# Chapter 2 Section 4: Equations of Lines. 4.* Find the equation of the line with slope 4 3, and passing through the point (0,2).

Save this PDF as:

Size: px
Start display at page:

Download "Chapter 2 Section 4: Equations of Lines. 4.* Find the equation of the line with slope 4 3, and passing through the point (0,2)."

## Transcription

1 Chapter Section : Equations of Lines Answers to Problems For problems -, put our answers into slope intercept form..* Find the equation of the line with slope, and passing through the point (,0).. Find the equation of the line with slope, and passing through the point (, ). = x + = x.* Find the equation of the line with slope,.* Find the equation of the line with slope, and passing through the point (0,). = x + and passing through the point (, ). = x.* Find the equation of the line with slope, and passing through the point (, ). = x 6. Find the equation of the line with slope, and passing through the point (, 0). = x * Find the equation of the line with slope, 8. Find the equation of the line with slope 7, and passing through the point (, ). = x and passing through the point (, ). 7 7 = x 9.* Find the equation of the line with slope, and passing through the point (, ). 0. Find the equation of the line with slope 0, and passing through the point (, ). = x + =.* Find the equation of the line with undefined slope, and passing through the point (, ). x =. Find the equation of the line with slope, and passing through the point (, ). = x *See Explanations & Worked Solutions on page. Page of

2 Chapter Section : Equations of Lines Find the equation of the line passing through the given points, for problems -0..* (0,) and (,). (, ) and (, ) = x + =.* (,) and (,) 6. (, ) and (,) = x + = x 7.* (, ) and (, ) 8. (,) and (, ) = x x = 9.* (0,) and (,0) 0. (,) and (, 6) = x + 7 = x 6.* Find the equation of the line parallel to x = and passing through (, ). 8 = x.* Find the equation of the line parallel to x + = and passing through (0,0). = x.* Find the equation of the line parallel to = 6x and passing through (,).. Find the equation of the line parallel to = x + and passing through (,). = x. Find the equation of the line parallel to x + = and passing through (,). 0 = x + 6. Find the equation of the line parallel to 6 x = and passing through (, ). = 6x x = 7.* Find the equation of the line perpendicular to x = 0 and passing through (, ). = x 9.* Find the equation of the line perpendicular to = x and passing through (,). = x + 8. Find the equation of the line perpendicular to x = and passing through (, ). = x 6 0. Find the equation of the line perpendicular to x = and passing through (, 6). 8 = x *See Explanations & Worked Solutions on page. Page of

3 Chapter Section : Equations of Lines.* Find the equation of the line perpendicular to = x + and passing through (, ). = x +. Find the equation of the line perpendicular to = x and passing through (, ). = x.* Graph the line = x + using onl the line s slope and intercept.. Graph the line = x using onl the line s slope and intercept..* Graph the line x + = 6 using onl the line s x and intercepts. 6. Graph the line x + = using onl the line s x and intercepts. 7.* Graph the line x + = 6 using onl the line s x and intercepts. *See Explanations & Worked Solutions on page. Page of

4 Chapter Section : Equations of Lines Find the equation of the graphed line, for problems * = x = x + 0. = *See Explanations & Worked Solutions on page. Page of

5 Chapter Section : Equations of Lines *Explanations & Worked Solutions. Start with the slope-intercept form for the equation of the line, with - in place of m. Then substitute the given point s x and -coordinates into the equation and solve for the -intercept, b: = x (, 0) ( ) 0 = 0 = + + So, the line s equation is = x +.. Start with the slope-intercept form for the equation of the line, with in place of m. Then substitute the given point s x and -coordinates into the equation and solve for the -intercept, b: = x ( 0, ) = ( 0) So, the line s equation is = x +.. Start with the slope-intercept form for the equation of the line, with / in place of m. Then substitute the given point s x and -coordinates into the equation and solve for the -intercept, b: = x, (, ) = ( ) = So, the line s equation is = x. Page of

