Chapter 2 Section 4: Equations of Lines. 4.* Find the equation of the line with slope 4 3, and passing through the point (0,2).


 Claude Clarke
 2 years ago
 Views:
Transcription
1 Chapter Section : Equations of Lines Answers to Problems For problems , put our answers into slope intercept form..* Find the equation of the line with slope, and passing through the point (,0).. Find the equation of the line with slope, and passing through the point (, ). = x + = x.* Find the equation of the line with slope,.* Find the equation of the line with slope, and passing through the point (0,). = x + and passing through the point (, ). = x.* Find the equation of the line with slope, and passing through the point (, ). = x 6. Find the equation of the line with slope, and passing through the point (, 0). = x * Find the equation of the line with slope, 8. Find the equation of the line with slope 7, and passing through the point (, ). = x and passing through the point (, ). 7 7 = x 9.* Find the equation of the line with slope, and passing through the point (, ). 0. Find the equation of the line with slope 0, and passing through the point (, ). = x + =.* Find the equation of the line with undefined slope, and passing through the point (, ). x =. Find the equation of the line with slope, and passing through the point (, ). = x *See Explanations & Worked Solutions on page. Page of
2 Chapter Section : Equations of Lines Find the equation of the line passing through the given points, for problems 0..* (0,) and (,). (, ) and (, ) = x + =.* (,) and (,) 6. (, ) and (,) = x + = x 7.* (, ) and (, ) 8. (,) and (, ) = x x = 9.* (0,) and (,0) 0. (,) and (, 6) = x + 7 = x 6.* Find the equation of the line parallel to x = and passing through (, ). 8 = x.* Find the equation of the line parallel to x + = and passing through (0,0). = x.* Find the equation of the line parallel to = 6x and passing through (,).. Find the equation of the line parallel to = x + and passing through (,). = x. Find the equation of the line parallel to x + = and passing through (,). 0 = x + 6. Find the equation of the line parallel to 6 x = and passing through (, ). = 6x x = 7.* Find the equation of the line perpendicular to x = 0 and passing through (, ). = x 9.* Find the equation of the line perpendicular to = x and passing through (,). = x + 8. Find the equation of the line perpendicular to x = and passing through (, ). = x 6 0. Find the equation of the line perpendicular to x = and passing through (, 6). 8 = x *See Explanations & Worked Solutions on page. Page of
3 Chapter Section : Equations of Lines.* Find the equation of the line perpendicular to = x + and passing through (, ). = x +. Find the equation of the line perpendicular to = x and passing through (, ). = x.* Graph the line = x + using onl the line s slope and intercept.. Graph the line = x using onl the line s slope and intercept..* Graph the line x + = 6 using onl the line s x and intercepts. 6. Graph the line x + = using onl the line s x and intercepts. 7.* Graph the line x + = 6 using onl the line s x and intercepts. *See Explanations & Worked Solutions on page. Page of
4 Chapter Section : Equations of Lines Find the equation of the graphed line, for problems * = x = x + 0. = *See Explanations & Worked Solutions on page. Page of
5 Chapter Section : Equations of Lines *Explanations & Worked Solutions. Start with the slopeintercept form for the equation of the line, with  in place of m. Then substitute the given point s x and coordinates into the equation and solve for the intercept, b: = x (, 0) ( ) 0 = 0 = + + So, the line s equation is = x +.. Start with the slopeintercept form for the equation of the line, with in place of m. Then substitute the given point s x and coordinates into the equation and solve for the intercept, b: = x ( 0, ) = ( 0) So, the line s equation is = x +.. Start with the slopeintercept form for the equation of the line, with / in place of m. Then substitute the given point s x and coordinates into the equation and solve for the intercept, b: = x, (, ) = ( ) = So, the line s equation is = x. Page of
