INTEGRATED SCIENCE 1: UNIT 4: PHYSICS

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "INTEGRATED SCIENCE 1: UNIT 4: PHYSICS"

Transcription

1 INTEGRATED SCIENCE 1: UNIT 4: PHYSICS Sub Unit 1: Waves TEST 2: Electromagnetic Waves Form A MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1)Electromagnetic waves consist of a. compressions and rarefactions. b. vibrating electric and magnetic fields. c. particles of light energy. d. high-frequency gravitational waves. 2) Electromagnetic waves a. always travel at the same speed. b. need a medium to travel through. c. can travel through a vacuum. Page 1

2 d. cannot travel through the vacuum of outer space. 3) The main difference(s) between a radio wave and a light wave is(are) its a. speed. b. wavelength. c. frequency. d. both a and b e. both b and c 4) Which of these electromagnetic waves has the shortest wavelength? a. radio waves b. infrared waves c. X rays d. ultraviolet waves e. light waves 5) Compared to ultraviolet waves, the wavelength of infrared waves is a. shorter. b. longer. c. faster. d. slower. e. the same Page 2

3 6) Compared to radio waves, the velocity of visible light waves in a vacuum is a. less. b. more. c. the same. 7) All of the waves listed below are a part of the electromagnetic spectrum except a. sound waves. b. X rays. c. gamma rays. d. light waves. e. radio waves. 8) Materials generally become warmer when light is a. absorbed by them. b. reflected by them. c. transmitted by them. d. all of these. e. none of these. 9) If a light signal and a radio signal were transmitted simultaneously from a nearby star, the first signal to reach the Earth would be a. the radio signal. b. the light signal. c. neither: they would both reach the earth at the same time. 10) Light waves traveling through the vacuum of space have a speed that's equal to a. 3.0 X 10 to power of (3) m/s. b. 5 X 10 to power of (6) m/s. c. 3.0 X 10 to power of (8) m/s. d. 9.0 X 10 to power of (9) m/s. e. a number that's too high to measure. Page 3

4 11) Color depends on what characteristic of light? a. its frequency b. its wavelength c. both of these d. neither of these 12) The color of an object is the same as the light that is a. transmitted. b. absorbed. c. reflected. d. all of these. e. none of these. 13)Sunsets are red because the lower frequencies of light a. are scattered by larger particles in the atmosphere. b. are refracted by larger particles in the atmosphere. c. are reflected by clouds and relatively large particles in the atmosphere. Page 4

5 d. survive being scattered in the atmosphere. 14) The fact that you can get sunburned while submerged in water is evidence that water a. absorbs infrared light. b. transmits infrared light. c. absorbs ultraviolet light. d. transmits ultraviolet light. 15) The worst thing you can do for the health of a green-leafed plant is to illuminate it with only a. red light. b. green light. c. blue light. d. all are equally naughty. e. none of these. 16) The effect in which white light separates into different colors is called a. magnification. b. refraction. c. reflection. d. dispersion. 17) Diffraction is more pronounced through relatively a. small openings. b. large openings. c. same for each. 18) Waves diffract the most when their wavelength is a. short. b. long. c. both diffract the same. 19) Diffraction is a result of Page 5

6 a. refraction. b. reflection. c. interference. d. polarization. e. dispersion. 20) Interference is a property of a. light waves. b. sound waves. c. water waves. d. all of these. e. none of these. Use the diagram below, answer question 21. Page 6

7 21) Polarization is a property of a. transverse waves. b. longitudinal waves. c. both. d. neither. 22) Light will not pass through a pair of polarizing lenses when their axes are a. parallel. Page 7

8 b. perpendicular. c. 45 degrees to each other. d. two of these. e. all of these. 23) The incident light ray, the reflected light ray, and the normal line between them a. form two angles, with the incident angle greater than the angle of reflection. b. form two angles, with the incident angle less than the angle of reflection. c. form two angles, with the incident angle equal to the angle of reflection. 24) When light reflects from a surface, there is a change in its a. frequency. b. wavelength. c. speed. d. all of these. e. none of these. Using the figure below, answer the next question: Page 8

9 25) When light passes through air into glass, its angle of refraction is a. less than its angle of incidence. b. the same as its angle of incidence. c. more than its angle of incidence. d. can be more or less than its angle of incidence. 26) Light travels fastest in a. warm air. b. cool air. c. a vacuum. 27) Refraction results from differences in light's a. frequency. b. amplitude. c. speed. d. all of these. e. none of these. 28) Light refracts when traveling from air into glass because light a. travels at the same speed in air and in glass. b. frequency is greater in air than in glass. c. frequency is greater in glass than in air. d. travels slower in glass than in air. Use the figure below to answer question 29. Page 9