6 Chapter Section : Equations of Lines. Start with the slope-intercept form for the equation of the line, with in place of m. Then substitute the given point s x and -coordinates into the equation and solve for the -intercept, b: = x (, ) = ( ) = So, the line s equation is = x. 7. Start with the slope-intercept form for the equation of the line, with in place of m. Then substitute the given point s x and -coordinates into the equation and solve for the -intercept, b: = x (, ) = ( ) = 0 So, the line s equation is = x. 9. Start with the slope-intercept form for the equation of the line, with in place of m. Then substitute the given point s x and -coordinates into the equation and solve for the -intercept, b: = x (, ) ( ) = = 9 So, the line s equation is = x +.. Onl vertical lines have undefined slope, so this line is vertical. Since it passes through the point (, ), it must have equation x =.. First we find the line s slope m, the ratio of the difference of the -coordinates to the difference of the x- coordinates: m = = =. Now, use the slope-intercept form for the equation of the line, with 0 in place of m. continued Page 6 of

7 Chapter Section : Equations of Lines Then substitute the x and -coordinates of either of the given points into the equation and solve for the - intercept, b. We ll use the point (0,): = x, 0, So, the equation of the line is = x+. ( 0) = ( ). First we find the line s slope m, the ratio of the difference of the -coordinates to the difference of the x- coordinates: m = = =. Now, use the slope-intercept form for the equation of the line, with / in place of m. Then substitute the x and -coordinates of either of the given points into the equation and solve for the -intercept, b. We ll use the point (,): = x, (, ) = ( ) = So, the line s equation is = x First we find the line s slope m, the ratio of the difference of the -coordinates to the difference of the x- ( ) ( ) + coordinates: m = = = =. Now, use the slope-intercept form for the equation ( ) ( ) + of the line, with in place of m. Then substitute the x and -coordinates of either of the given points into the equation and solve for the -intercept, b. We ll use the point (, ): = x,, So, the equation of the line is = x. = = + + ( ) ( ) 9. (0,) and (,0) First we find the line s slope m, the ratio of the difference of the -coordinates to the difference of the x- coordinates: m = 0 = 0 =. Now, use the slope-intercept form for the equation of the line, with in place of m. continued Page 7 of

8 Chapter Section : Equations of Lines Then substitute the x and -coordinates of either of the given points into the equation and solve for the - intercept, b. We ll use the point (0,): = x, 0, So, the equation of the line is = x+. ( 0) = ( ). Parallel lines have equal slopes, so our line has the same slope as the line x =. To see what that slope is, put the line into slope-intercept form (i.e., solve for ). x = x x = x + x = + = x So the line we seek also has a slope m = /. Now use the slope-intercept form for the equation of the line, with / in place of m. Then substitute the x and -coordinates of either of the given points into the equation and solve for the -intercept, b. We ll use the point (, ): = x, (, ) = ( ) = So, the line s equation is = x.. Parallel lines have equal slopes, so our line has the same slope as the line x + =. To see what that slope is, put the line into slope-intercept form (i.e., solve for ). continued Page 8 of

9 Chapter Section : Equations of Lines x + = x x = x + x = + = x + So the line we seek also has a slope m = -/. Now use the slope-intercept form for the equation of the line, with -/ in place of m. Then substitute the x and -coordinates of either of the given points into the equation and solve for the -intercept, b. We ll use the point (0,0): = x, ( 0, 0) 0 = ( 0) 0 So, the equation of the line is = x.. Parallel lines have equal slopes, so our line has the same slope as the line = 6x. So the line we seek also has a slope m = 6. Now use the slope-intercept form for the equation of the line, with 6 in place of m. Then substitute the x and -coordinates of either of the given points into the equation and solve for the -intercept, b. We ll use the point (, ) : = 6 x,, ( ) = 6 = 6+ b 6 6 ( ) So, the equation of the line is = 6x. 7. Perpendicular lines have reciprocal slopes. So if we find the slope of the given line, its reciprocal will be the slope of the line that we seek. To see what that slope is, put the line into slope-intercept form (i.e., solve for ). x = 0 x x = x + 0 x 0 = + = x So the line we seek also has slope m = /. Now use the slope-intercept form for the equation of the line, with / in place of m. continued Page 9 of