6 Chapter Section : Equations of Lines. Start with the slopeintercept form for the equation of the line, with in place of m. Then substitute the given point s x and coordinates into the equation and solve for the intercept, b: = x (, ) = ( ) = So, the line s equation is = x. 7. Start with the slopeintercept form for the equation of the line, with in place of m. Then substitute the given point s x and coordinates into the equation and solve for the intercept, b: = x (, ) = ( ) = 0 So, the line s equation is = x. 9. Start with the slopeintercept form for the equation of the line, with in place of m. Then substitute the given point s x and coordinates into the equation and solve for the intercept, b: = x (, ) ( ) = = 9 So, the line s equation is = x +.. Onl vertical lines have undefined slope, so this line is vertical. Since it passes through the point (, ), it must have equation x =.. First we find the line s slope m, the ratio of the difference of the coordinates to the difference of the x coordinates: m = = =. Now, use the slopeintercept form for the equation of the line, with 0 in place of m. continued Page 6 of
7 Chapter Section : Equations of Lines Then substitute the x and coordinates of either of the given points into the equation and solve for the  intercept, b. We ll use the point (0,): = x, 0, So, the equation of the line is = x+. ( 0) = ( ). First we find the line s slope m, the ratio of the difference of the coordinates to the difference of the x coordinates: m = = =. Now, use the slopeintercept form for the equation of the line, with / in place of m. Then substitute the x and coordinates of either of the given points into the equation and solve for the intercept, b. We ll use the point (,): = x, (, ) = ( ) = So, the line s equation is = x First we find the line s slope m, the ratio of the difference of the coordinates to the difference of the x ( ) ( ) + coordinates: m = = = =. Now, use the slopeintercept form for the equation ( ) ( ) + of the line, with in place of m. Then substitute the x and coordinates of either of the given points into the equation and solve for the intercept, b. We ll use the point (, ): = x,, So, the equation of the line is = x. = = + + ( ) ( ) 9. (0,) and (,0) First we find the line s slope m, the ratio of the difference of the coordinates to the difference of the x coordinates: m = 0 = 0 =. Now, use the slopeintercept form for the equation of the line, with in place of m. continued Page 7 of
8 Chapter Section : Equations of Lines Then substitute the x and coordinates of either of the given points into the equation and solve for the  intercept, b. We ll use the point (0,): = x, 0, So, the equation of the line is = x+. ( 0) = ( ). Parallel lines have equal slopes, so our line has the same slope as the line x =. To see what that slope is, put the line into slopeintercept form (i.e., solve for ). x = x x = x + x = + = x So the line we seek also has a slope m = /. Now use the slopeintercept form for the equation of the line, with / in place of m. Then substitute the x and coordinates of either of the given points into the equation and solve for the intercept, b. We ll use the point (, ): = x, (, ) = ( ) = So, the line s equation is = x.. Parallel lines have equal slopes, so our line has the same slope as the line x + =. To see what that slope is, put the line into slopeintercept form (i.e., solve for ). continued Page 8 of
9 Chapter Section : Equations of Lines x + = x x = x + x = + = x + So the line we seek also has a slope m = /. Now use the slopeintercept form for the equation of the line, with / in place of m. Then substitute the x and coordinates of either of the given points into the equation and solve for the intercept, b. We ll use the point (0,0): = x, ( 0, 0) 0 = ( 0) 0 So, the equation of the line is = x.. Parallel lines have equal slopes, so our line has the same slope as the line = 6x. So the line we seek also has a slope m = 6. Now use the slopeintercept form for the equation of the line, with 6 in place of m. Then substitute the x and coordinates of either of the given points into the equation and solve for the intercept, b. We ll use the point (, ) : = 6 x,, ( ) = 6 = 6+ b 6 6 ( ) So, the equation of the line is = 6x. 7. Perpendicular lines have reciprocal slopes. So if we find the slope of the given line, its reciprocal will be the slope of the line that we seek. To see what that slope is, put the line into slopeintercept form (i.e., solve for ). x = 0 x x = x + 0 x 0 = + = x So the line we seek also has slope m = /. Now use the slopeintercept form for the equation of the line, with / in place of m. continued Page 9 of
10 Chapter Section : Equations of Lines Then substitute the x and coordinates of either of the given points into the equation and solve for the  intercept, b. We ll use the point (, ): = x, (, ) = ( ) = 0 So, the line s equation is 0 0 = x. 9. Perpendicular lines have reciprocal slopes. So the line we seek also has slope m =. Now use the slopeintercept form for the equation of the line, with in place of m. Then substitute the x and coordinates of either of the given points into the equation and solve for the intercept, b. We ll use the point (,): = x,, So, the line s equation is = x +. ( ) = = + + ( ). Find the equation of the line perpendicular to = x + and passing through (, ). Perpendicular lines have reciprocal slopes. So the line we seek also has slope m =. Now use the slope intercept form for the equation of the line, with in place of m. Then substitute the x and coordinates of either of the given points into the equation and solve for the intercept, b. We ll use the point (, ): = x, (, ) = ( ) = + + So, the line s equation is = x +. Page 0 of