10 29) A beam of light emerges from water into air at an angle. The beam is bent a. towards the normal b. away from the normal. c. 48 degrees upward. d. 96 degrees upward. e. not at all. ESSAYS: Write your answer in the space provided or on a separate sheet of paper. 30) Describe three different forms of electromagnetic radiation and explain their use in modern, everyday life. 31) Pretend you walk only at a certain pace, no faster or slower, across a room of known length. Your walking speed is the room length divided by the time to cross the room. Now suppose you repeat your walk but briefly stop along the way to interact with people sitting along your path. What effect does this have on your speed across the room? How is this similar to light passing through glass? In what way is it not similar? 32) Five transparent plastic containers below were filled with different water colors of paint. The volume each is 50 ml. The temperature of the water is Page 10

11 20 C. They are all then placed in the sunlight for 15 minutes. The temperature is then retaken for each container. Clear White Black Red Yellow Answer the following question based on the experiment above. (a) In the space below, arrange the containers in order from the warmest to the coolest based on your understanding of the interaction of sunlight and the containers. Write the name of the color in the blanks. (warmest),,,, (coolest) (b) Using the terms, reflect, absorb, and transmit explain why you arranged the containers in the way you did. Page 11

12 Answer Key Physics Unit Test: Electromagnetic Waves California State Standards 4e,f Form A Integrated Science One Answer Level Cal Standard ABACUS 1. b knowledge P.4.e c comprehension P.4.e e comprehension P.4.e c knowledge P.4.e b knowledge P.4.e c comprehension P.4.e a comprehension P.4.e a application P.4.f c application P.4.e c comprehension P.4.e c knowledge P.4.e c comprehension P.4.e d application P.4.f d analysis P.4.e b comprehension P.4.e d knowledge P.4.f a knowledge P.4.f b knowledge P.4.e c comprehension P.4.f d knowledge P.4.f a knowledge P.4.f b application P.4.f c knowledge P.4.f e comprehension P.4.f a comprehension P.4.f c knowledge P.4.e c knowledge P.4.f d comprehension P.4.f b comprehension P.4.f Page 12

13 30. Answer: synthesis P.4.e Answers will vary. X-rays, with high energy and short wavelength, are used to produce images of the body s interior; infrared, with wavelengths longer than red light, can be used to keep food warm; microwaves, with still longer wavelengths, can used for cooking and for communication; radio waves, with the longest wavelengths, can be used in communication and radar. 31. Answer synthesis P.4.f When you walk across the room and pause to greet people along the way, you are like light passing through glass, pausing along the way to interact with atoms. Your average speed across the room is lower when interactions occur, much like the speed of light is less in glass than in a vacuum. How this is different is that in the case of walking across the room, you begin the walk and you end it. There is only one you. But in the case of light through glass, the photon that first interacts with the glass is not the photon that emerges through the glass. There is a chain of different but identical photons cascading through the glass. 32. Answer synthesis P.4.f (a) (Warmest) Black, Red, Yellow, Clear, White (Coolest) (b) Black container absorbed all colors of the visible spectrum ROYGBIV. No colors were reflected or transmitted from it. The light caused the atoms to move more rapidly, thus increasing the average kinetic energy of the particles. The Red container was the second warmest because it reflected only one wavelength of light(red) and absorbed the six other colors (OYGBIV). With 14% fewer waves of light to interact with the water molecules, its temperature did not rise as much as the black container. The Yellow container was third because it reflects red and green wavelengths and absorbs only 4 colors (OBIV). It has 28% fewer waves of light interacting with the water molecules, its temperature did not rise as much as the red container. The Clear container allowed the light to pass through or be transmitted. No wavelengths were reflected or absorbed, but the light did interact with the water as it passed through causing the temperature to rise slightly. The White container reflected all of the wavelengths of Page 13

14 light and allowed none to be transmitted or absorbed. It was the coolest or had the lowest temperature of all the containers. Page 14

Bronx High School of Science Regents Physics

Bronx High School of Science Regents Physics Bronx High School of Science Regents Physics 1. Orange light has a frequency of 5.0 10 14 hertz in a vacuum. What is the wavelength of this light? (A) 1.5 10 23 m (C) 6.0 10 7 m (B) 1.7 10 6 m (D) 2.0

More information

After a wave passes through a medium, how does the position of that medium compare to its original position?

After a wave passes through a medium, how does the position of that medium compare to its original position? Light Waves Test Question Bank Standard/Advanced Name: Question 1 (1 point) The electromagnetic waves with the highest frequencies are called A. radio waves. B. gamma rays. C. X-rays. D. visible light.

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum The Electromagnetic Spectrum 1 Look around you. What do you see? You might say "people, desks, and papers." What you really see is light bouncing off people, desks, and papers. You can only see objects

More information

PS-7.2 Compare the nature and properties of transverse and longitudinal/compressional mechanical waves.