10 Chapter Section : Equations of Lines Then substitute the x and -coordinates of either of the given points into the equation and solve for the - intercept, b. We ll use the point (, ): = x, (, ) = ( ) = 0 So, the line s equation is 0 0 = x. 9. Perpendicular lines have reciprocal slopes. So the line we seek also has slope m =. Now use the slopeintercept form for the equation of the line, with in place of m. Then substitute the x and -coordinates of either of the given points into the equation and solve for the -intercept, b. We ll use the point (,): = x,, So, the line s equation is = x +. ( ) = = + + ( ). Find the equation of the line perpendicular to = x + and passing through (, ). Perpendicular lines have reciprocal slopes. So the line we seek also has slope m =. Now use the slope- intercept form for the equation of the line, with in place of m. Then substitute the x and -coordinates of either of the given points into the equation and solve for the -intercept, b. We ll use the point (, ): = x, (, ) = ( ) = + + So, the line s equation is = x +. Page 0 of

11 Chapter Section : Equations of Lines. The x-intercept occurs when = 0, and the -intercept occurs when x = 0. When = 0 we have: 0 = x + = x = x So the x-intercept is x =. When x = 0 we have: = 0 + = 0+ = So the -intercept is =. Plotting these two intercept points and connect the dots to graph the line:. Rewrite the equation is slope-intercept form. x + = 6 x x = x + 6 x 6 = + = x + The x-intercept occurs when = 0, and the -intercept occurs when x = 0. When = 0 we have: 0 = x + = x x = = x = x So the x-intercept is x =. When x = 0 we have: = 0 + = 0+ = So the -intercept is =. Plotting these two intercept points and connect the dots to graph the line: Page of

12 Chapter Section : Equations of Lines 7. Rewrite the equation in slope-intercept form: x + = 6 When = 0 we have: 0 = x + = x x = = x = x So, the x-intercept is x =. x x = x + 6 x 6 = + = x + When x = 0 we have: = 0 + = 0+ = So, the -intercept is =. Plotting these two intercept points and connect the dots to graph the line: 9. This line goes through the points (0,) and (,0). So it has slope 0 m = = =. 0 Since the line has -intercept, the line s equation is = x +. Page of

### 5 \$75 6 \$90 7 \$105. Name Hour. Review Slope & Equations of Lines. STANDARD FORM: Ax + By = C. 1. What is the slope of a vertical line?

Review Slope & Equations of Lines Name Hour STANDARD FORM: Ax + By = C 1. What is the slope of a vertical line? 2. What is the slope of a horizontal line? 3. Is y = 4 the equation of a horizontal or vertical

### Graphing Linear Equations

Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope

### Linear Equations Review

Linear Equations Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The y-intercept of the line y = 4x 7 is a. 7 c. 4 b. 4 d. 7 2. What is the y-intercept

### Warm Up. Write an equation given the slope and y-intercept. Write an equation of the line shown.

Warm Up Write an equation given the slope and y-intercept Write an equation of the line shown. EXAMPLE 1 Write an equation given the slope and y-intercept From the graph, you can see that the slope is

### Section 3.4 The Slope Intercept Form: y = mx + b

Slope-Intercept Form: y = mx + b, where m is the slope and b is the y-intercept Reminding! m = y x = y 2 y 1 x 2 x 1 Slope of a horizontal line is 0 Slope of a vertical line is Undefined Graph a linear

### 2.3 Writing Equations of Lines

. Writing Equations of Lines In this section ou will learn to use point-slope form to write an equation of a line use slope-intercept form to write an equation of a line graph linear equations using the

### 5. Equations of Lines: slope intercept & point slope

5. Equations of Lines: slope intercept & point slope Slope of the line m rise run Slope-Intercept Form m + b m is slope; b is -intercept Point-Slope Form m( + or m( Slope of parallel lines m m (slopes

### LINEAR FUNCTIONS. Form Equation Note Standard Ax + By = C A and B are not 0. A > 0

LINEAR FUNCTIONS As previousl described, a linear equation can be defined as an equation in which the highest eponent of the equation variable is one. A linear function is a function of the form f ( )

### Solving Equations Involving Parallel and Perpendicular Lines Examples

Solving Equations Involving Parallel and Perpendicular Lines Examples. The graphs of y = x, y = x, and y = x + are lines that have the same slope. They are parallel lines. Definition of Parallel Lines

### Name: Class: Date: Does the equation represent a direct variation? If so, find the constant of variation. c. yes; k = 5 3. c.

Name: Class: Date: Chapter 5 Test Multiple Choice Identify the choice that best completes the statement or answers the question. What is the slope of the line that passes through the pair of points? 1.