11 Chapter Section : Equations of Lines. The xintercept occurs when = 0, and the intercept occurs when x = 0. When = 0 we have: 0 = x + = x = x So the xintercept is x =. When x = 0 we have: = 0 + = 0+ = So the intercept is =. Plotting these two intercept points and connect the dots to graph the line:. Rewrite the equation is slopeintercept form. x + = 6 x x = x + 6 x 6 = + = x + The xintercept occurs when = 0, and the intercept occurs when x = 0. When = 0 we have: 0 = x + = x x = = x = x So the xintercept is x =. When x = 0 we have: = 0 + = 0+ = So the intercept is =. Plotting these two intercept points and connect the dots to graph the line: Page of
12 Chapter Section : Equations of Lines 7. Rewrite the equation in slopeintercept form: x + = 6 When = 0 we have: 0 = x + = x x = = x = x So, the xintercept is x =. x x = x + 6 x 6 = + = x + When x = 0 we have: = 0 + = 0+ = So, the intercept is =. Plotting these two intercept points and connect the dots to graph the line: 9. This line goes through the points (0,) and (,0). So it has slope 0 m = = =. 0 Since the line has intercept, the line s equation is = x +. Page of
5 $75 6 $90 7 $105. Name Hour. Review Slope & Equations of Lines. STANDARD FORM: Ax + By = C. 1. What is the slope of a vertical line?
Review Slope & Equations of Lines Name Hour STANDARD FORM: Ax + By = C 1. What is the slope of a vertical line? 2. What is the slope of a horizontal line? 3. Is y = 4 the equation of a horizontal or vertical
More informationGraphing Linear Equations
Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope
More informationLinear Equations Review
Linear Equations Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The yintercept of the line y = 4x 7 is a. 7 c. 4 b. 4 d. 7 2. What is the yintercept
More informationWarm Up. Write an equation given the slope and yintercept. Write an equation of the line shown.
Warm Up Write an equation given the slope and yintercept Write an equation of the line shown. EXAMPLE 1 Write an equation given the slope and yintercept From the graph, you can see that the slope is
More informationSection 3.4 The Slope Intercept Form: y = mx + b
SlopeIntercept Form: y = mx + b, where m is the slope and b is the yintercept Reminding! m = y x = y 2 y 1 x 2 x 1 Slope of a horizontal line is 0 Slope of a vertical line is Undefined Graph a linear
More information2.3 Writing Equations of Lines
. Writing Equations of Lines In this section ou will learn to use pointslope form to write an equation of a line use slopeintercept form to write an equation of a line graph linear equations using the
More information5. Equations of Lines: slope intercept & point slope
5. Equations of Lines: slope intercept & point slope Slope of the line m rise run SlopeIntercept Form m + b m is slope; b is intercept PointSlope Form m( + or m( Slope of parallel lines m m (slopes
More informationLINEAR FUNCTIONS. Form Equation Note Standard Ax + By = C A and B are not 0. A > 0
LINEAR FUNCTIONS As previousl described, a linear equation can be defined as an equation in which the highest eponent of the equation variable is one. A linear function is a function of the form f ( )
More informationSolving Equations Involving Parallel and Perpendicular Lines Examples
Solving Equations Involving Parallel and Perpendicular Lines Examples. The graphs of y = x, y = x, and y = x + are lines that have the same slope. They are parallel lines. Definition of Parallel Lines
More informationName: Class: Date: Does the equation represent a direct variation? If so, find the constant of variation. c. yes; k = 5 3. c.
Name: Class: Date: Chapter 5 Test Multiple Choice Identify the choice that best completes the statement or answers the question. What is the slope of the line that passes through the pair of points? 1.
More informationSection 2.2 Equations of Lines
Section 2.2 Equations of Lines The Slope of a Line EXAMPLE: Find the slope of the line that passes through the points P(2,1) and Q(8,5). = 5 1 8 2 = 4 6 = 2 1 EXAMPLE: Find the slope of the line that passes
More informationIn this section, we ll review plotting points, slope of a line and different forms of an equation of a line.
