7 Title Demonstrate and apply fundamental knowledge of a.c. principles for electronics technicians Level 3 Credits 7 Purpose This unit standard covers

### Full representation of the real transformer

TRASFORMERS EQVALET CRCT OF TWO-WDG TRASFORMER TR- Dots show the points of higher potential. There are applied following conventions of arrow directions: -for primary circuit -the passive sign convention

### The Polyphase Induction Motor

Experiment No. 4 The Polyphase Induction Motor The polyphase induction motor is the most commonly used industrial motor, finding application in many situations where speed regulation is not essential.

### 8 Speed control of Induction Machines

8 Speed control of Induction Machines We have seen the speed torque characteristic of the machine. In the stable region of operation in the motoring mode, the curve is rather steep and goes from zero torque

### Chapter 24. Three-Phase Voltage Generation

Chapter 24 Three-Phase Systems Three-Phase Voltage Generation Three-phase generators Three sets of windings and produce three ac voltages Windings are placed 120 apart Voltages are three identical sinusoidal

### A fter studying this unit, you should be able to:

Unit 12 Three-Phase Circuits objectives A fter studying this unit, you should be able to: Discuss the differences between three-phase and single-phase voltages. Discuss the characteristics of delta and

### Faculty of Engineering and Information Technology. Lab 3 Transformers

Faculty of Engineering and Information Technology Subject: 485 Fundamentals of Electrical Engineering Assessment umber: 3 Assessment Title: Lab 3 Transformers Tutorial Group: Students ame(s) and umber(s)

### UNIVERSITY of PENNSYLVANIA DEPARTMENT of ELECTRICAL and SYSTEMS ENGINEERING ESE206 - Electrical Circuits and Systems II Laboratory.

UNIVERSITY of PENNSYLVANIA DEPARTMENT of ELECTRICAL and SYSTEMS ENGINEERING ESE06 - Electrical Circuits and Systems II Laboratory. Objectives: Transformer Lab. Comparison of the ideal transformer versus

### DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR

1 DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Constructional details Types of rotors EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR PART A 1.

### Electricity. Voltage and current transformation with a transformer. LD Physics Leaflets P Electromagnetic induction Transformer

Electricity Electromagnetic induction Transformer LD Physics Leaflets Voltage and current transformation with a transformer P3.4.5. Objects of the experiment g Measuring the secondary voltage of an unloaded

### Islamic University of Gaza Faculty of Engineering Electrical Engineering department. Experiment 9 Three Phase Synchronous Generators

Islamic University of Gaza Faculty of Engineering Electrical Engineering department Electric Machines Lab Eng. Mohammed S. Jouda Eng. Omar A. Qarmout Eng. Amani S. Abu Reyala Experiment 9 Three Phase Synchronous

### DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 4 of 4

DOE-HDBK-1011/4-92 JUNE 1992 DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 4 of 4 U.S. Department of Energy Washington, D.C. 20585 FSC-6910 Distribution Statement A. Approved for public release;

### Lab 14: 3-phase alternator.

Lab 14: 3-phase alternator. Objective: to obtain the no-load saturation curve of the alternator; to determine the voltage regulation characteristic of the alternator with resistive, capacitive, and inductive

### Chap 21. Electromagnetic Induction

Chap 21. Electromagnetic Induction Sec. 1 - Magnetic field Magnetic fields are produced by electric currents: They can be macroscopic currents in wires. They can be microscopic currents ex: with electrons

### April 8. Physics 272. Spring Prof. Philip von Doetinchem

Physics 272 April 8 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272 - Spring 14 - von Doetinchem - 218 L-C in parallel

### PDH Course E164 Overview & Energy Optimization of Power Distribution Transformers Course Content

Overview & Energy Optimization of Power Distribution Transformers Course Content A transformer is a static piece of apparatus used for transferring power from one AC circuit to another at a different voltage,

### Reduction of Iron Losses in a Transformer using Embeded Core

International Journal of Electronic and Electrical Engineering. ISSN 0974-2174 Volume 7, Number 1 (2014), pp. 83-92 International Research Publication House http://www.irphouse.com Reduction of Iron Losses

### APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY. EE100 Basics of Electrical

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY EE100 Basics of Electrical SAMPLE QUESTION PAPER Maximum Marks 100 Part- A (10 questions) Attempt all the questions 10*4=40 1. We have two identical 10 V electromotive

### THE TRANSFORMER. REFERENCES: PASCO Transformer Notes Physics for Scientists and Engineers, Tipler, 4 th Ed., Vol. 2 INTRODUCTION.