### Section 2.2 Equations of Lines

Section 2.2 Equations of Lines The Slope of a Line EXAMPLE: Find the slope of the line that passes through the points P(2,1) and Q(8,5). = 5 1 8 2 = 4 6 = 2 1 EXAMPLE: Find the slope of the line that passes

### In this section, we ll review plotting points, slope of a line and different forms of an equation of a line.

Math 1313 Section 1.2: Straight Lines In this section, we ll review plotting points, slope of a line and different forms of an equation of a line. Graphing Points and Regions Here s the coordinate plane:

### Slope-Intercept Form of a Linear Equation Examples

Slope-Intercept Form of a Linear Equation Examples. In the figure at the right, AB passes through points A(0, b) and B(x, y). Notice that b is the y-intercept of AB. Suppose you want to find an equation

### Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}

Linear Equations Domain and Range Domain refers to the set of possible values of the x-component of a point in the form (x,y). Range refers to the set of possible values of the y-component of a point in

### Section 1.4 Notes Page Linear Equations in Two Variables and Linear Functions., x

Section. Notes Page. Linear Equations in Two Variables and Linear Functions Slope Formula The slope formula is used to find the slope between two points ( x, y ) and ( ) x, y. x, y ) The slope is the vertical

### The slope m of the line passes through the points (x 1,y 1 ) and (x 2,y 2 ) e) (1, 3) and (4, 6) = 1 2. f) (3, 6) and (1, 6) m= 6 6

Lines and Linear Equations Slopes Consider walking on a line from left to right. The slope of a line is a measure of its steepness. A positive slope rises and a negative slope falls. A slope of zero means

### Lines and Linear Equations. Slopes

Lines and Linear Equations Slopes Consider walking on a line from left to right. The slope of a line is a measure of its steepness. A positive slope rises and a negative slope falls. A slope of zero means

### 2.1 Equations of Lines

Section 2.1 Equations of Lines 1 2.1 Equations of Lines The Slope-Intercept Form Recall the formula for the slope of a line. Let s assume that the dependent variable is and the independent variable is

### Section 1.1 Linear Equations: Slope and Equations of Lines

Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

### Section 1.10 Lines. The Slope of a Line

Section 1.10 Lines The Slope of a Line EXAMPLE: Find the slope of the line that passes through the points P(2,1) and Q(8,5). = 5 1 8 2 = 4 6 = 2 1 EXAMPLE: Find the slope of the line that passes through

### Sect The Slope-Intercept Form

Concepts # and # Sect. - The Slope-Intercept Form Slope-Intercept Form of a line Recall the following definition from the beginning of the chapter: Let a, b, and c be real numbers where a and b are not

### The Point-Slope Form

7. The Point-Slope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope

### Slope-Intercept Equation. Example

1.4 Equations of Lines and Modeling Find the slope and the y intercept of a line given the equation y = mx + b, or f(x) = mx + b. Graph a linear equation using the slope and the y-intercept. Determine

### Write the Equation of the Line Review

Connecting Algebra 1 to Advanced Placement* Mathematics A Resource and Strategy Guide Objective: Students will be assessed on their ability to write the equation of a line in multiple methods. Connections

### 4.1 & Linear Equations in Slope-Intercept Form

4.1 & 4.2 - Linear Equations in Slope-Intercept Form Slope-Intercept Form: y = mx + b Ex 1: Write the equation of a line with a slope of -2 and a y-intercept of 5. Ex 2:Write an equation of the line shown

### Math 10 - Unit 7 Final Review - Coordinate Geometry

Class: Date: Math 10 - Unit Final Review - Coordinate Geometry Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Determine the slope of this line segment.