PS-7.2 Compare the nature and properties of transverse and longitudinal/compressional mechanical waves. PS-7.1 Illustrate ways that the energy of waves is transferred by interaction with matter (including transverse and longitudinal /compressional waves). Understand that a wave is a repeating disturbance

More information

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

More information

I. C O N T E N T S T A N D A R D S

I. C O N T E N T S T A N D A R D S Introductory Physics, High School Learning Standards for a Full First-Year Course I. C O N T E N T S T A N D A R D S 4. Waves Central Concept: Waves carry energy from place to place without the transfer

More information

Light, Light Bulbs and the Electromagnetic Spectrum

Light, Light Bulbs and the Electromagnetic Spectrum Light, Light Bulbs and the Electromagnetic Spectrum Spectrum The different wavelengths of electromagnetic waves present in visible light correspond to what we see as different colours. Electromagnetic

More information

11/15/2016. Electromagnetic (EM) waves are waves caused by oscillations occurring simultaneously in electric and magnetic fields

11/15/2016. Electromagnetic (EM) waves are waves caused by oscillations occurring simultaneously in electric and magnetic fields Electromagnetic (EM) waves are waves caused by oscillations occurring simultaneously in electric and magnetic fields A 2D transverse wave The EM and Visible Spectra They DO NOT require any medium in order

More information

Unit 7 Practice Test: Light

Unit 7 Practice Test: Light Unit 7 Practice Test: Light Name: Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. Which portion of the electromagnetic spectrum is used in

More information

Properties of Light By Cindy Grigg

Properties of Light By Cindy Grigg Properties of Light By Cindy Grigg 1 Light is one form of energy that travels in electromagnetic waves. This energy is both magnetic and electrical. 2 There are many different types of electromagnetic

More information

3. What are electromagnetic waves? Electromagnetic waves are transverse waves that have some electrical properties and some magnetic properties.

3. What are electromagnetic waves? Electromagnetic waves are transverse waves that have some electrical properties and some magnetic properties. CHAPTER 3 - THE ELECTROMAGNETIC SPECTRUM 3-1 The Nature of Electromagnetic Waves 1. What do all mechanical waves such as sound waves have in common? All mechanical waves such as sound waves transfer energy

More information

3-1. True or False: Different colors of light are waves with different amplitudes. a.) True b.) False X

3-1. True or False: Different colors of light are waves with different amplitudes. a.) True b.) False X 3-1. True or False: Different colors of light are waves with different amplitudes. a.) True b.) False X 3-2. True or False: Different colors of light are waves with different wavelengths. a.) True X b.)

More information

STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves

STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves Name: Teacher: Pd. Date: STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves TEK 8.8C: Explore how different wavelengths of the electromagnetic spectrum such as light and radio waves are used to

More information

Transverse and Longitudinal waves (6.2)

Transverse and Longitudinal waves (6.2) Waves Homework from the book: Exercises: 1, 2, 3, 5-10, 12-16, 20, 25, 33, 34, 36. Questions:3, 9, 14 Problems 2, 11, 17 In the study guide: All the Multiple choice & True False a starting on page 69.

More information

Waves Sound and Light

Waves Sound and Light Waves Sound and Light r2 c:\files\courses\1710\spr12\wavetrans.doc Ron Robertson The Nature of Waves Waves are a type of energy transmission that results from a periodic disturbance (vibration). They are

More information

Section 1 Electromagnetic Waves

Section 1 Electromagnetic Waves Section 1 Electromagnetic Waves What are electromagnetic waves? What do microwaves, cell phones, police radar, television, and X-rays have in common? All of them use electromagnetic waves Electromagnetic

More information

Electromagnetic Spectrum

Electromagnetic Spectrum Electromagnetic Spectrum Why do some things have colors? What makes color? Why do fast food restaurants use red lights to keep food warm? Why don t they use green or blue light? Why do X-rays pass through

More information

ELECTROMAGNETIC SPECTRUM

ELECTROMAGNETIC SPECTRUM ELECTROMAGNETIC SPECTRUM Brief review: Water and sound waves transfer energy from one place to another- they require a medium through which to travel. They are mechanical waves. Electric field-region in

More information

PRACTICE Q6--Quiz 6, Ch15.1 &15.2 Interference & Diffraction

PRACTICE Q6--Quiz 6, Ch15.1 &15.2 Interference & Diffraction Name: Class: Date: ID: A PRACTICE Q6--Quiz 6, Ch5. &5. Interference & Diffraction Multiple Choice Identify the choice that best completes the statement or answers the question.. The trough of the sine

More information

Grade 8 Science Chapter 4 Notes

Grade 8 Science Chapter 4 Notes Grade 8 Science Chapter 4 Notes Optics the science that deals with the properties of light. Light a form of energy that can be detected by the human eye. The History of Optics (3 Scientists): 1. Pythagoras

More information

A It is halved. B It is doubled. C It is quadrupled. D It remains the same.