Math 1313 Section 1.2: Straight Lines In this section, we ll review plotting points, slope of a line and different forms of an equation of a line. Graphing Points and Regions Here s the coordinate plane:
More informationSlopeIntercept Form of a Linear Equation Examples
SlopeIntercept Form of a Linear Equation Examples. In the figure at the right, AB passes through points A(0, b) and B(x, y). Notice that b is the yintercept of AB. Suppose you want to find an equation
More informationLinear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (1,3), (3,3), (2,3)}
Linear Equations Domain and Range Domain refers to the set of possible values of the xcomponent of a point in the form (x,y). Range refers to the set of possible values of the ycomponent of a point in
More informationSection 1.4 Notes Page Linear Equations in Two Variables and Linear Functions., x
Section. Notes Page. Linear Equations in Two Variables and Linear Functions Slope Formula The slope formula is used to find the slope between two points ( x, y ) and ( ) x, y. x, y ) The slope is the vertical
More informationThe slope m of the line passes through the points (x 1,y 1 ) and (x 2,y 2 ) e) (1, 3) and (4, 6) = 1 2. f) (3, 6) and (1, 6) m= 6 6
Lines and Linear Equations Slopes Consider walking on a line from left to right. The slope of a line is a measure of its steepness. A positive slope rises and a negative slope falls. A slope of zero means
More informationLines and Linear Equations. Slopes
Lines and Linear Equations Slopes Consider walking on a line from left to right. The slope of a line is a measure of its steepness. A positive slope rises and a negative slope falls. A slope of zero means
More information2.1 Equations of Lines
Section 2.1 Equations of Lines 1 2.1 Equations of Lines The SlopeIntercept Form Recall the formula for the slope of a line. Let s assume that the dependent variable is and the independent variable is
More informationSection 1.1 Linear Equations: Slope and Equations of Lines
Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of
More informationSection 1.10 Lines. The Slope of a Line
Section 1.10 Lines The Slope of a Line EXAMPLE: Find the slope of the line that passes through the points P(2,1) and Q(8,5). = 5 1 8 2 = 4 6 = 2 1 EXAMPLE: Find the slope of the line that passes through
More informationSect The SlopeIntercept Form
Concepts # and # Sect.  The SlopeIntercept Form SlopeIntercept Form of a line Recall the following definition from the beginning of the chapter: Let a, b, and c be real numbers where a and b are not
More informationThe PointSlope Form
7. The PointSlope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope
More informationSlopeIntercept Equation. Example
1.4 Equations of Lines and Modeling Find the slope and the y intercept of a line given the equation y = mx + b, or f(x) = mx + b. Graph a linear equation using the slope and the yintercept. Determine
More informationWrite the Equation of the Line Review
Connecting Algebra 1 to Advanced Placement* Mathematics A Resource and Strategy Guide Objective: Students will be assessed on their ability to write the equation of a line in multiple methods. Connections
More information4.1 & Linear Equations in SlopeIntercept Form
4.1 & 4.2  Linear Equations in SlopeIntercept Form SlopeIntercept Form: y = mx + b Ex 1: Write the equation of a line with a slope of 2 and a yintercept of 5. Ex 2:Write an equation of the line shown
More informationMath 10  Unit 7 Final Review  Coordinate Geometry
Class: Date: Math 10  Unit Final Review  Coordinate Geometry Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Determine the slope of this line segment.
More informationStudy Guide and Review  Chapter 4
State whether each sentence is true or false. If false, replace the underlined term to make a true sentence. 1. The yintercept is the ycoordinate of the point where the graph crosses the yaxis. The
More informationx x y y Then, my slope is =. Notice, if we use the slope formula, we ll get the same thing: m =
Slope and Lines The slope of a line is a ratio that measures the incline of the line. As a result, the smaller the incline, the closer the slope is to zero and the steeper the incline, the farther the
More informationPractice Test  Chapter 4. y = 2x 3. The slopeintercept form of a line is y = mx + b, where m is the slope, and b is the yintercept.