### Study Guide and Review - Chapter 4

State whether each sentence is true or false. If false, replace the underlined term to make a true sentence. 1. The y-intercept is the y-coordinate of the point where the graph crosses the y-axis. The

### x x y y Then, my slope is =. Notice, if we use the slope formula, we ll get the same thing: m =

Slope and Lines The slope of a line is a ratio that measures the incline of the line. As a result, the smaller the incline, the closer the slope is to zero and the steeper the incline, the farther the

### Practice Test - Chapter 4. y = 2x 3. The slope-intercept form of a line is y = mx + b, where m is the slope, and b is the y-intercept.

y = 2x 3. The slope-intercept form of a line is y = mx + b, where m is the slope, and b is the y-intercept. Plot the y-intercept (0, 3). The slope is. From (0, 3), move up 2 units and right 1 unit. Plot

### Section summaries. d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. 1 + y 2. x1 + x 2

Chapter 2 Graphs Section summaries Section 2.1 The Distance and Midpoint Formulas You need to know the distance formula d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2 and the midpoint formula ( x1 + x 2, y ) 1 + y 2

### Writing the Equation of a Line in Slope-Intercept Form

Writing the Equation of a Line in Slope-Intercept Form Slope-Intercept Form y = mx + b Example 1: Give the equation of the line in slope-intercept form a. With y-intercept (0, 2) and slope -9 b. Passing

### Math 152 Rodriguez Blitzer 2.4 Linear Functions and Slope

Math 152 Rodriguez Blitzer 2.4 Linear Functions and Slope I. Linear Functions 1. A linear equation is an equation whose graph is a straight line. 2. A linear equation in standard form: Ax +By=C ex: 4x

### GRAPHING LINEAR EQUATIONS IN TWO VARIABLES

GRAPHING LINEAR EQUATIONS IN TWO VARIABLES The graphs of linear equations in two variables are straight lines. Linear equations may be written in several forms: Slope-Intercept Form: y = mx+ b In an equation

### Slope-Intercept Form and Point-Slope Form

Slope-Intercept Form and Point-Slope Form In this section we will be discussing Slope-Intercept Form and the Point-Slope Form of a line. We will also discuss how to graph using the Slope-Intercept Form.

### Practice Problems for Exam 1 Math 140A, Summer 2014, July 2

Practice Problems for Exam 1 Math 140A, Summer 2014, July 2 Name: INSTRUCTIONS: These problems are for PRACTICE. For the practice exam, you may use your book, consult your classmates, and use any other

### Worksheet A5: Slope Intercept Form

Name Date Worksheet A5: Slope Intercept Form Find the Slope of each line below 1 3 Y - - - - - - - - - - Graph the lines containing the point below, then find their slopes from counting on the graph!.

### Tangent line of a circle can be determined once the tangent point or the slope of the line is known.

Worksheet 7: Tangent Line of a Circle Name: Date: Tangent line of a circle can be determined once the tangent point or the slope of the line is known. Straight line: an overview General form : Ax + By

### Unit III Practice Questions

Unit III Practice Questions 1. Write the ordered pair corresponding to each point plotted below. A F B E D C 2. Determine if the ordered pair ( 1, 2) is a solution of 2x + y = 4. Explain how you know.

### Linear Equations and Graphs

2.1-2.4 Linear Equations and Graphs Coordinate Plane Quadrants - The x-axis and y-axis form 4 "areas" known as quadrants. 1. I - The first quadrant has positive x and positive y points. 2. II - The second

### 5.1: Rate of Change and Slope

5.1: Rate of Change and Slope Rate of Change shows relationship between changing quantities. On a graph, when we compare rise and run, we are talking about steepness of a line (slope). You can use and

### MATH 105: Finite Mathematics 1-1: Rectangular Coordinates, Lines

MATH 105: Finite Mathematics 1-1: Rectangular Coordinates, Lines Prof. Jonathan Duncan Walla Walla College Winter Quarter, 2006 Outline 1 Rectangular Coordinate System 2 Graphing Lines 3 The Equation of

### What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of

### Ordered Pairs. Graphing Lines and Linear Inequalities, Solving System of Linear Equations. Cartesian Coordinates System.

Ordered Pairs Graphing Lines and Linear Inequalities, Solving System of Linear Equations Peter Lo All equations in two variables, such as y = mx + c, is satisfied only if we find a value of x and a value

### Alex and Morgan were asked to graph the equation y = 2x + 1

Which is better? Ale and Morgan were asked to graph the equation = 2 + 1 Ale s make a table of values wa Morgan s use the slope and -intercept wa First, I made a table. I chose some -values, then plugged

### Let (x 1, y 1 ) (0, 1) and (x 2, y 2 ) (x, y). x 0. y 1. y 1 2. x x Multiply each side by x. y 1 x. y x 1 Add 1 to each side. Slope-Intercept Form