A It is halved. B It is doubled. C It is quadrupled. D It remains the same. WAVES UNIT REVIEW EN: CALIFORNIA STATE QUESTIONS: 1. A sound wave is produced in a metal cylinder by striking one end. Which of the following occurs as the wave travels along the cylinder? A Its amplitude

More information

MAKING SENSE OF ENERGY Electromagnetic Waves

MAKING SENSE OF ENERGY Electromagnetic Waves Adapted from State of Delaware TOE Unit MAKING SENSE OF ENERGY Electromagnetic Waves GOALS: In this Part of the unit you will Learn about electromagnetic waves, how they are grouped, and how each group

More information

MECHANICS PROJECTILE MOTION

MECHANICS PROJECTILE MOTION 1 MECHANICS PROJECTILE MOTION When an object is in free fall, the object is at an acceleration of 10m/s down Displacement is the straight line from start to finish in that direction Projectile: An object

More information

Light Waves and Matter

Light Waves and Matter Name: Light Waves and Matter Read from Lesson 2 of the Light Waves and Color chapter at The Physics Classroom: http://www.physicsclassroom.com/class/light/u12l2a.html MOP Connection: Light and Color: sublevel

More information

Example: Water wave. Water just moves up and down Wave travels and can transmit energy (tsunami)

Example: Water wave. Water just moves up and down Wave travels and can transmit energy (tsunami) Waves R Us What are Waves? Waves: moving disturbances that transmit energy without the physical transport of material - waves in a pool or waves in a wheat field or waves of people in a football field.

More information

Wave Vocabulary- 25 words 1. WAVE 2. MEDIUM 3. MECHANICAL WAVE 4. ELECTROMAGNETIC WAVES 5. ENERGY 6. TRANSVERSE WAVES 7. LONGITUDINAL WAVES 8.

Wave Vocabulary- 25 words 1. WAVE 2. MEDIUM 3. MECHANICAL WAVE 4. ELECTROMAGNETIC WAVES 5. ENERGY 6. TRANSVERSE WAVES 7. LONGITUDINAL WAVES 8. WAVES Chapter 11 Wave Vocabulary- 25 words 1. WAVE 2. MEDIUM 3. MECHANICAL WAVE 4. ELECTROMAGNETIC WAVES 5. ENERGY 6. TRANSVERSE WAVES 7. LONGITUDINAL WAVES 8. CREST 9. TROUGH 10. INTERFERENCE 11. CONSTRUCTIVE

More information

Science Tutor: Physical Science

Science Tutor: Physical Science Science Tutor: Physical Science By GARY RAHAM COPYRIGHT 2006 Mark Twain Media, Inc. ISBN 1-58037-331-3 Printing No. CD-404045 Mark Twain Media, Inc., Publishers Distributed by Carson-Dellosa Publishing

More information

Rigorous Curriculum Design Unit Planning Organizer

Rigorous Curriculum Design Unit Planning Organizer 1 Rigorous Curriculum Design Unit Planning Organizer Subject(s) Science Grade/Course 6 Unit of Study Forces and Motion Pacing Minimum 15 days, Maximum 20 days Priority Essential Standards 6.P.1 Understand

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ Practice Quiz 4 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What is the wavelength of the longest wavelength light that can

More information

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,

More information

Principles of Technology CH 12 Wave and Sound 1 Name

Principles of Technology CH 12 Wave and Sound 1 Name Principles of Technology CH 12 Wave and Sound 1 Name KEY OBJECTIVES At the conclusion of this chapter you will be able to: Define the terms periodic wave, wave motion, transverse wave, longitudinal wave,

More information

Introduction to Waves. Essential Question: What are the characteristics of mechanical and electromagnetic waves? (S8P4a,d,f)

Introduction to Waves. Essential Question: What are the characteristics of mechanical and electromagnetic waves? (S8P4a,d,f) Introduction to Waves Essential Question: What are the characteristics of mechanical and electromagnetic waves? (S8P4a,d,f) Use the PowerPoint to fill in the Waves graphic organizer as we discuss the characteristics

More information

Review Vocabulary spectrum: a range of values or properties

Review Vocabulary spectrum: a range of values or properties Standards 7.3.19: Explain that human eyes respond to a narrow range of wavelengths of the electromagnetic spectrum. 7.3.20: Describe that something can be seen when light waves emitted or reflected by

More information

Wave and Sound. The waves we are working with in this unit are mechanical waves.