THE TRANSFORMER LAB ELEC 7 REFERENCES: PASCO Transformer Notes Physics for Scientists and Engineers, Tipler, 4 th Ed., Vol. 2 NTRODUCTON Nearly all of today s electrical energy is produced as alternating

### Chapter 11. Inductors ISU EE. C.Y. Lee

Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive

### Equipment: Power Supply, DAI, Universal motor (8254), Electrodynamometer (8960), timing belt.

Lab 12: The universal motor. Objective: to examine the construction of the universal motor; to determine its no-load and full-load characteristics while operating on AC; to determine its no-load and full-load

### Basic Electrical Theory

Basic Electrical Theory Power Principles and Phase Angle PJM State & Member Training Dept. PJM 2014 10/24/2013 Objectives At the end of this presentation the learner will be able to; Identify the characteristics

### TRANSFORMER CONSTRUCTION

TRANSFORMER CONSTRUCTION A transformer consists of two windings coupled through a magnetic medium. The two windings work at different voltage level. The two windings of the transformer are called High

### October, Wye/Wye Transformers & Tertiary Windings

October, 2013 Wye/Wye Transformers & Tertiary Windings Although care must be exercised when using a wye-wye connected transformer, it has important advantages over other three-phase transformer connections.

### Product Data Bulletin

Product Data Bulletin Power System Harmonics Causes and Effects of Variable Frequency Drives Relative to the IEEE 519-1992 Standard Raleigh, NC, U.S.A. INTRODUCTION This document describes power system

### SINGLE PHASE TRANSFORMER MAGNETIC CIRCUIT AND ELECTRIC TRANSFORMER PART1: FAMILIARIZATION

Islamic University of Gaza Faculty of Engineering Electrical Engineering department Electric Machine Lab Eng. Omar A. Qarmout Eng. Amani S. Abu Reyala Experiment 3 SINGLE PHASE TRANSFORMER MAGNETIC CIRCUIT

### 7 Testing of Transformers

7 Testing of Transformers The structure of the circuit equivalent of a practical transformer is developed earlier. The performance parameters of interest can be obtained by solving that circuit for any

### 1 Introduction. 2 The Symmetrical Component Transformation. J.L. Kirtley Jr.

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.06 Introduction to Power Systems Class Notes Chapter 4 Introduction To Symmetrical Components J.L. Kirtley

THE ECONOMICS OF A TRANSFORMER DESIGNED WITH A LOW CURRENT, RESISTANCE BRIDGING LTC AND SERIES TRANSFORMER VERSUS A HIGH CURRENT, REACTANCE BRIDGING LTC AND NO SERIES TRANSFORMER By Steve Moore, SPX Transformer

### A Review of Harmonic Mitigation Techniques By: Gonzalo Sandoval & John Houdek, 2005

A Review of Harmonic Mitigation Techniques By: Gonzalo Sandoval & John Houdek, 2005 Abstract: This paper provides an explanation of the various harmonic mitigation techniques available to solve harmonic

### TRANSFORMER: THREE PHASE

CONTENTS Transformer : Three Phase 1211 C H A P T E R 33 Learning Objectives Three-phase Transformers Three-phase Transformer Connections Star/Star or Y/Y Connection Delta-Delta or Connection Wye/Delta

### What is a transformer and how does it work?

Why is a transformer needed? A control transformer is required to supply voltage to a load which requires significantly more current when initially energized than under normal steady state operating conditions.

### Transformer Calculations

Transformer Calculations Transformers Transformers are one of the most basic yet practical devices used today. No matter where you are there is always a transformer nearby. They are used throughout alternating-current

### physics 112N electromagnetic induction

physics 112N electromagnetic induction experimental basis of induction! seems we can induce a current in a loop with a changing magnetic field physics 112N 2 magnetic flux! useful to define a quantity

### 3 Synchronous Generator Operation

3 Synchronous Generator Operation 3.1 Cylindrical Rotor Machine xa xl ra xa E xl ra E Load A (a) (b)phasor diagram for R load xs ra Zs Xs Zs Load (c) φ (d)phasor diagram for R-L load Ι Figure 30: Equivalent