8 (-) Chapter Linear Equations in Two Variables and Their Graphs In this section Slope-Intercept Form Standard Form Using Slope-Intercept Form for Graphing Writing the Equation for a Line Applications

### Lesson 8.3 Exercises, pages

Lesson 8. Eercises, pages 57 5 A. For each function, write the equation of the corresponding reciprocal function. a) = 5 - b) = 5 c) = - d) =. Sketch broken lines to represent the vertical and horizontal

### A synonym is a word that has the same or almost the same definition of

Slope-Intercept Form Determining the Rate of Change and y-intercept Learning Goals In this lesson, you will: Graph lines using the slope and y-intercept. Calculate the y-intercept of a line when given

### Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year.

Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year. Goal The goal of the summer math program is to help students

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) m = y 2 - y 1 x1 - x 2

4.4.28 Graphing-Equations of Lines-Slope Interecpt MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) What is the

1.3 LINEAR EQUATIONS IN TWO VARIABLES Copyright Cengage Learning. All rights reserved. What You Should Learn Use slope to graph linear equations in two variables. Find the slope of a line given two points

### Algebra 1 Chapter 05 Review

Class: Date: Algebra 1 Chapter 05 Review Multiple Choice Identify the choice that best completes the statement or answers the question. Find the slope of the line that passes through the pair of points.

### 5.1 Writing Linear Equations in Slope-Intercept Form. 1. Use slope-intercept form to write an equation of a line.

5.1 Writing Linear Equations in Slope-Intercept Form Objectives 1. Use slope-intercept form to write an equation of a line. 2. Model a real-life situation with a linear function. Key Terms Slope-Intercept

### The Parabola and the Circle

The Parabola and the Circle The following are several terms and definitions to aid in the understanding of parabolas. 1.) Parabola - A parabola is the set of all points (h, k) that are equidistant from

### Beginning of the Semester To-Do List

Beginning of the Semester To-Do List Set up your account at https://casa.uh.edu/ Read the Math 13xx Departmental Course Policies Take Course Policies Quiz until your score is 100%. You can find it on the

### Pre-Calculus III Linear Functions and Quadratic Functions

Linear Functions.. 1 Finding Slope...1 Slope Intercept 1 Point Slope Form.1 Parallel Lines.. Line Parallel to a Given Line.. Perpendicular Lines. Line Perpendicular to a Given Line 3 Quadratic Equations.3

### THE POINT-SLOPE FORM

. The Point-Slope Form (-) 67. THE POINT-SLOPE FORM In this section In Section. we wrote the equation of a line given its slope and -intercept. In this section ou will learn to write the equation of a

### Algebra. Indiana Standards 1 ST 6 WEEKS

Chapter 1 Lessons Indiana Standards - 1-1 Variables and Expressions - 1-2 Order of Operations and Evaluating Expressions - 1-3 Real Numbers and the Number Line - 1-4 Properties of Real Numbers - 1-5 Adding

### Math 155 (DoVan) Exam 1 Review (Sections 3.1, 3.2, 5.1, 5.2, Chapters 2 & 4)

Chapter 2: Functions and Linear Functions 1. Know the definition of a relation. Math 155 (DoVan) Exam 1 Review (Sections 3.1, 3.2, 5.1, 5.2, Chapters 2 & 4) 2. Know the definition of a function. 3. What

### 2. Simplify. College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses

College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key 1. Multiply 2 3 5 1 Use the distributive property to remove the parentheses 2 3 5 1 2 25 21 3 35 31 2 10 2 3 15 3 2 13 2 15 3 2

### Students will use various media (computer, graphing calculator, paper and pencil) to graph/sketch linear equations.

Title: Lines, Lines, Everywhere!! A discovery/exploration lesson investigating equations of the form y = mx + b to see how the values of b and m affects the graph. Link to Outcomes: Communication/ Cooperation

### Plot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line.

Objective # 6 Finding the slope of a line Material: page 117 to 121 Homework: worksheet NOTE: When we say line... we mean straight line! Slope of a line: It is a number that represents the slant of a line

### Math 113 Review for Exam I

Math 113 Review for Exam I Section 1.1 Cartesian Coordinate System, Slope, & Equation of a Line (1.) Rectangular or Cartesian Coordinate System You should be able to label the quadrants in the rectangular