y = 2x 3. The slopeintercept form of a line is y = mx + b, where m is the slope, and b is the yintercept. Plot the yintercept (0, 3). The slope is. From (0, 3), move up 2 units and right 1 unit. Plot
More informationSection summaries. d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. 1 + y 2. x1 + x 2
Chapter 2 Graphs Section summaries Section 2.1 The Distance and Midpoint Formulas You need to know the distance formula d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2 and the midpoint formula ( x1 + x 2, y ) 1 + y 2
More informationWriting the Equation of a Line in SlopeIntercept Form
Writing the Equation of a Line in SlopeIntercept Form SlopeIntercept Form y = mx + b Example 1: Give the equation of the line in slopeintercept form a. With yintercept (0, 2) and slope 9 b. Passing
More informationMath 152 Rodriguez Blitzer 2.4 Linear Functions and Slope
Math 152 Rodriguez Blitzer 2.4 Linear Functions and Slope I. Linear Functions 1. A linear equation is an equation whose graph is a straight line. 2. A linear equation in standard form: Ax +By=C ex: 4x
More informationGRAPHING LINEAR EQUATIONS IN TWO VARIABLES
GRAPHING LINEAR EQUATIONS IN TWO VARIABLES The graphs of linear equations in two variables are straight lines. Linear equations may be written in several forms: SlopeIntercept Form: y = mx+ b In an equation
More informationSlopeIntercept Form and PointSlope Form
SlopeIntercept Form and PointSlope Form In this section we will be discussing SlopeIntercept Form and the PointSlope Form of a line. We will also discuss how to graph using the SlopeIntercept Form.
More informationPractice Problems for Exam 1 Math 140A, Summer 2014, July 2
Practice Problems for Exam 1 Math 140A, Summer 2014, July 2 Name: INSTRUCTIONS: These problems are for PRACTICE. For the practice exam, you may use your book, consult your classmates, and use any other
More informationWorksheet A5: Slope Intercept Form
Name Date Worksheet A5: Slope Intercept Form Find the Slope of each line below 1 3 Y           Graph the lines containing the point below, then find their slopes from counting on the graph!.
More informationTangent line of a circle can be determined once the tangent point or the slope of the line is known.
Worksheet 7: Tangent Line of a Circle Name: Date: Tangent line of a circle can be determined once the tangent point or the slope of the line is known. Straight line: an overview General form : Ax + By
More informationUnit III Practice Questions
Unit III Practice Questions 1. Write the ordered pair corresponding to each point plotted below. A F B E D C 2. Determine if the ordered pair ( 1, 2) is a solution of 2x + y = 4. Explain how you know.
More informationLinear Equations and Graphs
2.12.4 Linear Equations and Graphs Coordinate Plane Quadrants  The xaxis and yaxis form 4 "areas" known as quadrants. 1. I  The first quadrant has positive x and positive y points. 2. II  The second
More information5.1: Rate of Change and Slope
5.1: Rate of Change and Slope Rate of Change shows relationship between changing quantities. On a graph, when we compare rise and run, we are talking about steepness of a line (slope). You can use and
More informationMATH 105: Finite Mathematics 11: Rectangular Coordinates, Lines
MATH 105: Finite Mathematics 11: Rectangular Coordinates, Lines Prof. Jonathan Duncan Walla Walla College Winter Quarter, 2006 Outline 1 Rectangular Coordinate System 2 Graphing Lines 3 The Equation of
More informationWhat does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.
PRIMARY CONTENT MODULE Algebra  Linear Equations & Inequalities T37/H37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of
More informationOrdered Pairs. Graphing Lines and Linear Inequalities, Solving System of Linear Equations. Cartesian Coordinates System.
Ordered Pairs Graphing Lines and Linear Inequalities, Solving System of Linear Equations Peter Lo All equations in two variables, such as y = mx + c, is satisfied only if we find a value of x and a value
More informationAlex and Morgan were asked to graph the equation y = 2x + 1
Which is better? Ale and Morgan were asked to graph the equation = 2 + 1 Ale s make a table of values wa Morgan s use the slope and intercept wa First, I made a table. I chose some values, then plugged
More informationLet (x 1, y 1 ) (0, 1) and (x 2, y 2 ) (x, y). x 0. y 1. y 1 2. x x Multiply each side by x. y 1 x. y x 1 Add 1 to each side. SlopeIntercept Form
8 () Chapter Linear Equations in Two Variables and Their Graphs In this section SlopeIntercept Form Standard Form Using SlopeIntercept Form for Graphing Writing the Equation for a Line Applications
More informationLesson 8.3 Exercises, pages
Lesson 8. Eercises, pages 57 5 A. For each function, write the equation of the corresponding reciprocal function. a) = 5  b) = 5 c) =  d) =. Sketch broken lines to represent the vertical and horizontal
More informationA synonym is a word that has the same or almost the same definition of
SlopeIntercept Form Determining the Rate of Change and yintercept Learning Goals In this lesson, you will: Graph lines using the slope and yintercept. Calculate the yintercept of a line when given
More informationBrunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 20142015 school year.
Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 20142015 school year. Goal The goal of the summer math program is to help students
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) m = y 2  y 1 x1  x 2
4.4.28 GraphingEquations of LinesSlope Interecpt MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) What is the
More information1.3 LINEAR EQUATIONS IN TWO VARIABLES. Copyright Cengage Learning. All rights reserved.
1.3 LINEAR EQUATIONS IN TWO VARIABLES Copyright Cengage Learning. All rights reserved. What You Should Learn Use slope to graph linear equations in two variables. Find the slope of a line given two points
More informationAlgebra 1 Chapter 05 Review
Class: Date: Algebra 1 Chapter 05 Review Multiple Choice Identify the choice that best completes the statement or answers the question. Find the slope of the line that passes through the pair of points.
More information5.1 Writing Linear Equations in SlopeIntercept Form. 1. Use slopeintercept form to write an equation of a line.
5.1 Writing Linear Equations in SlopeIntercept Form Objectives 1. Use slopeintercept form to write an equation of a line. 2. Model a reallife situation with a linear function. Key Terms SlopeIntercept
More informationThe Parabola and the Circle
The Parabola and the Circle The following are several terms and definitions to aid in the understanding of parabolas. 1.) Parabola  A parabola is the set of all points (h, k) that are equidistant from
More informationBeginning of the Semester ToDo List
Beginning of the Semester ToDo List Set up your account at https://casa.uh.edu/ Read the Math 13xx Departmental Course Policies Take Course Policies Quiz until your score is 100%. You can find it on the
More informationPreCalculus III Linear Functions and Quadratic Functions
Linear Functions.. 1 Finding Slope...1 Slope Intercept 1 Point Slope Form.1 Parallel Lines.. Line Parallel to a Given Line.. Perpendicular Lines. Line Perpendicular to a Given Line 3 Quadratic Equations.3
More informationTHE POINTSLOPE FORM
. The PointSlope Form () 67. THE POINTSLOPE FORM In this section In Section. we wrote the equation of a line given its slope and intercept. In this section ou will learn to write the equation of a
More informationAlgebra. Indiana Standards 1 ST 6 WEEKS
Chapter 1 Lessons Indiana Standards  11 Variables and Expressions  12 Order of Operations and Evaluating Expressions  13 Real Numbers and the Number Line  14 Properties of Real Numbers  15 Adding
More informationMath 155 (DoVan) Exam 1 Review (Sections 3.1, 3.2, 5.1, 5.2, Chapters 2 & 4)
Chapter 2: Functions and Linear Functions 1. Know the definition of a relation. Math 155 (DoVan) Exam 1 Review (Sections 3.1, 3.2, 5.1, 5.2, Chapters 2 & 4) 2. Know the definition of a function. 3. What
More information2. Simplify. College Algebra Student SelfAssessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses
College Algebra Student SelfAssessment of Mathematics (SSAM) Answer Key 1. Multiply 2 3 5 1 Use the distributive property to remove the parentheses 2 3 5 1 2 25 21 3 35 31 2 10 2 3 15 3 2 13 2 15 3 2
More informationStudents will use various media (computer, graphing calculator, paper and pencil) to graph/sketch linear equations.
Title: Lines, Lines, Everywhere!! A discovery/exploration lesson investigating equations of the form y = mx + b to see how the values of b and m affects the graph. Link to Outcomes: Communication/ Cooperation
More informationPlot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line.