Wave and Sound. The waves we are working with in this unit are mechanical waves. Wave and Sound Properties of waves A wave is a disturbance that carries energy through matter or space. We have worked with electromagnetic waves that do not require a medium through which to travel. Sound

More information

Periodic Wave Phenomena

Periodic Wave Phenomena Name: Periodic Wave Phenomena 1. The diagram shows radar waves being emitted from a stationary police car and reflected by a moving car back to the police car. The difference in apparent frequency between

More information

Angle of an incident (arriving) ray or particle to a surface; measured from a line perpendicular to the surface (the normal) Angle of incidence

Angle of an incident (arriving) ray or particle to a surface; measured from a line perpendicular to the surface (the normal) Angle of incidence The maximum displacement of particles of the medium from their mean positions during the propagation of a wave Angle of an incident (arriving) ray or particle to a surface; measured from a line perpendicular

More information

Electromagnetic Radiation and Atomic Physics

Electromagnetic Radiation and Atomic Physics Electromagnetic Radiation and Atomic Physics Properties of Electrons, Protons, and Neutrons (The Main Constituents of Ordinary Matter) Mass Electrons have a mass of 9.11 10-31 kg. The mass of a proton

More information

Chapter 2: Electromagnetic Radiation Radiant Energy I

Chapter 2: Electromagnetic Radiation Radiant Energy I Chapter 2: Electromagnetic Radiation Radiant Energy I Goals of Period 2 Section 2.1: To introduce electromagnetic radiation Section 2.2: To discuss the wave model of radiant energy Section 2.3: To describe

More information

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves 5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has

More information

Wave Properties of Electromagnetic Radiation

Wave Properties of Electromagnetic Radiation Wave Properties of Electromagnetic Radiation Two options are available for analytical utility when an analyte interacts with a beam of electromagnetic radiation in an instrument 1. We can monitor the changes

More information

Electromagnetic Radiation Spectrum

Electromagnetic Radiation Spectrum Electromagnetic Radiation scillating electric and magnetic fields propagate through space Virtually all energy exchange between the Earth and the rest of the Universe is by electromagnetic radiation Most

More information

Study Guide for Exam on Light

Study Guide for Exam on Light Name: Class: Date: Study Guide for Exam on Light Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which portion of the electromagnetic spectrum is used

More information

EM Waves Practice Problems

EM Waves Practice Problems EM Waves Practice Problems PSI AP Physics B Name Multiple Choice 1. Which of the following theories can explain the bending of waves behind obstacles into shadow region? (A) Particle theory of light (B)

More information

W AVES. Chapter 6 OUTLINE GOALS. 6.9 Types of EM Waves 6.10 Light Rays

W AVES. Chapter 6 OUTLINE GOALS. 6.9 Types of EM Waves 6.10 Light Rays Chapter 6 W AVES OUTLINE Wave Motion 6.1 Water Waves 6.2 Transverse and Longitudinal Waves 6.3 Describing Waves 6.4 Standing Waves Sound Waves 6.5 Sound 6.6 Doppler Effect 6.7 Musical Sounds Electromagnetic

More information

Physics I Honors: Chapter 13 Practice Test

Physics I Honors: Chapter 13 Practice Test Physics I Honors: Chapter 13 Practice Test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which portion of the electromagnetic spectrum

More information

AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred.

AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. Forms of Energy AZ State Standards Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. PO 1. Describe the following ways in which

More information

Ch 6: Light and Telescope. Wave and Wavelength. Wavelength, Frequency and Speed. v f

Ch 6: Light and Telescope. Wave and Wavelength. Wavelength, Frequency and Speed. v f Ch 6: Light and Telescope Wave and Wavelength..\..\aTeach\PhET\wave-on-a-string_en.jar Wavelength, Frequency and Speed Wave and Wavelength A wave is a disturbance that moves through a medium or through

More information

Waves. Transverse Waves

Waves. Transverse Waves Waves A wave is a repeated oscillation or disturbance that transfers energy through matter or space. The two primary types of waves are Transverse Longitudinal Transverse Waves In a transverse wave, the

More information

Nicholas J. Giordano. Chapter 12 Waves

Nicholas J. Giordano.  Chapter 12 Waves Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 12 Waves Wave Motion A wave is a moving disturbance that transports energy from one place to another without transporting matter Questions

More information

Investigating electromagnetic radiation

Investigating electromagnetic radiation Investigating electromagnetic radiation Announcements: First midterm is 7:30pm on 2/17/09 Problem solving sessions M3-5 and T3-4,5-6. Homework due at 12:50pm on Wednesday. We are covering Chapter 4 this

More information

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one 5.1.1 Oscillating Systems Waves Review hecklist 5.1.2 Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one Four pendulums are built as shown

More information

Q1. The diagram shows a plane mirror used by a dentist to see the back of a patient s tooth.

Q1. The diagram shows a plane mirror used by a dentist to see the back of a patient s tooth. Year 0 Physics Waves Revision questions Higher Name: Q. The diagram shows a plane mirror used by a dentist to see the back of a patient s tooth. (a) Use a ruler to draw a ray of light on the diagram to

More information

Name: Exampro GCSE Physics. Class: P1 Waves Self Study Questions - Higher tier. Author: Date: Time: 74. Marks: 74. Comments: Page 1 of 27

Name: Exampro GCSE Physics. Class: P1 Waves Self Study Questions - Higher tier. Author: Date: Time: 74. Marks: 74. Comments: Page 1 of 27 Exampro GCSE Physics P Waves Self Study Questions - Higher tier Name: Class: Author: Date: Time: 74 Marks: 74 Comments: Page of 27 Q. All radio waves travel at 300 000 000 m/s in air. (i) Give the equation

More information

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one 5.1.1 Oscillating Systems Waves Review Checklist 5.1.2 Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one Four pendulums are built as shown

More information

Electromagnetic Radiation

Electromagnetic Radiation Activity 17 Electromagnetic Radiation Why? Electromagnetic radiation, which also is called light, is an amazing phenomenon. It carries energy and has characteristics of both particles and waves. We can

More information

Waves - Transverse and Longitudinal Waves

Waves - Transverse and Longitudinal Waves Waves - Transverse and Longitudinal Waves wave may be defined as a periodic disturbance in a medium that carries energy from one point to another. ll waves require a source and a medium of propagation.