### Graphing - Parallel and Perpendicular Lines

. Graphing - Parallel and Perpendicular Lines Objective: Identify the equation of a line given a parallel or perpendicular line. There is an interesting connection between the slope of lines that are parallel

### 0-5 Systems of Linear Equations and Inequalities

21. Solve each system of equations. Eliminate one variable in two pairs of the system. Add the first equation and second equations to eliminate x. Multiply the first equation by 3 and add it to the second

### 1) (-3) + (-6) = 2) (2) + (-5) = 3) (-7) + (-1) = 4) (-3) - (-6) = 5) (+2) - (+5) = 6) (-7) - (-4) = 7) (5)(-4) = 8) (-3)(-6) = 9) (-1)(2) =

Extra Practice for Lesson Add or subtract. ) (-3) + (-6) = 2) (2) + (-5) = 3) (-7) + (-) = 4) (-3) - (-6) = 5) (+2) - (+5) = 6) (-7) - (-4) = Multiply. 7) (5)(-4) = 8) (-3)(-6) = 9) (-)(2) = Division is

### EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

### Unit 1 Study Guide Systems of Linear Equations and Inequalities. Part 1: Determine if an ordered pair is a solution to a system

Unit Stud Guide Sstems of Linear Equations and Inequalities 6- Solving Sstems b Graphing Part : Determine if an ordered pair is a solution to a sstem e: (, ) Eercises: substitute in for and - in for in

### Lesson 9: Graphing Standard Form Equations Lesson 2 of 2. Example 1

Lesson 9: Graphing Standard Form Equations Lesson 2 of 2 Method 2: Rewriting the equation in slope intercept form Use the same strategies that were used for solving equations: 1. 2. Your goal is to solve

### EQUATIONS OF LINES IN SLOPE- INTERCEPT AND STANDARD FORM

. Equations of Lines in Slope-Intercept and Standard Form ( ) 8 In this Slope-Intercept Form Standard Form section Using Slope-Intercept Form for Graphing Writing the Equation for a Line Applications (0,

### 3.4 The Point-Slope Form of a Line

Section 3.4 The Point-Slope Form of a Line 293 3.4 The Point-Slope Form of a Line In the last section, we developed the slope-intercept form of a line ( = m + b). The slope-intercept form of a line is

### Section 1.4 Graphs of Linear Inequalities

Section 1.4 Graphs of Linear Inequalities A Linear Inequality and its Graph A linear inequality has the same form as a linear equation, except that the equal symbol is replaced with any one of,,

### 1 You Try. 2 You Try.

1 Simplify. 1 You Try. 1) Simplify. AF 1.2 2 Evaluate if, and. 2 You Try. 2) Evaluate if. 1.0 Page 1 of 19 MDC@ACOE (AUSD) 09/13/10 3 Simplify. 3 You Try. 3) Simplify. NS 1.2 4 Simplify. 4 You Try. 4)

### Geometry 1. Unit 3: Perpendicular and Parallel Lines

Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples

### Lesson 6: Linear Functions and their Slope

Lesson 6: Linear Functions and their Slope A linear function is represented b a line when graph, and represented in an where the variables have no whole number eponent higher than. Forms of a Linear Equation

### Instructor: Laura Dostert Course: Summer Math Refresher

Student: Date: Instructor: Laura Dostert Course: Summer Math Refresher Assignment: Review 8 Equations of Lines 1. Using the slope formula, find the slope of the line through the given points. (8,0) and

### 4.4 Concavity and Curve Sketching

Concavity and Curve Sketching Section Notes Page We can use the second derivative to tell us if a graph is concave up or concave down To see if something is concave down or concave up we need to look at

### Graphing Linear Equations in Two Variables

Math 123 Section 3.2 - Graphing Linear Equations Using Intercepts - Page 1 Graphing Linear Equations in Two Variables I. Graphing Lines A. The graph of a line is just the set of solution points of the

### Chapter 4.1 Parallel Lines and Planes

Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about

### High School Mathematics Algebra

High School Mathematics Algebra This course is designed to give students the foundation of understanding algebra at a moderate pace. Essential material will be covered to prepare the students for Geometry.