Objective # 6 Finding the slope of a line Material: page 117 to 121 Homework: worksheet NOTE: When we say line... we mean straight line! Slope of a line: It is a number that represents the slant of a line
More informationMath 113 Review for Exam I
Math 113 Review for Exam I Section 1.1 Cartesian Coordinate System, Slope, & Equation of a Line (1.) Rectangular or Cartesian Coordinate System You should be able to label the quadrants in the rectangular
More informationGraphing  Parallel and Perpendicular Lines
. Graphing  Parallel and Perpendicular Lines Objective: Identify the equation of a line given a parallel or perpendicular line. There is an interesting connection between the slope of lines that are parallel
More information05 Systems of Linear Equations and Inequalities
21. Solve each system of equations. Eliminate one variable in two pairs of the system. Add the first equation and second equations to eliminate x. Multiply the first equation by 3 and add it to the second
More information1) (3) + (6) = 2) (2) + (5) = 3) (7) + (1) = 4) (3)  (6) = 5) (+2)  (+5) = 6) (7)  (4) = 7) (5)(4) = 8) (3)(6) = 9) (1)(2) =
Extra Practice for Lesson Add or subtract. ) (3) + (6) = 2) (2) + (5) = 3) (7) + () = 4) (3)  (6) = 5) (+2)  (+5) = 6) (7)  (4) = Multiply. 7) (5)(4) = 8) (3)(6) = 9) ()(2) = Division is
More informationEQUATIONS and INEQUALITIES
EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line
More informationUnit 1 Study Guide Systems of Linear Equations and Inequalities. Part 1: Determine if an ordered pair is a solution to a system
Unit Stud Guide Sstems of Linear Equations and Inequalities 6 Solving Sstems b Graphing Part : Determine if an ordered pair is a solution to a sstem e: (, ) Eercises: substitute in for and  in for in
More informationLesson 9: Graphing Standard Form Equations Lesson 2 of 2. Example 1
Lesson 9: Graphing Standard Form Equations Lesson 2 of 2 Method 2: Rewriting the equation in slope intercept form Use the same strategies that were used for solving equations: 1. 2. Your goal is to solve
More informationEQUATIONS OF LINES IN SLOPE INTERCEPT AND STANDARD FORM
. Equations of Lines in SlopeIntercept and Standard Form ( ) 8 In this SlopeIntercept Form Standard Form section Using SlopeIntercept Form for Graphing Writing the Equation for a Line Applications (0,
More information3.4 The PointSlope Form of a Line
Section 3.4 The PointSlope Form of a Line 293 3.4 The PointSlope Form of a Line In the last section, we developed the slopeintercept form of a line ( = m + b). The slopeintercept form of a line is
More informationSection 1.4 Graphs of Linear Inequalities
Section 1.4 Graphs of Linear Inequalities A Linear Inequality and its Graph A linear inequality has the same form as a linear equation, except that the equal symbol is replaced with any one of,,
More information1 You Try. 2 You Try.
1 Simplify. 1 You Try. 1) Simplify. AF 1.2 2 Evaluate if, and. 2 You Try. 2) Evaluate if. 1.0 Page 1 of 19 MDC@ACOE (AUSD) 09/13/10 3 Simplify. 3 You Try. 3) Simplify. NS 1.2 4 Simplify. 4 You Try. 4)
More informationGeometry 1. Unit 3: Perpendicular and Parallel Lines
Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples
More informationLesson 6: Linear Functions and their Slope
Lesson 6: Linear Functions and their Slope A linear function is represented b a line when graph, and represented in an where the variables have no whole number eponent higher than. Forms of a Linear Equation
More informationInstructor: Laura Dostert Course: Summer Math Refresher
Student: Date: Instructor: Laura Dostert Course: Summer Math Refresher Assignment: Review 8 Equations of Lines 1. Using the slope formula, find the slope of the line through the given points. (8,0) and
More information4.4 Concavity and Curve Sketching
Concavity and Curve Sketching Section Notes Page We can use the second derivative to tell us if a graph is concave up or concave down To see if something is concave down or concave up we need to look at
More informationGraphing Linear Equations in Two Variables
Math 123 Section 3.2  Graphing Linear Equations Using Intercepts  Page 1 Graphing Linear Equations in Two Variables I. Graphing Lines A. The graph of a line is just the set of solution points of the
More informationChapter 4.1 Parallel Lines and Planes
Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about
More informationHigh School Mathematics Algebra
High School Mathematics Algebra This course is designed to give students the foundation of understanding algebra at a moderate pace. Essential material will be covered to prepare the students for Geometry.