More information

Light and Other Radiations

Light and Other Radiations Light and Other Radiations Visible light is a form of electromagnetic radiation. X-rays, infrared, microwaves and gamma rays are other forms of this type of radiation which make up the electromagnetic

More information

Heating the Atmosphere. Dr. Michael J Passow

Heating the Atmosphere. Dr. Michael J Passow Heating the Atmosphere Dr. Michael J Passow Heat vs. Temperature Heat refers to energy transferred from one object to another Temperature measures the average kinetic energy in a substance. When heat energy

More information

Conceptual Physics Review (Chapters 25, 26, 27 & 28) Chapter 25 Describe the period of a pendulum. Describe the characteristics and properties of

Conceptual Physics Review (Chapters 25, 26, 27 & 28) Chapter 25 Describe the period of a pendulum. Describe the characteristics and properties of Conceptual Physics Review (Chapters 25, 26, 27 & 28) Solutions Chapter 25 Describe the period of a pendulum. Describe the characteristics and properties of waves. Describe wave motion. Describe factors

More information

Physics/Science *P41764A0120* Edexcel GCSE P41764A. Unit P1: Universal Physics. Higher Tier. Thursday 8 November 2012 Morning Time: 1 hour

Physics/Science *P41764A0120* Edexcel GCSE P41764A. Unit P1: Universal Physics. Higher Tier. Thursday 8 November 2012 Morning Time: 1 hour Write your name here Surname Other names Edexcel GCSE Centre Number Physics/Science Unit P1: Universal Physics Thursday 8 November 2012 Morning Time: 1 hour You must have: Calculator, ruler Candidate Number

More information

The Nature of Electromagnetic Radiation

The Nature of Electromagnetic Radiation II The Nature of Electromagnetic Radiation The Sun s energy has traveled across space as electromagnetic radiation, and that is the form in which it arrives on Earth. It is this radiation that determines

More information

Milestones Review 2 (PhySci_Kennedy_2) 2. Josie sees lightning off in the distance. A few seconds later she hears thunder. What can Josie conclude?

Milestones Review 2 (PhySci_Kennedy_2) 2. Josie sees lightning off in the distance. A few seconds later she hears thunder. What can Josie conclude? Name: Date: 1. The distance between a wave's crest and its trough is known as its A. low tide measurement. B. water depth. C. wave height. D. wave length. 2. Josie sees lightning off in the distance. A

More information

Unit Study Guide: Waves and Heat Transfer

Unit Study Guide: Waves and Heat Transfer Name Date Per Unit 8.4.1 Study Guide: Waves and Heat Transfer I Can Statements I Can Statements are the learning targets for each unit. By the time you take the test for this unit, you should be able to

More information

Essential Knowledge 5.G.1: The possible nuclear reactions are constrained by the law of conservation of nucleon number.

Essential Knowledge 5.G.1: The possible nuclear reactions are constrained by the law of conservation of nucleon number. Curriculum Framework Essential Knowledge 5.F.1: The continuity equation describes conservation of mass flow rate in fluids. Examples should include volume rate of flow and mass flow rate. Learning Objective

More information

Look at the picture below. With the person next to you, discuss what this might be.

Look at the picture below. With the person next to you, discuss what this might be. WAVES Unit 10 Look at the picture below. With the person next to you, discuss what this might be. SECTION 1: THE NATURE OF WAVES A. Wave a repeating disturbance or movement that transfers energy through

More information

Ch 25 Chapter Review Q & A s

Ch 25 Chapter Review Q & A s Ch 25 Chapter Review Q & A s a. a wiggle in time is called? b. a wiggle in space & time is called? a. vibration b. wave What is the period of a pendulum? The period is the time for 1 cycle (back & forth)

More information

Eighth Grade Electromagnetic Radiation and Light Assessment

Eighth Grade Electromagnetic Radiation and Light Assessment Eighth Grade Electromagnetic Radiation and Light Assessment 1a. Light waves are the only waves that can travel through. a. space b. solids 1b. Electromagnetic waves, such as light, are the only kind of

More information

P1 Learning Outcome Questions

P1 Learning Outcome Questions P1 Learning Outcome Questions Question 1. Do hot things or warm things cool down more quickly? 2. In which direction does heat energy always move? Answer Hot things cool down more quickly From a warmer