### Portable Assisted Study Sequence ALGEBRA IIA

SCOPE This course is divided into two semesters of study (A & B) comprised of five units each. Each unit teaches concepts and strategies recommended for intermediate algebra students. The first half of

### 5.1. A Formula for Slope. Investigation: Points and Slope CONDENSED

CONDENSED L E S S O N 5.1 A Formula for Slope In this lesson ou will learn how to calculate the slope of a line given two points on the line determine whether a point lies on the same line as two given

### Economics 101 Homework #1 Fall 2014 Due 09/18/2014 in lecture

Economics 101 Homework #1 Fall 2014 Due 09/18/2014 in lecture Directions: The homework will be collected in a box before the lecture. Please place your name, TA name and section number on top of the homework

### Design a Brochure Algebra 2 Project Linear Equations and Inequalities

Design a Brochure Algebra 2 Project Linear Equations and Inequalities Purpose: For this project, you will be working as a group of two to design a tri-fold brochure or an alternate display that will summarize

### Graphing - Slope-Intercept Form

2.3 Graphing - Slope-Intercept Form Objective: Give the equation of a line with a known slope and y-intercept. When graphing a line we found one method we could use is to make a table of values. However,

### Unit 5: Coordinate Geometry Practice Test

Unit 5: Coordinate Geometry Practice Test Math 10 Common Name: Block: Please initial this box to indicate you carefully read over your test and checked your work for simple mistakes. What I can do in this

### Exam 2 Review. 3. How to tell if an equation is linear? An equation is linear if it can be written, through simplification, in the form.

Exam 2 Review Chapter 1 Section1 Do You Know: 1. What does it mean to solve an equation? To solve an equation is to find the solution set, that is, to find the set of all elements in the domain of the

### Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

### Name: Date: Block: Midterm Exam Review Sheet 1

Name: Date: Block: Midterm Exam Review Sheet 1 Chapter 1 1. Write a variable expression for 2. Simplify: 8 3 2 4 seven divided by the sum of x and five 3. Write an algebraic expression for 4. Write an

### Many different kinds of animals can change their form to help them avoid or

Slopes, Forms, Graphs, and Intercepts Connecting the Standard Form with the Slope-Intercept Form of Linear Functions Learning Goals In this lesson, you will: Graph linear functions in standard form. Transform

### Section 1.8 Coordinate Geometry

Section 1.8 Coordinate Geometry The Coordinate Plane Just as points on a line can be identified with real numbers to form the coordinate line, points in a plane can be identified with ordered pairs of

### Precalculus Workshop - Functions

Introduction to Functions A function f : D C is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set C. D is called the domain of f. C is called the codomain of f.

### Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

### 2.1 Algebraic Expressions and Combining like Terms

2.1 Algebraic Expressions and Combining like Terms Evaluate the following algebraic expressions for the given values of the variables. 3 3 3 Simplify the following algebraic expressions by combining like

### The Perpendicular Bisector of a Segment

Check off the steps as you complete them: The Perpendicular Bisector of a Segment Open a Geometry window in Geogebra. Use the segment tool of draw AB. Under the point tool, select Midpoint of Center, and

### MA.8.A.1.2 Interpret the slope and the x- and y-intercepts when graphing a linear equation for a real-world problem. Constant Rate of Change/Slope

MA.8.A.1.2 Interpret the slope and the x- and y-intercepts when graphing a linear equation for a real-world problem Constant Rate of Change/Slope In a Table Relationships that have straight-lined graphs

### The Slope-Intercept Form

7.1 The Slope-Intercept Form 7.1 OBJECTIVES 1. Find the slope and intercept from the equation of a line. Given the slope and intercept, write the equation of a line. Use the slope and intercept to graph

### Slope-Intercept Quiz. Name: Class: Date: 1. Graph the line with the slope 1 and y-intercept 3. a. c. b. d.

Name: Class: Date: ID: A Slope-Intercept Quiz 1. Graph the line with the slope 1 and y-intercept 3. a. c. b. d.. Write the equation that describes the line with slope = and y-intercept = 3 a. x + y = 3

### How can you write an equation of a line when you are given the slope and the y-intercept of the line? ACTIVITY: Writing Equations of Lines

. Writing Equations in Slope-Intercept Form How can ou write an equation of a line when ou are given the slope and the -intercept of the line? ACTIVITY: Writing Equations of Lines Work with a partner.