More informationPortable Assisted Study Sequence ALGEBRA IIA
SCOPE This course is divided into two semesters of study (A & B) comprised of five units each. Each unit teaches concepts and strategies recommended for intermediate algebra students. The first half of
More information5.1. A Formula for Slope. Investigation: Points and Slope CONDENSED
CONDENSED L E S S O N 5.1 A Formula for Slope In this lesson ou will learn how to calculate the slope of a line given two points on the line determine whether a point lies on the same line as two given
More informationEconomics 101 Homework #1 Fall 2014 Due 09/18/2014 in lecture
Economics 101 Homework #1 Fall 2014 Due 09/18/2014 in lecture Directions: The homework will be collected in a box before the lecture. Please place your name, TA name and section number on top of the homework
More informationDesign a Brochure Algebra 2 Project Linear Equations and Inequalities
Design a Brochure Algebra 2 Project Linear Equations and Inequalities Purpose: For this project, you will be working as a group of two to design a trifold brochure or an alternate display that will summarize
More informationGraphing  SlopeIntercept Form
2.3 Graphing  SlopeIntercept Form Objective: Give the equation of a line with a known slope and yintercept. When graphing a line we found one method we could use is to make a table of values. However,
More informationUnit 5: Coordinate Geometry Practice Test
Unit 5: Coordinate Geometry Practice Test Math 10 Common Name: Block: Please initial this box to indicate you carefully read over your test and checked your work for simple mistakes. What I can do in this
More informationExam 2 Review. 3. How to tell if an equation is linear? An equation is linear if it can be written, through simplification, in the form.
Exam 2 Review Chapter 1 Section1 Do You Know: 1. What does it mean to solve an equation? To solve an equation is to find the solution set, that is, to find the set of all elements in the domain of the
More informationIndiana State Core Curriculum Standards updated 2009 Algebra I
Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and
More informationName: Date: Block: Midterm Exam Review Sheet 1
Name: Date: Block: Midterm Exam Review Sheet 1 Chapter 1 1. Write a variable expression for 2. Simplify: 8 3 2 4 seven divided by the sum of x and five 3. Write an algebraic expression for 4. Write an
More informationMany different kinds of animals can change their form to help them avoid or
Slopes, Forms, Graphs, and Intercepts Connecting the Standard Form with the SlopeIntercept Form of Linear Functions Learning Goals In this lesson, you will: Graph linear functions in standard form. Transform
More informationSection 1.8 Coordinate Geometry
Section 1.8 Coordinate Geometry The Coordinate Plane Just as points on a line can be identified with real numbers to form the coordinate line, points in a plane can be identified with ordered pairs of
More informationPrecalculus Workshop  Functions
Introduction to Functions A function f : D C is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set C. D is called the domain of f. C is called the codomain of f.
More informationAlgebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.
Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear
More information2.1 Algebraic Expressions and Combining like Terms
2.1 Algebraic Expressions and Combining like Terms Evaluate the following algebraic expressions for the given values of the variables. 3 3 3 Simplify the following algebraic expressions by combining like
More informationThe Perpendicular Bisector of a Segment
Check off the steps as you complete them: The Perpendicular Bisector of a Segment Open a Geometry window in Geogebra. Use the segment tool of draw AB. Under the point tool, select Midpoint of Center, and
More informationMA.8.A.1.2 Interpret the slope and the x and yintercepts when graphing a linear equation for a realworld problem. Constant Rate of Change/Slope
MA.8.A.1.2 Interpret the slope and the x and yintercepts when graphing a linear equation for a realworld problem Constant Rate of Change/Slope In a Table Relationships that have straightlined graphs
More informationThe SlopeIntercept Form
7.1 The SlopeIntercept Form 7.1 OBJECTIVES 1. Find the slope and intercept from the equation of a line. Given the slope and intercept, write the equation of a line. Use the slope and intercept to graph
More informationSlopeIntercept Quiz. Name: Class: Date: 1. Graph the line with the slope 1 and yintercept 3. a. c. b. d.
Name: Class: Date: ID: A SlopeIntercept Quiz 1. Graph the line with the slope 1 and yintercept 3. a. c. b. d.. Write the equation that describes the line with slope = and yintercept = 3 a. x + y = 3
More informationHow can you write an equation of a line when you are given the slope and the yintercept of the line? ACTIVITY: Writing Equations of Lines
. Writing Equations in SlopeIntercept Form How can ou write an equation of a line when ou are given the slope and the intercept of the line? ACTIVITY: Writing Equations of Lines Work with a partner.
More informationMath 018 Review Sheet v.3
Math 018 Review Sheet v.3 Tyrone Crisp Spring 007 1.1  Slopes and Equations of Lines Slopes: Find slopes of lines using the slope formula m y y 1 x x 1. Positive slope the line slopes up to the right.
More informationMath 40 Chapter 3 Lecture Notes. Professor Miguel Ornelas
Math 0 Chapter Lecture Notes Professor Miguel Ornelas M. Ornelas Math 0 Lecture Notes Section. Section. The Rectangular Coordinate Sstem Plot each ordered pair on a Rectangular Coordinate Sstem and name
More information