More information

Chapter 25 Electromagnetic Waves

Chapter 25 Electromagnetic Waves Chapter 25 Electromagnetic Waves Units of Chapter 25 The Production of Electromagnetic Waves The Propagation of Electromagnetic Waves The Electromagnetic Spectrum Energy and Momentum in Electromagnetic

More information

physics 112N electromagnetic waves

physics 112N electromagnetic waves physics 112N electromagnetic waves electromagnetic waves? Faraday s law told us that time-varying magnetic fields generate electric fields James Clerk Maxwell found that time-varying electric fields generate

More information

SP9. StudyPacks KS4 SCIENCE STUDY. Wave Basics. Wave speed = Frequency x Wavelength

SP9. StudyPacks KS4 SCIENCE STUDY. Wave Basics. Wave speed = Frequency x Wavelength StudyPacks STUDY. KS4 SCIENCE Wave Basics Wave speed = Frequency x Wavelength This Study Pack aims to cover:. Describing Waves using keywords wavelength, amplitude & frequency 2. How to calculate Wave

More information

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly

More information

Energy Transformations

Energy Transformations Energy Transformations Concept Sheet Energy Transformations PS.6: The student will investigate and understand states and forms of energy and how energy is transferred and transformed. 1. Energy is the

More information

Electromagnetic Radiation Wave and Particle Models of Light

Electromagnetic Radiation Wave and Particle Models of Light Electromagnetic Radiation 2007 26 minutes Teacher Notes: Victoria Millar BSc (Hons), Dip. Ed, MSc Program Synopsis For hundreds of years, scientists have hypothesised about the structure of light. Two

More information

21 The Nature of Electromagnetic Waves

21 The Nature of Electromagnetic Waves 21 The Nature of Electromagnetic Waves When we left off talking about the following circuit: I E v = c B we had recently closed the switch and the wire was creating a magnetic field which was expanding

More information

Unit 1 Lesson 1 Waves. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 1 Lesson 1 Waves. Copyright Houghton Mifflin Harcourt Publishing Company Copyright Houghton Mifflin Harcourt Publishing Company B.I - Waves transfer energy and interact in predictable ways. E.Q - What are waves? What are waves? Riding the Wave Waves are disturbances that transfer

More information

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to : PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material

More information

1 of 5 4/28/2010 2:13 PM

1 of 5 4/28/2010 2:13 PM 1 of 5 4/28/2010 2:13 PM Chapter 35 Homework Due: 8:00am on Thursday, April 22, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment ]

More information

#1 Electromagnetic Spectrum Intro

#1 Electromagnetic Spectrum Intro Go here for text on each section http://missionscience.nasa.gov/ems/index.html #1 Electromagnetic Spectrum Intro Go here for the video http://missionscience.nasa.gov/ems/emsvideo_01intro.html a. How are

More information

Exam 4--PHYS 102--S14

Exam 4--PHYS 102--S14 Class: Date: Exam 4--PHYS 102--S14 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A current goes through a loop, which is allowed to rotate on an axis,

More information

Tools of Astronomy Notes

Tools of Astronomy Notes Tools of Astronomy Notes Light is a form of electromagnetic radiation. Scientists call the light you can see visible light. If you shine white light through a prism, the light spreads out to make a range

More information

The Cosmic Perspective Seventh Edition. Light and Matter: Reading Messages from the Cosmos. Chapter 5 Reading Quiz Clickers

The Cosmic Perspective Seventh Edition. Light and Matter: Reading Messages from the Cosmos. Chapter 5 Reading Quiz Clickers Reading Quiz Clickers The Cosmic Perspective Seventh Edition Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life How do we experience light? How do light and matter interact?

More information

LIGHT CONCEPTS. Most light is invisible to our eyes. Light is a streaming code that tells about the chemical composition of its source

LIGHT CONCEPTS. Most light is invisible to our eyes. Light is a streaming code that tells about the chemical composition of its source ITS SECRETS REVEALED LIGHT CONCEPTS Most light is invisible to our eyes Light is a streaming code that tells about the chemical composition of its source Light from a glowing object can reveal its temperature

More information

2011 FXA Properties of Waves 58 INTRODUCTION

2011 FXA Properties of Waves 58 INTRODUCTION 1.5.1 Properties of Waves 58 INTRODUCTION Waves transfer energy. Waves may be either transverse or longitudinal. Electromagnetic waves are transverse, sound waves are longitudinal and mechanical waves

More information

SCI-PS LPMS Waves:PS.8 and 9 Alvarez-Morgan-Setliff Exam not valid for Paper Pencil Test Sessions

SCI-PS LPMS Waves:PS.8 and 9 Alvarez-Morgan-Setliff Exam not valid for Paper Pencil Test Sessions SCI-PS LPMS Waves:PS.8 and 9 Alvarez-Morgan-Setliff Exam not valid for Paper Pencil Test Sessions [Exam ID:2N28KV 1 What is the most appropriate unit to use when measuring a swimming pool s length? A Meter

More information

Kinetic Theory. Energy. Transfers and Efficiency. The National Grid

Kinetic Theory. Energy. Transfers and Efficiency. The National Grid AQA P1 Revision Infrared Radiation Heating and Insulating Buildings Kinetic Theory Energy Transfers and Efficiency Energy Transfer by Heating Transferring Electrical Energy Generating Electricity The National

More information

Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total

Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total 1. Calculate the energy in joules of a photon of red light that has a frequency

More information

Light - Geometric Optics. lecture notes and demonstrations

Light - Geometric Optics. lecture notes and demonstrations Light - Geometric Optics Nature of light Reflection Refraction Dispersion A. Karle Physics 202 Nov. 20, 2007 Chapter 35 Total internal reflection lecture notes and demonstrations Demonstrations: Speed

More information

2. The graph shows how the displacement varies with time for an object undergoing simple harmonic motion.

2. The graph shows how the displacement varies with time for an object undergoing simple harmonic motion. Practice Test: 29 marks (37 minutes) Additional Problem: 31 marks (45 minutes) 1. A transverse wave travels from left to right. The diagram on the right shows how, at a particular instant of time, the

More information

The Nature of Light. As a particle

The Nature of Light. As a particle The Nature of Light Light is radiant energy. Travels very fast 300,000 km/sec! Can be described either as a wave or as a particle traveling through space. As a wave A small disturbance in an electric field

More information

Chapter 5 Light and Matter: Reading Messages from the Cosmos

Chapter 5 Light and Matter: Reading Messages from the Cosmos Chapter 5 Light and Matter: Reading Messages from the Cosmos Messages Interactions of Light and Matter The interactions determine everything we see, including what we observe in the Universe. What is light?

More information

GCSE. Core Gateway Science B P1: Energy from the Home. We are what we repeatedly do. Excellence, therefore, is not an act but a habit

GCSE. Core Gateway Science B P1: Energy from the Home. We are what we repeatedly do. Excellence, therefore, is not an act but a habit GCSE Core Gateway Science B P1: Energy from the Home We are what we repeatedly do. Excellence, therefore, is not an act but a habit Unit Page Completed By 1a Heating Houses 80 1b Keeping Homes Warm 83

More information

Today. Electromagnetic Radiation. Light & beyond. Thermal Radiation. Wien & Stefan-Boltzmann Laws

Today. Electromagnetic Radiation. Light & beyond. Thermal Radiation. Wien & Stefan-Boltzmann Laws Today Electromagnetic Radiation Light & beyond Thermal Radiation Wien & Stefan-Boltzmann Laws 1 Electromagnetic Radiation aka Light Properties of Light are simultaneously wave-like AND particle-like Sometimes

More information

Semester 2. Final Exam Review

Semester 2. Final Exam Review Semester 2 Final Exam Review Motion and Force Vocab Motion object changes position relative to a reference point. Speed distance traveled in a period of time. Velocity speed in a direction. Acceleration

More information

Waves and Sound Part 1

Waves and Sound Part 1 Waves and Sound Part 1 Intro Write the following questions on a blank piece of paper (don t answer yet) 1. What is the difference between a mechanical and electromagnetic wave? 2. What is the difference

More information

Solar Matters III Teacher Page

Solar Matters III Teacher Page Solar Matters III Teacher Page Electromagnetic Spectrum Student Objective The student: will know that the Sun s energy is transferred to Earth by electromagnetic waves will understand that there are eight

More information

PREVIOUS 8 YEARS QUESTIONS (1 mark & 2 marks) 1 mark questions

PREVIOUS 8 YEARS QUESTIONS (1 mark & 2 marks) 1 mark questions 230 PREVIOUS 8 YEARS QUESTIONS (1 mark & 2 marks) 1 mark questions 1. An object is held at the principal focus of a concave lens of focal length f. Where is the image formed? (AISSCE 2008) Ans: That is

More information

Grade 8 Science Vocabulary

Grade 8 Science Vocabulary Grade 8 Science Vocabulary The Florida Comprehensive Assessment Test Specifications for Science provides a glossary of vocabulary words identified by Florida educators as essential to assessing the Science

More information

FXA 2008. Candidates should be able to :

FXA 2008. Candidates should be able to : ELECTROMAGNETIC WAVES AND THE ELECTROMAGNETIC SPECTRUM 1 Candidates should be able to : State typical values for the wavelengths of the different regions of the electromagnetic spectrum from radio waves

More information

Phys214 Final Exam. (30 problems. 10 points each. Total 300 points)

Phys214 Final Exam. (30 problems. 10 points each. Total 300 points) Phys214 Final Exam (30 problems. 10 points each. Total 300 points) 1. A woman 1.6 m in height wants a plane mirror so that she can view her full height. The minimum vertical size of such a mirror is A.

More information